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Abstract— State space models of highly flexible systems can
present severe numerical issues. The models derived from
physical principles often lack structure. Canonical form models,
are compact, but obscure any physical structure and can
have coefficients that are highly sensitive to model parameters.
What is needed is a form that has the compact representation
of the canonical forms, the physicality of the forms derived
from physical equations, and maintain numerical accuracy and
physical intuition, even after discretization. This paper presents
a new state space form, the Biquad State Space (BSS), based
on the multinotch structure [1], [2]. We will will show that the
BSS captures the endearing characteristics of the multinotch
while providing the flexibility of model based control. This
paper will present the basic structure in discrete time form
which most closely matches the multinotch. Forms not specific
to minimum latency control, including a continous time version,
will be discussed in [3].

I. INTRODUCTION

One of the aspects of digital control that gets brief
mention in control textbooks and research papers is the
implementation of low latency control. It is well understood
that latency, including computational latency, erodes phase
margin by adding negative phase. Some textbooks mention
precalculating operations which do not depend upon the
current input in the preceding sample interval [5], [6]. The
savings in latency are illustrated in Figure 1.

In the Single-Input, Single-Output (SISO) case this is
tedious, but relatively straightforward if the controller can
be cast into the form of a high order polynomial filter. This
is shown in Figure 2, and represented as transfer functions
in the unit delay operator, z−1:

Y (z−1)

U(z−1)
=

b0 + b1z
−1 + b2z

−2 + . . .+ bnz
−n

1 + a1z−1 + a2z−2 + . . .+ anz−n
. (1)

This gets implemented in a filter as [7]:

yk = −a1yk−1 − a2yk−2 − . . .− anyk−n

+b0uk + b1uk−1 + . . .+ bnuk−n. (2)

Looking at (2), we see that yk depends mostly on previous
inputs and outputs. The only current value needed is uk and
this is only multiplied by b0. So we can break this up into [5]:

yk = b0uk + preck, where (3)

preck = −a1yk−1 − . . .− anyk−n

+b1uk−1 + . . .+ bnuk−n. (4)
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Fig. 1. Input and output timing in a digital control system. The top
drawing is without precalculation; the bottom drawing is with. Note that
precalculation can be started as soon as the output has been sent to the DAC
and therefore is in parallel with the DAC conversion time. The computation
time, TCOMP , of the top diagram is now split into TPRECALC + TFC

where TPRECALC is the computation time needed for the precalculation
and TFC is the time needed for the final calculation after the input sample.
Modulo some small programming overhead, the split time should equal the
total computation time. Here TSH , TADC , and TDAC represent the sample
and hold, ADC conversion, and DAC conversion times, respectively.

We can see that preck depends only on previous values of
yk and uk. This means that preck can be computed for step
k immediately after the filter has produced the output for
time index, k − 1 [6]. When the sample at time step k, uk,
comes into the filter, it need merely be multiplied by b0
and added to preck to produce the filter output. Thus, the
delay between the input of uk and the output of yk is small
and independent of the filter length. Small latency improves
performance, but fixed latency implies predictable behavior,
which may be more critical in debugging real time system.

In [1], [8], the multinotch was introduced as a discrete
time filter whose structure allowed for fixed and low latency
between the most recent signal input and the filter output,
while having the excellent numerical properties inherent in
biquad structures. In [2] we demonstrated a filter coefficient
adjustment, the Δ coefficients, which allowed high numerical
fidelity even when the sample frequency was several orders
of magnitude higher than that of the dynamic feature being
filtered. Both of these papers implement the filter in a transfer
function form.

This paper will demonstrate how to adapt the multinotch
for state space structures [9]. We will see that the same
basic principles can be used to improve the computational
latency and numerical fidelity of current mode observers,
thereby allowing state feedback with fixed and low latency.
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Fig. 2. An nth order polynomial filter in Direct Form II configuration [4].

Furthermore, state space models of highly flexible systems
can present severe numerical issues. The models derived
from physical principles often lack structure. Canonical form
models [10], are compact, but obscure any physical structure
and can have coefficients that are highly sensitive to model
parameters. What is needed is a form that has the compact
representation of the canonical forms, the physicality of the
forms derived from physical equations, and maintain numer-
ical accuracy and physical intuition, even after discretization.

While the multinotch was applied primarily to shaping
loop dynamics with high Q resonances and anti-resonances,
a good state space model also needs to be able to account for
low frequency and rigid body dynamics. This will be demon-
strated, using the classic double integrator as an example, in
Section V.

The numerical benefits of this form exist even when low
latency is not a consideration, so we will show forms of the
structure applicable in offline modeling and simulation in [3].
Finally, we will show a modeling example from experimental
data of a mechatronics system where the Biquad State Space
(BSS) form holds numerical accuracy far beyond conven-
tional methods, as will become obvious in the examples of
Section VII.

While the structure is quite regular and works for large
or small numbers of biquads, the regular pattern becomes
obvious in the three biquad case. Thus, most of the structural
equations will be three biquad ones. The format considera-
tions of this will mean that many of these matrix equations
are in two column figures, but seeing the matrices in this
way makes the structural properties fairly obvious. This will
result in some of the larger equations being pushed into two
column figures.
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Fig. 3. The updated discrete biquad cascade, with factored out bi,0 terms
and scaling the output of each block.

II. THE BIQUAD DECOMPOSITION OF DIGITAL FILTERS

In [1], we discussed how a higher order Single-Input,
Single-Output (SISO) digital filter, such as that in Equation 1,
can be factored into a chain of second order filters known as
biquads. This has been well established for a long time. How-
ever, until [1], using biquads [7] in digital feedback control
meant that precalculation [5], [6] to reduce computational
latency was limited to only the first biquad block since all
downstream blocks needed the final output of the first block
to do any computations. The multinotch, by factoring out the
direct feedthrough coefficients, and only multiplying them in
at the output, removed that constraint, allowing the numerical
advantages of biquad decomposition to be coupled with the
low latency advantages of precalculation.

There is no need to repeat the equations of [1] here, but
looking at the structure the multinotch in Figure 3 there are
a few things to note before generating our first state space
form:

• The delay terms in the biquads are equivalent to states
in a state space structure, but they are offset in time.
Looking at Figure 3, di,k = xi,k+1. That is, the digital
filter approach defines delays on the input of time shifts
(z−1) while standard state space notation defines states
on the outputs of time shifts.

• While ỹi,k+1 depends on xi,k+1, it can be recalculated
as a weighted sum of prior delays and the current input.
That is, we can calculate ỹi,k+1 in parallel to xi,k+1.

III. A BIQUAD STATE SPACE FORM

So far, we have not done anything not already in [1].
However, we can look at each of these biquad sections as a
state space realization. In this case:

[
xi,k+1

xi,k

] [ −ai1 −ai2
1 0

] [
xi,k

xi,k−1

]
+

[
1
0

]
ui,k (5)
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while the state output equation is given by:

[
ỹi,k+1

]
=

[
b̃i1 − ai1 b̃i2 − ai2

] [ xi,k

xi,k−1

]
+
[
1
]
ui,k

(6)
Finally, the properly scaled output is generated via:[

yi,k+1

]
=

[
bi0

] [
ỹi,k+1

]
. (7)

The indexing of ỹi,k+1 and yi,k+1 are a bit odd because since
we have direct feedthrough in our structure, ỹi,k+1 depends
on xi,k+1 as well as xi,k, xi,k−1, and ui,k. Thus, it’s cleaner
in what follows to call the biquad outputs, ỹi,k+1 and yi,k+1,
respectively. We chain these together by noting that:

ui+1,k = ỹi,k+1, for 0 ≤ i < n,
u0,k = uk, and
ỹn,k+1 = ỹk+1.

(8)

If one is willing to go through the algebraic pain and
suffering of applying Equation 8 to each biquad structure
a very regular state space structure results. For a 3-biquad
model, we get the state equation of 9. The unscaled output
is in Equation 10, both displayed in Figure 4 due to their
size. Finally, the properly scaled outputs are generated via:⎡
⎣ y2,k+1

y1,k+1

y0,k+1

⎤
⎦ =

⎡
⎣ b20b10b00 0 0

0 b10b00 0
0 0 b00

⎤
⎦
⎡
⎣ ỹ2,k+1

ỹ1,k+1

ỹ0,k+1

⎤
⎦ .

(11)
One key of this form is that the generation of the state

update (output vector) involves:

• Multiplication of the prior state vector by the state
transition matrix (state output matrix) – none of which
involves the current input. This can therefore be done
in a precalculation step.

• Addition of the unscaled current input to each product
row of the above multiplication. This can be parallelized
so that the latency once the current input is available is
that of a single addition.

Looking at this critically, the state transition and output
matrices are always multiplied by the old state, and therefore
could be precalculated in any form. If there is no direct
feedthrough from the input to the output, such a model can
be used without incurring much delay. However, the BSS is
structured so that direct feedthrough from the input to the
output needs one addition and one multiplication per output.
This is a big benefit for using state space in real time control.
The fact that the BSS also provides excellent numerical
properties as will be seen in the example of Section VII.

The generation of the final, scaled output takes a single
multiplication per output. Therefore, updating the state and
output using the BSS using precalculation has a compu-
tational latency of two operations: one addition and one
multiplication.

IV. THE MATRICES, RELOADED

Generating coefficients from continuous time biquad pa-
rameters is discussed in some detail in [1] and [2]. Suffice
it to say that continuous time, physical parameters can be

mapped into the discrete time biquads which form the basis
of our state matrices.

The state transition matrix in Equation 9 has a very regular,
block upper triangular form. On the block diagonals are 2×2
blocks with the biquad denominator parameters (from which
we can extract the model poles). Below the diagonal blocks
are empty, while above the diagonal blocks is a repeated set
of 2× 2 blocks with 0s on the lower rows and

[
b̃i,1 − ai,1 b̃i,2 − ai,2

]
(12)

on the top row. The top rows of these blocks represent the
feedthrough of the biquad states to the other states. Likewise
in the output matrix of Equation 10, these same subsections
in (12) represent the feedthrough of the biquad states to the
outputs. Note that in both of these matrix equations, the input
is passed unscaled to the states and unscaled outputs. The
gain scaling is applied in (11).

Note that while these matrices are denser than a typical
canonical form, many of the needed multiplications and
additions are repeated, so that proper coding of the state
and unscaled output updates makes this form no more
computationally intense than a canonical form.

The above the block diagonal blocks are governed by the
terms in (12), and these terms are determined by how the
overall system model is partitioned into biquads. One way to
minimize these terms is to arrange the pole-zero groupings so
that each biquad consists of poles and zeros that are closest
to each other.

V. ADDING RIGID BODY DYNAMICS: DOUBLE

INTEGRATOR

For modeling any real mechatronic system, there will have
to be some sort of rigid body or low frequency resonance
model. In this section, we will show how to add a double
integrator to this biquad structure. The simplest way, of
course, would be if the double integrator could just be
modeled as a biquad. Defining our double integrator as
D(s) = K/s2 and applying the Trapezoidal rule yields

DT (z
−1) = K

(
T

2

)2 (
1 + z−1

1− z−1

)2

. (13)

Neglecting the gain, K
(
T
2

)2
, we define

D̃T (z
−1) =

(
1 + z−1

1− z−1

)2

=
1 + 2z−1 + z−2

1− 2z−1 + z−2
(14)

from which we can extract the time domain equations

dk − 2dk−1 + dk−2 = uk. (15)

Remembering that in the traditional state-space notation
xk+1 = dk we get

xk+1 = 2xk − xk−1 + uk (16)

and
ỹk+1 = xk+1 + 2xk + xk−1. (17)
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⎡
⎢⎢⎢⎢⎢⎢⎣

x2,k+1

x2,k

x1,k+1

x1,k

x0,k+1

x0,k

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−a21 −a22 b̃11 − a11 b̃12 − a12 b̃01 − a01 b̃02 − a02
1 0 0 0 0 0

0 0 −a11 −a12 b̃01 − a01 b̃02 − a02
0 0 1 0 0 0
0 0 0 0 −a01 −a02
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x2,k

x2,k−1

x1,k

x1,k−1

x0,k

x0,k−1

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0
1
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎦
uk (9)

⎡
⎣ ỹ2,k+1

ỹ1,k+1

ỹ0,k+1

⎤
⎦ =

⎡
⎣ b̃21 − a21 b̃22 − a22 b̃11 − a11 b̃12 − a12 b̃01 − a01 b̃02 − a02

0 0 b̃11 − a11 b̃12 − a12 b̃01 − a01 b̃02 − a02
0 0 0 0 b̃01 − a01 b̃02 − a02

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x2,k

x2,k−1

x1,k

x1,k−1

x0,k

x0,k−1

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎣ 1

1
1

⎤
⎦uk (10)

Fig. 4. State equations for discrete time biquad state space with scalar output scaling.

Note that ỹk+1 depends upon xk+1 which we have defined
in terms of previous values of xk and the current input, uk,
so we can make the substitutions to get

ỹk+1 = xk+1 + 2xk + xk−1

= 2xk − xk−1 + uk + 2xk + xk−1

= 4xk + uk.
(18)

We put this in state space form as:[
xk+1

xk

]
=

[
2 −1
1 0

] [
xk

xk−1

]
+

[
1
0

]
uk. (19)

The output is defined as:

[ỹk+1] =
[
4 0

] [ xk

xk−1

]
+
[
1
]
uk. (20)

Finally,
[yk+1] =

[
KT 2/4

]
[ỹk+1] . (21)

This is great news. What we have seen is that we can treat
a double integrator as a digital biquad, and so we can drop
it right into our structure, simply by choosing

a1 = −2, a2 = 1,

b̃1 = 2, b̃1 = 1, and b0 = KT 2

4 .
(22)

VI. CURRENT ESTIMATOR AND STATE FEEDBACK

In a prediction estimator, the measurement error is formed
using the previous measurement and a state output generated
entirely from quantities available before the current measured
output. This means that the BSS does not have a signifi-
cant latency advantage in a predictor form observer, simply
because the latter already has a full sample of latency. A
current estimator, on the other hand, depends on the current
measurement. It is for this type of estimator where we can
get some latency savings as shown in Figure 1.

In order to use our form in an observer, we need to
generate time update and measurement update equations.
For the 3-biquad case, the time update equation is given by
Equation 23. For the SISO case, there will only be a single
output, and so the output equations become what is shown
in Equation 24.

Finally, the properly scaled time update output is gener-
ated via a single multiplication of concatenated feedthrough
coefficients, in a similar manner to [1].

ȳk = ȳ2,k = b20b10b00ỹ2,k. (25)

For the SISO measurement update, the equations are quite
simple:

ek = ymeas,k − ȳk, and (26)

x̂k = x̄k + Lcek. (27)

Now, Equation 26 involves one subtraction. Equation 27
involves one multiply and addition for each state, but these
are independent and so can be done in parallel. The latency
then, for the state state update, is that of 2 multiplies, plus 3
add/subtract operations, independent of the size of the state.
To use the state estimate in state feedback would require

ufb,k = Kfbx̂k = Kfbx̄k +KfbLcek, (28)

in which the Kfbx̄k and the KfbLc products can be recalcu-
lated. Thus for a SISO system, state feedback involves one
more multiply and one addition.

VII. EXAMPLES

In order to demonstrate the numerical improvements aris-
ing from the biquad state space structure, an example is
take from measurements of an Aerotech linear stage used
in experiments for the Quintessential Phase project [11].
The Aerotech single axis stage as shown in Figure 6. The
Aerotech 3300 stage controller includes a PID like feedback
controller along with a feedforward portion. The sample rate
for these is 8 kHz. In order to obtain a clean frequency
response, the Eric Johnstone [11] turned off the feedforward
compensator and then used the Aerotech controller’s built in
swept-sine functionality. A 1000 point swept-sine frequency
response function (FRF) was taken on a logarithmic fre-
quency axis from 10 Hz to 4 kHz. The Aerotech controller
returned an open loop FRF, which was uploaded to Matlab.
There a model of the Aerotech PID was constructed using
Aerotech parameters. A FRF for this controller was synthe-
sized on the same frequency axis as the stage open loop

2816



⎡
⎢⎢⎢⎢⎢⎢⎣

x̄2,k

x̄2,k−1

x̄1,k

x̄1,k−1

x̄0,k

x̄0,k−1

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−a21 −a22 b̃11 − a11 b̃12 − a12 b̃01 − a01 b̃02 − a02
1 0 0 0 0 0

0 0 −a11 −a12 b̃01 − a01 b̃02 − a02
0 0 1 0 0 0
0 0 0 0 −a01 −a02
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x̂2,k−1

x̂2,k−2

x̂1,k−1

x̂1,k−2

x̂0,k−1

x̂0,k−2

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0
1
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎦
uk−1. (23)

[
¯̃y2,k

]
=

[
b̃21 − a21 b̃22 − a22 b̃11 − a11 b̃12 − a12 b̃01 − a01 b̃02 − a02

]

⎡
⎢⎢⎢⎢⎢⎢⎣

x̂2,k−1

x̂2,k−2

x̂1,k−1

x̂1,k−2

x̂0,k−1

x̂0,k−2

⎤
⎥⎥⎥⎥⎥⎥⎦
+
[
1
]
uk−1 (24)

Fig. 5. Time update equations for discrete time biquad state space with scalar output scaling.

Fig. 6. Laboratory system: Aerotech air bearing linear stage, including
linear grating for position measurement. The Aerotech system implements
a PID controller and samples the data at 8 kHz. It has a built in swept-sine
measurement. In the center of the image is a laser interferometer (IF) to
provide an alternate measurement of the stage position. The stage itself is
to the left of the IF.

response measurement, and this controller FRF was divided
out of the open loop FRF to obtain a “plant” FRF. This
plant FRF was fit to a stage model that consisted of a double
integrator plus 20 analog biquads. The biquads are ranked in
order of significance on the frequency response so that if one
wants to simplify the model, one removes the latter biquads.
The identified model parameters are in Table I.

In order to compare the biquad state space to more conven-
tional methods, the fit parameters were then used to generate
both transfer function models and state space models in
Matlab. The linear system concatenation functions were used
for both of these. From these high order models, Bode plots
were generated to compare to the original measurement.
Similarly, model terms were used to construct a biquad state
space structure and again, a Bode plot was generated. Note
that these plots are not made using fixed point math, but with
all terms represented in Matlab’s dual precision floating point
format.

20 Biquad Fit Parameters for Aerotech Stage
Biquad # fN,n (Hz) Qn fN,d (Hz) Qd

1 2116.5 46.9420 1871.2 9.0188
2 1162.6 9.3768 1301.8 1.9112
3 619.9 4.8004 631.5 13.2948
4 1792.6 13.1546 1726.6 27.3882
5 702.0 0.3261 1374.2 0.1245
6 428.7 25.2154 449.4 7.3544
7 559.7 10.4940 549.4 18.6003
8 248.3 2.5601 241.9 3.2069
9 1891.1 31.8588 1874.3 21.0130
10 1484.5 14.0540 1506.3 11.2718
11 720.5 5.0254 718.5 7.0045
12 458.0 24.6218 459.3 19.0552
13 287.8 9.7413 286.8 9.8888
14 225.7 14.7047 225.4 14.0349
15 3590.2 7.4186 3203.0 10.2562
16 2159.3 60.0000 2143.5 21.8389
17 1947.3 11.7009 1954.3 9.3325
18 1982.2 9.2703 1982.1 9.2825
19 1936.4 9.2163 1936.5 9.2002
20 2128.2 60.0000 2121.7 84.6660

TABLE I

MODEL PARAMETERS FROM CURVE FIT OF AEROTECH FREQUENCY

RESPONSE DATA.

In Figure 7, we see that with up to 12 biquads and a rigid
body, all the methods produce essentially equivalent Bode
plots, that match the magnitude data exceptionally well. The
phase features are matched, with the exception of the general
rolloff that can be attributed to time delay not modelled in
the rigid body or the biquads.

However, just the addition of two more biquads in Fig-
ure 8, we see that the two “conventional” methods deviate
significantly from the measured frequency response. At 20
biquads plus the rigid body as shown in Figure 9, it is
very clear that the conventional methods are so affected by
numerical issues that they cannot come close to representing
the measurement, either a low frequency or high frequency.
In both of these cases, we see that the biquad state space
continues to match the original measurement.
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Fig. 7. Comparing state space forms to AeroTech stage frequency response.
Modeling the system with first 12 biquads and a rigid body, there is no
discernible difference in the plots. The measured plant exhibits a phase roll
off at high frequency not fit by the biquads.
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Fig. 8. Comparing state space forms to Aerotech stage frequency response.
Modeling the system with first 14 biquads and a rigid body, we start seeing
significant differences in the different methods of realizing the state space
form. The conventional methods are clearly not matching the measured
Aerotech frequency response, while the biquad state space method is.

VIII. CONCLUSIONS

The biquad state space (BSS) form adapts the multinotch
filter [1] for state space use, preserving the latter’s excellent
numerical properties. One form of the BSS has the same
minimum latency behavior that makes the multinotch so
useful for real-time control. Like the multinotch, this “scalar
output gain” version of the BSS has computational latency
after the input sample that is independent of the number of
states. When used as an observer for state feedback in a SISO
system, the extra latency is due to nstates multiplications
(which can be done in parallel) and a sum of these products.
Depending upon the computational architecture and the num-
ber of products, the addition can also be accomplished in 1 to
nstates−1 operations, the latter if addends must be summed
2 at a time.

Even when doing off line modeling, the examples in
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Fig. 9. Comparing state space forms to Aerotech stage frequency response.
Modeling the system with first 20 biquads and a rigid body, there is a
massive difference between the conventional methods and the biquad state
space method.

Section VII demonstrate how the BSS preserves numerical
fidelity in the state space model. It also preserves the physical
intuition of the analog parameters in the digital state space
matrices, which is extremely helpful in debugging physical
systems. This will be discussed in [3].

(The author would like to thank Eric Johnstone of
KeySight Technologies (formerly Agilent) for the inspiration
for this project, as well as his skill using Maple to debug
algebraic typos.)
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