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Abstract– This paper and the two that accompany it will
describe a method of breaking down the Position Error Sig-
nal (PES) of a magnetic disk drive to its contributing com-
ponents. Once these components are identified, they can be
ranked in terms of their overall effect on PES and thus the
most critical ones can be worked on first. This method is
based on three things: an understanding of how Bode’s Inte-
gral Theorem[1] ties into noise measurements, a measurement
methodology that allows for the isolation of individual noise
sources, and a system model that allows these sources to be
recombined to form the drive’s Position Error Signal. We have
found this method to be dramatically useful in identifying the
key contributors to PES noise.

1. Introduction

This paper and the two that accompany it[2, 3] will describe
a method of breaking down the Position Error Signal (PES)
of a magnetic disk drive to its contributing components. Once
these components are identified, they can be ranked in terms
of their overall effect on PES and thus the most critical ones
can be worked on first. In order to do a practical analysis of
the contributors to PES, the fundamental question that must
be answered is: What can be measured? While this may seem
whimsical at first, it should be noted that in any real system,
we will not have access to all the measurement points that we
desire. Furthermore, although many different analysis tools
might theoretically be available, they are useless to us if they
cannot make use of the actual laboratory measurements avail-
able to us.

In order to guide our measurements and our modeling, it is
useful to have a map of the system. The block diagram in Fig-
ure 1 will serve as the map for our tour of noises in the system.
Starting at the left of this diagram, the reference position that
the actuator arm must follow is the position of the magnetic
track written on a disk, turning on a spindle. Only the posi-
tion error – the difference between the reference track position
and the readback head position – is sensed by the readback
head, and this error signal is sent to the demodulator. The
demodulator outputs a set of numbers at the system sample
rate, and these are combined electronically to form PES. This
PES signal is then converted to a digital format via an ana-
log to digital converter (ADC), filtered by the compensator
and then sent back out to the power amplifier via a digital to
analog converter (DAC). The power amp converts the desired
voltage into a current to drive the voice coil actuator (with
torque constant Kt). The actuator itself has rigid body be-
havior as well as resonances. Through this, the head position
is set. The position error is then sensed by the head. Abso-
lute head position is not generally known from what is read off

of the disk surface, but can be obtained in the laboratory by
shining a laser spot from a Laser Doppler Vibrometer (LDV)1

off of the side of the head. While this nominally measures
velocities, the result can be accurately integrated in time (for
the frequencies we are concerned with) to obtain position.

There are several measurement points that can be accessed
around the loop: Xout, Isense, PES, and head velocity (and
position) via the LDV. In general test signals can be injected
into the loop only at Xin.

There are several likely noise input points on a disk drive.
First of all, there are the noises associated with the moving
disk and the readback process. These all enter the loop at
the same point, but have different root causes. The noise due
to the motion of the disk attached to a ball bearing spindle
creates both Repeatable Run Out (RRO) (typically at orders
of the spindle rotational frequency) and Non-Repeatable Run
Out (NRRO). One of the interesting properties of servowritten
disks is that one pass of the NRRO is usually locked into the
servo position information when it is written. Thus, this writ-
ten in NRRO is repeated at every revolution of the disk. The
other noise source that enters at this point is the noise from
the readback process of position information, called Position
Sensing Noise (PSN). This noise can be due to the magnetic
domains on the disk, the behavior of the magnetic readback
head, the interaction of these two, or the action of the demod-
ulator. (We lump demodulator noise into PSN for our current
analysis.) Downstream in the loop, there are potential noise
sources at the ADC and DAC (due to quantization), noise at
the power amp, and finally windage. Windage is caused by
the air flow generated as the disk spins. This air flows over,
under, around, and into the actuator arms and the readback
head, disturbing the head position. Given all these potential
noise sources, there is a fundamental need to identify which of
these – if any – are the most significant contributors to PES.
With this information, the effort to reduce the noise in PES
can be concentrated on the critical few.

It is worth noting that we purposely ignore external shock
and vibration in this analysis for two reasons. First of all, ex-
ternal shock and vibration is heavily influenced by the drive’s
operating environment while the above noises are a function
primarily of the drive. The second is that prior work in this
area[4] gives us some confidence that we already have a rea-
sonable engineering solution to many types of external shock
and vibration. Thus, this work will focus on internal noises.

The tools available to us are a set of laboratory instruments
that can make both time and frequency domain measurements.
In particular, Digital Storage Oscilloscopes (DSO) can record
time domain data as can certain spectrum analyzers. The
spectrum analyzers are most useful, though, for measuring lin-

1In this case, made by Polytec.
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Figure 1: Generalized view of track following model.

ear spectra, power spectra, power spectral densities (PSDs),
and frequency response functions of systems. In particular,
the spectrum analyzers that we use are the HP 3563A Control
Systems Analyzer and the HP 3567A Multi-Channel Analyzer.
The latter instrument has the advantage of allowing more than
two signals from the system to be measured at once.

For analysis, we have the standard set of matrix based tools.
In particular, we are using Matlab and Simulink2. As has been
the practice in our laboratory for several years, the measure-
ments are made with a conscious thought of transferring them
into Matlab/Simulink for analysis[5].

Given these tools, there are basically three types of measure-
ments on which we could base our analysis. Their features are
listed below:

PSDs and Power Spectra:

• These are easy to measure.

• It is straightforward to average PSDs.

• If the processes are independent, then the PSDs can be
added. This allows us to decompose a PSD into its com-
ponent parts.

• They contain no phase information =⇒ we cannot inverse
FFT the PSD into a time signal to drive simulations (such
as Simulink).

2We will use these terms generically, allowing the reader to sub-
stitute their favorite software package (such as X-Math and System
Build) for these names.

• We can do frequency response function filtering (in Mat-
lab) using the following scheme:

– Take the linear model and generate Bode plots at
the same frequency points as PSD. Alternately (or in
combination) measure the frequency response func-
tions of the system. In either case, we get a fre-
quency response function at the same frequencies as
the PSDs. Call it H for now.

– Multiply H times its complex conjugate to get ‖H‖2.

– Multiply ‖H‖2 times the power spectrum or PSD to
get effect of the loop on noise.

– Note that ‖H‖2 must be the appropriate units for
filtering the PSDs.

– The resulting output is another power spectrum or
PSD.

– We can use superposition to built up contributions
from many sources.

– We need to do some “loop unwrapping” to extract
proper input noise levels for model.

– This is limited to linear system models.

Linear Spectra:

• These are harder to measure: filtering and averaging of
linear spectra is less straightforward on the HP 3567A.

• Linear spectra contain phase information:

– We can inverse FFT averaged linear spectrum to get
representative time domain input.
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– We can drive Simulink with this.

– We can then use Simulink to generate PSDs from
time domain data.

– This is limited to linear system models.

• Linear spectra cannot be added, therefore we cannot de-
compose noise component factors as with PSDs.

Time Domain Measurements:

• These are not limited to linear system models i.e., we can
measure responses of nonlinear phenomena.

• When averaging, we can make use of an index signal which
is generated once per revolution of the disk.

• Without synchronizing to the index, using time domain
averaging drives all the signals 0.

• With synchronizing to the index, using averaging removes
the Non-Repeatable Run Out (NRRO) of the disk, leaving
only the Repeatable Run Out (RRO).

• This type of measurement does generate data for time
domain simulations, but without using averaging it is hard
to know if the data is representative of general system
behavior.

Looking over all of these features, Power Spectra/PSDs ap-
pear to be the most promising measurements. The chief re-
striction of doing so is that we will have to limit ourselves
to linear models of the disk drive. However, by doing so we
are able to actually add and subtract PSDs. In order to do
so, we formally should require some knowledge that the noise
sources are independent. It turns out that there is no way
to verify this for all sources, but it is very likely true. While
any measured signal in the loop is correlated to several noise
sources, each source arises from an independent physical phe-
nomenon. Furthermore, without allowing for superposition of
noise measurements, it would be next to impossible to analyze
the noise of a measured system. Thus, it is a starting point
we must choose. As far as the linearity assumption goes, it
is well known that quantizers (ADCs and DACs) are nonlin-
ear, however Widrow was able to model them using uniformly
distributed white noise into a linear system[6]. Furthermore
while the actuator pivot friction is also nonlinear[7, 8, 9, 10], it
has been shown[9] that the rotation of the spindle provides an
operating point for the nonlinear system where the behavior
can be modeled using linear components.

What remains to be seen is how all of these noise sources
can affect the Position Error Signal. The fundamental concept
that ties them together comes from what is known as Bode’s
Integral Theorem[1]. The next section will give a thumbnail
sketch of Bode’s Integral Theorem and discuss what its impli-
cations are for measurements of control loops.

2. Bode’s Theorem on Sensitivity Functions

There is is an old theorem by Bode[1] which deals with what
he calls regeneration. It turns out that this theorem has
some very interesting applications to control systems. This
has only recently come to light as a tool for evaluating con-
trol systems[11]. However it is the starting point for design
methodologies such as QFT[12]. There is even a discrete time
version of this theorem[13] that gives some insight on how this
theorem is affected by sample rates.
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Figure 2: Block diagram of closed-loop system.

2.1 Sensitivity Functions: The block diagram for the
following discussion is in Figure 2. The closed loop transfer
function from u1 to y2 is given by the standard form:

T =
y2

u1
=

PC

1 + PC
. (1)

The sensitivity function is also known as the disturbance re-
jection function. Designated S, it is given by :

S =
e1

u1
=

1

1 + PC
=
y2

d
= −e1

d
. (2)

Note that

S + T =
1

1 + PC
+

PC

1 + PC
≡ 1, (3)

hence T is commonly called the complementary sensitivity
function. Note that S = Hyd (= the transfer function from d
to y = y2.

The sensitivity function is important because it shows how
disturbances, d, go through the system and show up at the
output, y, or at the error signal e. For a unity feedback system

S
4
= Hyd = −He1d = He1u1 . (4)

Thus, the transfer function from disturbance, d, to the output,
y is the same as the transfer function from the input u1, to the
error (PES), e1, and the transfer function from disturbance,
d, to error (PES), e1. In other words it is very good gauge of
how noise will be filtered through the system.

Figure 3: Sensitivity function.

Figure 4: Sensitivity function in discrete time.

2.2 Bode’s Integral Theorem: While the mathematics
used to prove both versions of Bode’s theorem can be fairly
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Figure 5: Stein’s depiction of classical control.

Figure 6: Stein’s depiction of modern control.

complicated, the result is fairly simple and extremely powerful.
We will leave the proofs to those papers[1, 11, 13] and talk
simply about the interpretation. Looking at Figure 3 it says
simply that:

the area of
disturbance

amplification
=

the area of
disturbance

rejection
+

a non-
negative
constant.

(5)

Looking at Figure 4, we see that for discrete time the main
difference is that the Nyquist frequency limits the space we
have to work with. In both cases, if we want to attenuate dis-
turbances at one frequency, we must amplify them at another.
There is no way to get around this.

Theorem 1 (Bode’s Integral Theorem for Continuous
Time, Open Loop Stable Systems) For a stable, rational
P and C with P (s)C(s) = O(s2) (i.e. they fall off as 1

s2
)∫ ∞

0

log |S|dω = 0.

Consequences: “Sooner or later, you must pay for every
good deed.” (Eli Wallach in the The Magnificent Seven)

Translation: If you make the system less sensitive to noise
at some frequencies, you then make the system more sensitive
at other frequencies.

Typical control designs attempt to spread the increased sen-
sitivity (noise amplification) over the high frequencies where
noise and/or disturbances may be less of an issue.

A wonderful treatment of this theorem and the importance
of it was given as the Bode Lecture at the 1989 IEEE Confer-
ence on Decision and Control (Tampa, FL)[14]. The talk, by
then Honeywell Researcher and MIT Professor, Gunter Stein,
was entitled “Respect the Unstable.” Unfortunately, no pa-
pers accompanied Bode Lectures at that time, although there

is a video distributed by the IEEE. Stein used this theorem to
show how tightly control engineers are dancing when we deal
with unstable systems. Stein described the net effect of control
systems design as trying to get a certain amount of disturbance
rejection at some frequency span while trying to thinly spread
the amplification over a large frequency span. Stein referred
to this as shoveling dirt. An attempt to recreate his drawing is
in Figure 5. The guy shoveling dirt is moving around the dis-
turbance amplification. He is doing classical control. He can
move the dirt around, but the dirt does not go away. Even
with our modern, sophisticated control tools, in Figure 6, the
dirt is still there.

Now, if the plant or compensator are not stable — i.e., if
P and/or C have finite number of unstable poles — then the
result generalizes to∫ ∞

0

log |S|dω = 2π

K∑
k=1

Re(pk)

(a positive number) where K is the number of unstable poles
of C and P and pk are those poles. Thus, any unstable poles
in the system only make life worse in that more of the noise
would have to be amplified.

Note that the integration is done on a linear scale even
though these drawings may imply a logarithmic frequency scal-
ing.

Figure 7: Bode’s Theorem in Discrete Time

2.3 Bode’s Integral Theorem for Discrete Time :
The paper on Bode’s Integral Theorem for discrete time
systems[13] uses a slightly different notation than that used
above.

Theorem 2 (Bode’s Integral Theorem for Discrete-
Time Systems:) For all closed-loop stable, discrete-time
feedback systems, the sensitivity function has to satisfy the fol-
lowing integral constraint:

1

π

∫ π

0

ln
∣∣S(ejφ)

∣∣ dφ =

m∑
i=1

ln |βi|

where βi are the open-loop unstable poles of the system, m is
the total number of unstable poles, and φ = ωh where h is the
sample period and ω is the frequency in radians/sec.

There are some implications of this theorem dealing with
discrete time systems. Basically, they say the following:

a) With h as the sample period, the ideal upper limit of
the frequency spectrum is π

h
, the Nyquist frequency.

Mohtadi assumes for this discrete time theorem that
there are no frequencies in the loop above the Nyquist
frequency[13]. This would imply that PC = 0 for
ω > π

h
= ωN and S = 1

1+PC
= 1, which is in general

false for a physical system. However, typical digital
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control systems do assume that PC is small at or
above the Nyquist frequency. Thus, even though the
exact assumptions of the theorem will not hold for
most physical systems, it is reasonable to assume that
some insight can be gained from this theorem.

Note: This interpretation does leave open the door
for multirate control. With the actuator signal going
out at a higher rate than the input sensor, it might be
possible to do something (good or bad) at frequencies
above the Nyquist rate, ωN , of the sensor.

b) Since we can only manipulate frequencies up to ωN =
π
h

, and since |S| ≈ 1 above that frequency, the theo-
rem says that if for some frequency |S| < 1 then at
some other frequency |S| > 1. Unlike the continuous
time result, though, there is not infinite bandwidth
to spread this over. Thus, the |S| > 1 all happens be-
low the Nyquist frequency (and therefore in a finite
frequency range).

c) Loop Transfer Recovery, as shown in a famous paper
by Doyle and Stein[15], cannot be done. LTR at-
tempts to asymptotically match the LQR result that
says that LQR provides |S| < 1 for all frequencies, in
part because LQR uses full state feedback. LTR tries
to the same for frequencies up to some point. The
|S| > 1 part is dumped over the infinite frequency
band above that point. The Nyquist limit eliminates
the possibility of doing this.

2.4 What does it mean: Looking at Figure 7, the discrete
time version simply states that (analogous to the continuous
time theorem):

the area of
disturbance

amplification
=

the area of
disturbance

rejection
+

a non-
negative
constant,

(6)

and this all this must happen before the Nyquist frequency.
The reason why this becomes important is that by working to
reject noise at one frequency, we will dump noise amplification
at another frequency, but now that the Nyquist frequency es-
tablishes a limit, we may end up putting noise amplification
at frequencies that we care about.

Figure 8: Sensitivity function at nominal sample rate, ωN1 .

2.5 Effect of sample rate: If the control system is merely
a process of shoveling the “disturbance amplification dirt”
around, then what does the Nyquist rate signify? It can be
thought of as a retaining wall which prevents the “dirt” from
going out beyond the Nyquist frequency. Thus, the freedom
to spread the dirt around is limited by the Nyquist “retaining
wall.”

Graphically it is quite easy to see what the theorem implies
with sample rate. Looking at Figure 8, say we have a certain
amount of rejection, |S| < 1, for a compensator sampled at

Figure 9: Effects of doubling the sample rate (ωN2 = 2ωN1).
The filtering option.

Figure 10: Effects of doubling the sample rate (ωN2 = 2ωN1).
The higher bandwidth option.

ωN1 . This implies a certain area of |S| > 1. This has to be
done before the Nyquist rate retaining wall.

Now, we double the sample rate. With the extra “space,”
we can either do some extra filtering but keep the bandwidth
of the closed-loop system constant (Figure 9) or demand more
rejection at low frequency and higher bandwidth (Figure 10).
Note that the effect of using the extra bandwidth to filter is
essentially to spread the amplification, |S| > 1, over a broader
frequency band. This shrinks the height of any amplification
hills (Figure 9). By pushing the closed-loop bandwidth (Fig-
ure 10), better performance at low frequency may result in
much worse performance at high frequency.

There are two reasons why Bode’s Integral Theorem is im-
portant in a discussion of a disk drive’s Position Error Signal.
First of all, it gives us a very good gauge on what we can and
cannot do with disturbance rejection and noise in a control
system. Amazingly it comes from such an old and simple re-
sult that is generally not well known. This result tells us that
whenever we improve with the noise rejection at one frequency
we pay for it at another. If we are smart and put the noise
amplification at places where there is only a small amount of
noise, then we do well. If not, we may inadvertently be boost-
ing much of the noise that we are trying to eliminate.

The second reason will become apparent in the next sec-
tion. It turns out that when we measure PES from a closed
loop system, we should actually open the loop and look at
PES. The exact same effects that are the point of the above
theorem affect our measurement of PES. We will see that when
we measure PES that is flat in closed-loop, opening the loop
(mathematically in Matlab or on a spectrum analyzer) will give
us a PES spectrum that looks considerably different from the
ones we are accustomed to.

3. Measurements of PES and Loop Unwrapping

Typically in a disk drive the Position Error Signal (PES) is
only measured in closed-loop. This is in general due to the
difficulties of obtaining a linear measurement of head position
across multiple tracks while the loop is not closed. What seems
less common is “opening the loop” as is often done with closed-
loop transfer function measurements. While a PSD of closed-
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loop PES might be a reasonable measure of loop performance,
it is not the useful quantity for determining what the noise
inputs to the system are. In order to obtain this quantity, we
want to open the loop, either physically or mathematically.

Referring back to the block diagram in Figure 2, the closed
loop transfer function from u1 to y2 is given in Equation 1 and
the sensitivity function is which turns out to be the transfer
function from u1 to e1(= PES) is given in Equation 2 Both
of these transfer functions represent many responses. We typ-
ically think of the sensitivity function as the error response,
e1, from either the reference, u1, or a disturbance, d.

Now, to unwrap the closed-loop transfer function, T , there is
a convenient button on some spectrum analyzers – such as the
HP 3562A/3563A – which generates the open loop response,
PC via the waveform math operation T

1−T (= PC) conversion.
However, there is no such key to generate S. It can still be
done simply, thought. The procedure is:

1) Measure closed-loop response from Xin to Xout. Call
this T. (Note that if the phase of the measurement
does not start at 0 at low frequency, then there is an
extra factor of −1 in the closed loop measurement
which must be removed by negating the trace.)

2) Subtract T from 1 i.e., S = 1− T = 1
1+PC

.

3) It is also useful to calculate T
1−T . This is PC, a

quantity that is very useful to have.

Note that while the PSD of PES is typically measured as
a closed loop quantity, we are now in a position to extract
the input to the loop that would yield that PES PSD. Since
the transfer function from u1 to e1 is given by S, a noise PSD
input at u1 would be filtered by ‖S‖2 by the time it showed up
at e1. Thus, if we start with a measurement of noise at e1, we
can filter backwards by 1

‖S‖2 = ‖1 +PC‖2 to get the input at

u1 that could have generated it. The procedure above shows
how to measure the exact filters needed to “open” the loop.

3.1 Practical Considerations: It is useful to understand
that closed loop frequency response functions are generated by
injecting a signal at Xin and reading the response at Xout. A
swept sine (also known as sine-dwell) scheme is used to get the
cleanest possible measurement[16]. Due to traditional design
methods, the frequency response functions are often measured
using a logarithmic frequency spacing although a linear spac-
ing is also possible. On the other hand the measurement PSDs
is almost always done with a linear frequency axis. Further-
more, there is no need to inject anything into the loop to get
the nominal track following levels of PES PSD.

Note that in general the frequency spacing between swept
sine and linear resolution mode does not match. However,
by doing the swept sine in linear resolution and by carefully
choosing matching frequency bands for both the swept sine
and the PSD measurements, we are able to use the measured
frequency response functions to filter the measured PSDs. The
extra work to match frequency bands with the swept sine mode
is justified by the improved signal to noise ration of swept
sine frequency response function measurements over broad-
band measurements.

This allows us to measure the frequency response function,
with the cleaner mode (swept sine) and still use it on the linear
resolution PES data.
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3.2 Measurements: Figure 11 shows simply the frequency
response measurement of a KittyHawk II disk drive. Closed
loop, open loop, and sensitivity functions are shown. Fig-
ure 12, shows the squared the magnitude of S and 1

S
. Fig-

ure 13 shows the PSD of PES as measured and when filtered
by 1
|S|2 .

3.3 What does it mean, Part Deux: Looking at the
two plots in Figure 13 is a bit confusing at first. Most peo-
ple are familiar with the closed-loop measurement of the PES
PSD, but have never seen a PES PSD with the hump at low
frequency. However, when one understands the significance of
Bode’s Integral Theorem, then the plot makes complete sense.
The PES only looks flat because of the action of the feedback
loop. In fact, the “open-loop” plot of the PES PSD can be ap-
proached by lowering the loop gain until the system is barely
track following. At that point, the closed-loop PES PSD will
look very much like the “opened-loop” PES PSD, because the
effect of the feedback loop will have been minimized. The ef-

6



0 200 400 600 800 1000 1200 1400 1600
−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

Freq (Hz)

M
ag

 (
dB

)
KittyHawk II PES: Measured (Blue) and Measured/||S||^2 (Green)

1
‖S‖2 × PSD of PES

PSD of PES

Figure 13: PSD of PES, and PSD of PES filtered by 1
|S|2 .

fect of the feedback loop is to push disturbances down at low
frequency while amplifying them at high frequency. Note that
as the frequency approaches the Nyquist frequency – 1858.5
Hz for the KittyHawk II – the two curves come together.

The point of Bode’s Integral Theorem is that the noise am-
plification will always be there. The servo engineer cannot
eliminate it, they can only choose, through careful control de-
sign, where to put it. This is true in both continuous time
control and discrete time control. There is the added nuisance
of the Nyquist Rate “retaining wall” in discrete time. That
“peaking” of PES at high frequency is not some anomaly of a
poor control design. It is a natural consequence of doing con-
trol. Thus, if we are really going to be concerned with noise
at high frequency, we should look at the sensitivity function,
S, to see how our control design changes it. A control design
methodology that takes this into account, such as QFT[12, 17]
should probably be used.

An interesting point about feedforward control, is that it is
not part of this primary servo loop. This means that there is
no effect on |S| when feedforward once around cancellation or
feedforward disturbance cancellation is done. This has some
implications for disturbance rejection. Part of the reason why
extra gain at low frequency is often desired is to reject PES
noise such as that shown in Figure 13. Another part comes
from the need to reject external disturbances. However, all
of this rejection comes at a cost of amplifying noise and dis-
turbances at a different frequency range. Thus, if feedforward
loops using extra sensors[4] do not affect noise amplification,
then using them may allow us to relax some of the gain require-
ments on our principle control loop and thereby cut down on
the noise amplification at high frequency.

4. Conclusion: The PES Pareto Method

The previous sections have attempted to lay the groundwork
for the following statement: the method shown in the mea-
surements section to extract the “open-loop” noise input to
the system can be applied to every noise source for the system
in Figure 1. This will yield not only the noise inputs to the
system as open loop quantities, but also their effect on PES.

In order to do the appropriate filtering, certain frequency
response functions need to be either generated from a model or
measured in the laboratory. The following building blocks can
either be obtained from laboratory measurements or models
and used to construct any of the necessary filters. Since we are
filtering PSDs, it is useful to remember that the operation will
actually involve the magnitude squared of the filter response.

Note that obtaining open loop frequency response function
measurements on a closed loop system can be done in one of
two ways. The first, a 3-wire measurement involves injecting
a signal at one point in the loop and reading the output at
two other points in the loop. This allows for the direct mea-
surement of open loop quantities from a closed loop system,
but does a poor job if eliminating noise from the measured
response. On the other hand a closed loop measurement is
made by allowing the first of the loop measurement points to
be the injected signal. In order to obtain open loop quantities
from such a measurement, the loop must be mathematically
opened. This does a much better job of decorrelating noise in
the loop from the desired frequency response function. How-
ever, because of the loop unwrapping, this method of obtaining
open loop dynamics can be succeptible to quantization errors
at frequencies where the closed loop response, T ≈ 1. In this
case the loop opening operation T

1−T can be dominated by
the quantization error in the denominator. The point of the
above discussion is to point out why neither method is perfect
and often both types of measurements are done on the same
system.

• P (s) =
1

Kt

(
LDV

Isense

)
3-wire
meas

=
1

KtA(s)

(
LDV

Xin

)
opened

CL-meas

• A(s) : from model

• C(s) =
(
Xout

PES

)
meas

• D(s) =

(
PES
Isense

)
meas(

LDV Position
Isense

)
meas

Given that we have the elements to construct the appropri-
ate filters, there is a common theme for each noise source:

• Isolate a measurement of a noise source as described in
[2] (“common mode reject”).

• Filter backwards from the measurement point to the noise
input to obtain the noise source input PSD.

• Filter forwards from the noise source input to PES to
obtain the effect of this noise on the PES PSD.

• Compare the PSDs at PES and add to cumulative PES
PSD.

• Integrate across frequencies to obtain power spectra and
total variances for each noise source.

As simple as this methodology might seem, it can yield sur-
prisingly profound results in the area. Two papers by the
authors illustrate its use[2, 3]. The net result is to identify
which noise sources in a disk drive are truly limiting the servo
performance.
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