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Abstract
This paper will present a tutorial on

phase-locked loops from a control sys-
tems perspective. It will start with an
introduction of the loop as a feedback
control problem, with both the similari-
ties and differences to traditional control
problems. Chief among the differences is
the necessary inclusion of two nonlineari-
ties in the loop that are not parasitic, but
essential to the loop’s operation. Analysis
methods, both linear and nonlinear will
be discussed. Then digital loops will be
discussed, followed by loop components
and a cursory look at noise. Finally, the
paper will end with a discussion of differ-
ent applications of PLLs and their rela-
tives.

To appear in the Proceedings of the 2002 ACC

1 Introduction
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Figure 1: A general PLL block diagram.

Phase-locked loops (PLLs) have been around for many
years[1, 2]. Gardner’s short history links the earliest

widespread use of PLLs to the horizontal and vertical
sweeps used in television, where a continuous clocking sig-
nal had to be synchronized with a periodic synch pulse [3].
In many respects, the field is mature, with widespread
application to almost every type of communication and
storage device and a large number of books on the sub-
ject [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. By the same token,
PLLs and their relatives are included in so many bleed-
ing edge applications that their designs are anything but
stagnant.

An incomplete list of specific tasks accomplished by
PLLs include carrier recovery, clock recovery, tracking
filters, frequency and phase demodulation, phase mod-
ulation, frequency synthesis, and clock synchronization.
PLLs find themselves into a huge set of applications, from
radio and television, to virtually every type of communi-
cations (wireless, telecom, datacom), to virtually all types
of storage device, to noise cancellers, and the like. With
the widespread use by the public of such devices, one can
claim that PLLs are the most ubiquitous form feedback
system built by engineers.

The most basic block diagram of a PLL is shown in
Figure 1. This diagram shows the components that every
PLL must have, namely:

• A phase detector (PD). This is a nonlinear device
whose output contains the phase difference between
the two oscillating input signals.

• A voltage controlled oscillator (VCO). This is an-
other nonlinear device which produces an oscillation
whose frequency is controlled by a lower frequency
input voltage.

• A loop filter (LF). While this can be omitted, result-
ing in what is known as a first order PLL, it is always
conceptually there since PLLs depend on some sort
of low pass filtering in order to function properly.

• A feedback interconnection. Namely the phase de-
tector takes as its input the reference signal and the



output of the VCO. The output of the phase detec-
tor, the phase error, is used as the control voltage
for the VCO. The phase error may or may not be
filtered.

PLLs have several unique characteristics when viewed
from a control systems perspective. First of all, their cor-
rect operation depends on the fact that they are nonlin-
ear. The loop does not exist without the presence of two
nonlinear devices, namely the phase-detector and VCO.
These devices translate the problem from signal response
to phase response and back again. Accompanying this
is a time scale shift, as PLLs typically operate on sig-
nals whose center frequency is much higher than the loop
bandwidth. Secondly, PLLs are almost always low order.
Not counting various high frequency filters and parasitic
poles, most PLLs in the literature are first or second or-
der. There are a few applications where third or fourth
order loops are used, but these are considered fairly risky
and sophisticated devices. Finally, with the exception of
PLL controlled motors, the PLL designer is responsible
for designing/specifying all the components of the feed-
back loop. Thus, complete feedback loop design replaces
control law design, and the designer’s job is governed only
by the required characteristics of the input reference sig-
nal, the required output signal, and technology limita-
tions of the circuits themselves. In the case of PLL con-
trol of motors, the motor and optical coupler takes the
place of the VCO, leaving all other parts of the PLL to
the designer’s discretion.

With that, one would expect that the study of PLLs
would be strongly steeped in control theory and that con-
trol theorists would have the highest expertise in PLLs.
In fact, the control theory used in most PLL texts is
straight linear system design with a small amount of non-
linear heuristics thrown in [3, 4, 5, 6, 8, 9]. The sta-
bility analysis and design of the loops tends to be done
by a combination of linear analysis, rule of thumb, and
simulation[1, 2, 3, 4, 5]. The experts in PLLs tend to be
electrical engineers with hardware design backgrounds.
The general theory of PLLs and ideas on how to make
them even more useful seems to cross into the controls
literature only rarely [14, 15, 16, 17].

This tutorial will take a control engineer’s view of
PLLs. The idea is to map out what is in the common
literature on the devices against the background of con-
trol design to see how the problem breaks down and what
tools of modern control theory can be applied to these de-
vices.

1.1 PLL Basics

The basic idea of a phase-locked loop is that if one injects
a sinusoidal signal into the reference input, the internal
oscillator in the loop will lock to the reference sinusoid
in such a way that the frequency and phase differences
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Figure 2: A classic mixing phase-locked loop.
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Figure 3: A practical version of the classic mixing
phase-locked loop: note the addition of a bandpass
filter preceding the loop to limit input noise and a high
frequency low pass filter within the loop to attenuate
the 2X frequency component with minimal impact on
the loop dynamics.

between the reference sinusoid and the internal sinusoid
will be driven to some constant value or 0 (depending on
the system type). The internal sinusoid then represents
a filtered or smoothed version of the reference sinusoid.
For digital signals, Walsh functions replace sinusoids.

Typical block diagrams of PLLs in the literature resem-
ble Figure 2, however practical loops often more closely
resemble Figure 3, in which a high frequency low pass
filter is used to attenuate the double frequency term and
a bandpass filter is used to limit the bandwidth of input
signals to the loop. A general sinusoidal signal at the ref-
erence input of a PLL as shown in Figure 3 can be written
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Figure 4: Conceptual block diagram of PLL with sine
detector. This is a transition stage in the analysis of the
classical mixing loop. This model represents the effect
of the multiplying detector once the high frequency
component has been attenuated.
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Figure 5: Conceptual block diagram of linear PLL. This
is derived from the sine detector loop by assuming that
the phase error is small and thus sin(θd) ≈ θd. This is
the model with which most analyses of phase-locked
loops are done.

as:
vi = R1(t) = A sin(ωit+ θi). (1)

Without loss of generality, we can assume that the output
signal from the Voltage Controlled Oscillator (VCO) into
the mixer is given by

vo = V COout(t) = cos(ωot+ θo). (2)

The output of the mixer in Figure 3 is then given by

vd =Mixerout(t) = AKm sin(ωit+θi) cos(ωot+θo), (3)

where Km is the gain of the mixer.
Typically, analysis of such a PLL is done by taking sev-

eral simplifying steps. Using the familiar trigonometric
identity in terms of the PLL:

2 sin(ωit+ θi) cos(ωot+ θo) = (4)
sin((ωi + ωo)t+ θi + θo) + sin((ωi − ωo)t+ θi − θo)

and then making two fundamental assumptions leads to
the commonly used model of the analog PLL. Let θd =
θi − θo. Then these assumptions are:

1. The first term in (4) is attenuated by the high fre-
quency low pass filter in Figure 3 and by the low
pass nature of the PLL itself.

2. ωi ≈ ωo, so that the difference can be incorporated
into θd. This means that the VCO can be modeled
as an integrator.

Making these assumptions leads to the PLL model shown
in Figure 4.

The problem is that this is still a nonlinear system,
and as such is in general difficult to analyze. The typical
methods of analysis include:

1) Linearization: For θd small and slowly varying

sin θd ≈ θd, cos θd ≈ 1, and θ̇d
2 ≈ 0.

While this is useful for studying loops that are
near lock, it does not help for analyzing the
loop when θd is large.

2) Phase plane portraits [3, 5]. This method is
a classical graphical method of analyzing the
behavior of low order nonlinear systems about
a singular point. The disadvantage to this is
that phase plane portraits can only completely
describe first and second order systems.

3) Simulation. Note that explicit simulation of the
entire PLL is relatively rare. Because the prob-
lem is stiff, it is more typical to simulate the re-
sponse of the components (phase detector, fil-
ter, VCO) in signal space and then simulate the
entire loop only in phase space.

The linearized model is shown in Figure 5. This is what
is used for most analysis and measurements of PLLs. As
will be seen in Section 6, changing the phase detector
and VCO can result in a system for which this model is
very accurate. It is possible to learn quite a bit about the
phase behavior of the PLL from linear analysis. However,
this model has some very important omissions that come
into play when simulating or constructing the classical
PLL:

1) The texts typically omit the input bandpass fil-
ter shown in Figure 3. While this is not in
the loop itself and the actual input frequency
is often not known or is variable, it is most of-
ten the case that the designer has some idea
of the range of the signal. In this case, an in-
put bandpass filter can considerably reduce the
broadband noise entering the system.

2) The texts typically omit the high frequency low
pass filter shown in Figure 3. This is important
because this filter is highly useful in attenuat-
ing the effects of the 2ωot signal. The loop filter
itself is optimized for the stability and perfor-
mance of the baseband (phase). The prevalence
of the linear phase model often leads design-
ers and simulation tool builders to forget this
important component. However, experienced
PLL circuit designers include this feature.

3) As seen in (3), the amplitude of the phase er-
ror is dependent upon A, the input signal am-
plitude. The linearized model has a loop gain
that is dependent upon the loop components.
Thus, in practical loop design, the input ampli-
tude must either be regulated or its affects on
the loop must be anticipated.

4) The equations of a PLL are stiff. That is, the
loop has a component at baseband and one at
2ωot. Simulations that sample fast enough to
characterize the latter are often far too slow
(due to the huge number of sample points) to
effectively characterize the former.
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2 Linear Analysis Methods for
Classical PLLs

The PLL model in Figure 5 is a closed-loop feedback
system. The complimentary sensitivity transfer function
from reference phase input to VCO phase output, T (s),
can be obtained as

T (s) =
θo(s)
θi(s)

=
KdF (s)Kv/s

1 +KdF (s)Kv/s
(5)

=
KdKvF (s)
s+KdKvF (s)

. (6)

Similarly, the sensitivity transfer function from the refer-
ence phase input to the phase error, S(s), is

S(s) =
θd(s)
θi(s)

=
1

1 +KdF (s)Kv/s
(7)

=
s

s+KdKvF (s)
. (8)

Among the basic properties of interest in this transfer
function are the loop stability, order, and the system type.

The order of the PLL system should be obvious from
the denominator of Equation 6. The stability of the sys-
tem can be determined by a variety of classical meth-
ods including root locus, Bode plots, Nyquist plots, and
Nichols charts [18].

2.1 The Hold Range

The hold range, ∆ωH , is defined as that frequency range
at which the PLL is able to statically maintain phase
tracking. It is determined by calculating the frequency
offset at the reference input that causes the phase error
to be beyond the range of linear analysis. For a multi-
plying or XOR phase detector, this phase error is π/2.
For sequential detectors, it will be larger. Best states
that since loops will be permanently out of lock if the fre-
quency offset at the input is greater than the hold range,
this quantity is more of an academic matter than a prac-
tical one, but it can be calculated for a classical PLL
(sinusoidal phase detector) as [8, 19]

∆ωH = KoKdF (0). (9)

2.2 The Lock Range

The lock range, ∆ωL, is defined as that frequency range
within which the PLL locks within one single-beat note
between the reference frequency and output frequency [8].
The lock range must be calculated from a nonlinear equa-
tion, but there are several useful approximations that are
made. In particular, if the relative order of numerator
and denominator of the PLL are 1, then the loop can be

said to behave like a first order loop at higher frequencies,
and thus the lock range can be estimated as [19]

∆ωL ≈ ±KoKdF (∞). (10)

2.3 The Pull-In and Pull-Out Range

The pull-in range, ∆ωP , is defined as the frequency range
in which the PLL will always become locked. The pull-out
range, ∆ωPO, is defined as the limit of dynamic stabil-
ity for the PLL [8]. Unfortunately, there are no simple
relationships for these.

2.4 The Steady-State Error

Steady state errors of PLLs are obtained from the linear
analysis via use of the Final Value Theorem, i.e.

lim
t→∞ θd(t) = lim

s→0
sθd(s) (11)

= lim
s→0
sθi(s)S(s). (12)

As seen from Equation 7, the presence of a VCO makes
every PLL at least a Type 1 system, achieving zero steady
state error to a phase step at θi. For a phase ramp or
(equivalently) a frequency step, there must be another
integrator in the forward path, and the natural place for
this is the loop filter, F (s).

It is worth noting that third order PLLs, which can be
Type 3 systems and have zero steady state error to a fre-
quency ramp, are relatively rare. There are two apparent
reasons for this. First of all, the applications that require
that type of performance are typically only found in deep
space communications, where the Doppler shift of the sig-
nal produces a frequency ramp. The second potential rea-
son has to do with the stability of the third order loop
versus that of the second order loop. It turns out that
the parameter values that make the linear model of sec-
ond and first order PLLs stable also guarantee stability of
the nonlinear PLL model shown in Figure 4. However, for
third order loops and higher, this is not the case [20, 21].

3 Nonlinear Analysis Methods for
Classical PLLs

3.1 Phase Plane

One of the earliest methods of nonlinear system analy-
sis is the graphical method of phase plane design. This
has been used in the early days of PLLs [5], before the
widespread use of computers for such calculations. The
use of phase plane portraits for PLLs is made more prac-
tical by the fact that most PLLs are first or second order,
which doesn’t clash with the order restrictions on phase
plane techniques.
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3.2 Lyapunov Redesign

Starting with the the sinusoidal phase detector model
shown in Figure 4, it has been possible to apply the
technique of Lyapunov Redesign [22] to phase-locked
loops [20, 21].

3.3 Circle/Popov Criteria

The difficulty of applying Lyapunov methods to higher
order loops has led to the exploration of nonlinear analysis
methods suitable for numerical techniques. In particular,
the Circle Criterion [14] and the Popov Criterion [23] have
been used to check the stability of higher order PLLs.

4 Digital Signals

Generally speaking, there are a variety of reasons to use
digital circuitry to implement PLLs rather than the clas-
sical methods above. In this case analog voltage levels are
often replaced by digital logic levels. For example, clock
signals to drive digital circuitry, computers, and digital
communications systems all run better with Walsh func-
tions (rectangular waves) rather than sinusoids. Further-
more, these digital circuits are easier to integrate and ver-
ify than their analog counterparts. Finally, as the speed
of the logic outstrips the speed requirements of the appli-
cations, such implementations become far more reliable
than the classical methods.

PLLs that deal with digital signals have one or more
of their components replaced by digital circuitry. This
results in analysis that is considerably different from what
we have seen up to now. However, once one converts the
mindset to that of digital signals, the analysis is often
linear.

5 Digital PLLs

The definition of most digital feedback loops is fairly
straightforward. Digital loops sample the input, convert-
ing it to a digital quantity using an ADC, perform the
control law calculation using some type of computer, and
output the resulting control signal through a DAC. How-
ever, the definition of a digital PLL depends quite a bit
upon which text one reads. Digital PLLs may consist en-
tirely of analog components with the exception of using
one of the digital phase detectors described in Section 6.
In other cases, the loop consists of a digital phase detec-
tor, a digital filter, and a numerically controlled oscillator.
Best’s book distinguishes these as the Classical Digital
PLL and the All Digital PLL, respectively [8]. Finally,
an all software PLL is possible on reference signals that
are entirely digitized. The loop components themselves
are implemented entirely in computer code.

5.1 Classical Digital PLLs

Loop
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Oscillator

Signal
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Figure 6: A classical digital phase locked loop.

The classical digital PLL (CDPLL) shown in Figure 6
is somewhat of a misnomer from the controls perspective.
It is not a digital, sampled data system as the term dig-
ital would imply to control theorists. Instead, it is an
analog PLL implemented with a digital phase detector,
such as one of those in Section 6. In this case, the out-
put of the digital phase detector is seen as a continuous
time voltage and this voltage is fed to an analog loop fil-
ter. PLL authors point out that this type of PLL has
all the disadvantages of the classical PLL due to its ana-
log components. Still, this loop has advantages in that
it can be implemented at very high frequencies (multiple
Gigahertz) with fairly reliable logic. Furthermore, these
loops can be analyzed using continuous time linear feed-
back theory. It is for this reason that some authors do
not treat these loops as digital at all [6].

5.2 All Digital PLLs
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Figure 7: An all digital phase locked loop. The digital
phase detector produces pulses that go into the count
up or count down inputs of the counter, which acts as
the loop filter. The counter then adjusts the frequency
of the digitally controlled oscillator (DCO).

The first difference between the all digital PLL (AD-
PLL) [8] and the classical digital PLL of Section 5.1 is in
the use of the digital phase detector (DPD). In the lat-
ter case, the DPD was used to generate analog voltages
in continuous time. In the ADPLL, the DPD’s output
is considered a digital quantity, either pulses or multi-bit
values. The ADPLL [8] replaces the analog filter with
some sort of a digital filter and the VCO with a digitally
controlled oscillator (DCO).

The DPD and the loop filter are chosen together at
this point. For a DPD that produces pulse streams on its
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Figure 8: Another all digital phase locked loop. The
digital phase detector produces samples of phase error
in an n-bit value. This value is fed to a digital filter
whose output adjusts the the frequency of the digitally
controlled oscillator (DCO).

outputs that correspond to either high or low phase error,
the filter used is some type of counter. Note that while the
pulse streams are essentially continuous time in nature,
the counter relies on an input clock. This clock makes the
DPD/counter combination a sample data system. This is
shown in Figure 7.

For a DPD that produces a sampled stream of multi-bit
valued numbers, a digital filter in the classical sense can
be used [24]. This case, shown in Figure 8, corresponds
most closely to what the controls world considers a digital
feedback loop.

5.3 Software PLLs

When data can be sampled at a rate substantially faster
than the loop center frequency, the entire loop operation
can be implemented in software. This has the advantage
of flexibility. Any type of PLL can be implemented in
software provided the sample rate is high enough. Soft-
ware loops have a lot in common with simulation. One
key difference is that the software loops deal with real
data. Software PLLs may operate on the data in real
time, but can also be used in the post processing of mea-
sured data. One cautionary note is that certain opera-
tions which are highly effective in hardware, such as lim-
iters which have a lot of high frequency content, create
real sampling issues for software loops.

6 Phase Detectors

The analysis methods of Section 2 above were applied
to the classic mixing loop. This has the property that
once an ideal multiplication is done, the analysis of the
baseband signal can be more rigorous. This section will
explore phase detectors constructed from digital logic for
which the initial reduction to baseband relies on argu-
ments of pulse-width modulation and averaging [3, 6, 8].
While these phase detectors have worse noise performance
than the classic mixing detectors, they often have bet-
ter pull in range and are much more manufacturable, es-

pecially for high speed applications. Furthermore, most
of these phase detectors have advantage that their low
frequency response is actually linear over some range
rather than sinusoidal. The exception to this group is
the Alexander or Bang-Bang phase detector [25], which
as it’s name implies produces a response similar to that
of a relay.

Analysis of digital phase detectors requires a different
view from that of classical mixing detectors. First of all,
while the exact behavior of these digital phase detectors
is necessarily nonlinear, the low frequency behavior is of-
ten linear. Secondly, the circuitry of the phase detectors
are constructed more to deal with specific circuit condi-
tions than to make analysis simpler. Finally, no one type
of phase detector is best for all situations. Thus, vastly
different circuit designs are chosen to implement largely
the same functionality for different applications.

6.1 Mixing
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Figure 9: Classical mixing phase detector
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Figure 10: Over driven mixing phase detector

The mixing (multiplying) phase detector shown in
Figure 9 and discussed in Sections 1.1–3, has superior
noise performance to all the other detectors discussed
here [6, 9], due to the fact that it operates on the en-
tire amplitude of the input and VCO signals, rather than
quantizing them to 1 bit. Balanced mixers are best suited
for PLL applications in the microwave frequency range as
well as in low noise frequency synthesizers. However, as
mentioned earlier, this results in a loop whose gain is
dependent upon the signal amplitude. Furthermore, non-
idealities in the circuit implementation of the mixer result
in responses that are far from linear. When noise is not
an issue, it is advantageous to move to a detector that
has immunity to these effects.

6.2 XOR

For a variety of reasons, it may be desirable to have a loop
which does not produce a sinusoidal clock but instead a
square wave clock. If one over-drives the mixer circuit,
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Figure 11: Phase detection using an XOR gate. Note
that this accomplishes the same thing as an over driven
mixer, but with digital circuitry.
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Figure 12: Phase detection using a XOR gate. On the
left, a phase shift between reference and VCO output
of π/2 produces an output of the phase detector whose
baseband component is 0. On the right a relative phase
shift of π/4 results in an output of the phase detector
whose baseband component is vd/2. The output is
broken up here into a 2X frequency signal and a resid-
ual. The 2X signal averages to 0, while the residual
averages to the baseband phase error.

that is if one uses signals so large that the amplifiers sat-
urate, the output signals stop looking like sinusoids and
start looking like Walsh functions (rectangular signals).
Such a phase detector is shown in Figure 10. Understand-
ing the output of such a phase detector relies on a combi-
nation of averaging analysis and heuristics. However, one
of the more interesting features of such a phase detec-
tor is that it can be implemented using an Exclusive-OR
(XOR) gate as shown in Figure 11. One advantage of such
a phase detector is that the loop gain is now independent
of input signal amplitude. Furthermore, an XOR phase
detector’s response can have a larger linear range than a
sinusoidal detector (mixer). The disadvantage is that the
linearity of the baseband response is affected by the rela-
tive duty cycles of the input and VCO signals [6, 8]. The
standard analysis done by PLL engineers involves draw-
ing out square waves as shown in Figure 12 and then
doing some heuristic “analysis” to convince themselves
that the baseband (low frequency) component of the sig-
nal behaves with the triangular phase response shown in
the right of Figure 11 (for a 50% duty cycle of the input
signal).

vo

vi

D

D

Q

Q
Q1

Q2V

R

Vd

�e

���

Vd

Vdm

Figure 13: Two state phase detection using gates. The
two logic combinations result in the same PD charac-
teristic.

6.3 Two State Phase Detectors

To eliminate the duty cycle dependence of the XOR phase
detector, detectors using logic gates can be used. An ex-
ample of this is found in Wolaver [6] is shown on the left
side of Figure 13. The addition of the two flip flops to the
XOR gate has several results. First, the phase detector
is only sensitive to the rising edges of the input signals,
rather than their duty cycles. Secondly, the linear region
of the phase detector is expanded to ±π from ±π/2. Fi-
nally, the phase detector is no longer memoryless. Thus,
noise spikes that are large enough to trigger a change of
state have a larger effect than they do with the XOR
phase detector. The state analysis of this phase detector
is a bit involved.

Because this phase detector uses only the leading edge
of the input signals, the linear region is increased as men-
tioned above. The resulting baseband response can be
understood from square wave manipulations as described
above. The resulting baseband component of the phase
detector output now has a sawtooth, rather than trian-
gle wave response, and so this detector is often called a
sawtooth detector.

6.4 Phase-Frequency Detector
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Figure 14: The combination of a tri-state phase-
frequency detector and a charge pump. Note that the
loop filter is often implemented in the Z block of the
charge pump.
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Figure 15: Phase detection using an phase-frequency
detector (PFD). As only the leading edges are signifi-
cant, these are compared to show the phase behavior
of the detector.

An extremely popular phase detector is the combina-

7



vi

vo

vu

vd

vd

vi

vo

vu

vd

vd

Figure 16: The left diagram shows how the PFD re-
sponds to frequency errors. The response rapidly slews
the frequency towards the correct value. This same
property makes the PFD ineffective for use in clock
data recovery (CDR) as the “missing” transitions in
the data trick the PFD into slewing the frequency to
a lower clock rate, as shown in the right diagram.

tion of the tri-state phase-frequency detector (PFD) with
a charge pump shown in Figure 14. The charge pump can
be viewed as a 3 position switch controlled by the phase-
frequency detector. The action of the charge pump is
to alleviate any loading of the phase detector in driving
the rest of the circuit. This allows the response to be
smoother than without the charge pump. Note that the
loop filter is often implemented within the charge pump
as shown at the right of Figure 14. Figure 16 shows
the use and misuse of the PDF. In the case on the left,
a difference in frequencies is detected and the phase is
ramped that eventually the frequencies match. However,
this same property means that if this detector were used
in clock/data recovery (Section 10.3), the missing tran-
sitions are misinterpreted as a lower input frequency, re-
sulting in the phase detector ramping the VCO frequency
down.

6.5 A Linear Clock Phase Detector
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Figure 17: The Hogge phase detector. Used primarily
in clock data recovery applications (CDR), the Hogge
detector has a linear characteristic. V̄b is modulated by
the signal phase while V̄a is not. The difference gives
a phase error for the data signal.

Clock recovery from a data stream, known as
clock/data recovery (CDR), requires a special type of
phase detector. One of the most popular is the so-called
Hogge [26] detector, show in Figure 17. An improvement
with lower jitter was generated by Shin et. al. [27] and

vi

vb

va

Q1

Q2

vo

Figure 18: Phase detection using a Hogge phase de-
tector.

that version is often called the Hogge-Shin detector.

6.6 A Bang-Bang Clock Phase Detector

�e

���

Vd

Vdm
D Q D Q

D Q D Q

c a

b’ b

Data
(Data)

(Clock)

vi

vo

Latch tracks input
when clock = 0.

c ab

Data

bit center

bit edge

Figure 19: The Alexander (bang-bang) phase detector.
The original version made of component flip flops. The
version shown here is a circuit well suited to integration
which substitutes a latch for the last flip flop, thereby
saving one latch. On the right is the phase detector
characteristic.

The Bang-Bang phase detector [25] shown in Figure 19
is unique among the detectors presented here in that its
baseband behavior is never linear. Instead, the detector
acts as a relay over the region from −π to π. The behav-
ior can be described as follows: the signals a, b, and c are
re-timed versions of the data signal. a and c are one bit
period apart, b is sampled at the half period between a
and c. Basically, if a and c are the same, then no transi-
tion has occurred and the output of the phase detector is
tri-stated. If not, then the state depends on b. If b = a,
then the clock is early. If b = c, then the clock is late.

While the nonlinear behavior of the detector is a disad-
vantage, it has advantages for high speed clock data re-
covery applications over the Hogge detector of Section 6.5
in that it does not need to be calibrated on an individual
basis. This improves manufacturability when the circuit
technologies are being pushed to their limits.
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6.7 Conclusions

What should be clear from the above section is that the
mere existence of such wide variety of phase detectors
indicates that no one phase detector is optimal or even
applicable in each situation. Their usefulness depends
greatly on the type of PLL they will be used in and on
the input signals that they will be encountering.

7 Voltage Controlled Oscillators

F(s)

G(s)�

+ R
C2C1

L

CL

R

Figure 20: On the left, a block diagram of an oscillator
implemented as a positive feedback loop between a
voltage to current amplifier through a resonant circuit.
On the right, examples of resonant circuits: a LC tank
and a π network.

vc
C2

C1

C3

L
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Figure 21: A VCO implemented through a π network.
The frequency is adjusted by adjusting the reverse bias
on the varactor diode, C1.

The actual clock generated by a PLL comes from the
voltage controlled oscillator (VCO). The VCO is a non-
linear device which generates a periodic oscillation. The
frequency of this oscillation can be controlled by modu-
lating some control voltage (hence the name). In a PLL,
the control voltage corresponds to some filtered form of
the phase error. In response to this, the VCO adjusts its
frequency. As the VCO frequency is slewed by the con-
trol voltage, the phase is error is driven towards 0. This
frequency adjustment to achieve phase lock results in the
model of a VCO as an integrator.

VCOs are generally of the form of a ring oscillator,
relaxation oscillator or a resonant oscillator. The ring os-
cillator, common in monolithic topologies takes the form
of an odd number of inverters connected in a feedback
loop [28]. The relaxation oscillator uses a Schmitt-trigger
to generate a stable square wave [6]. The latter puts a
resonant circuit in the positive feedback path of a voltage
to current amplifier as shown in Figure 20. The amplifier
shown for these circuits is a voltage to current amplifier
with close to unity gain. The resonant circuit in the posi-
tive feedback path has poles close to the jω axis. Consider

the bandpass filter:

F (s) =
2ζω0s

s2 + 2ζω0s+ ω2
0

, (13)

and G(s) = K < 1. Then

V CO(s) =
G(s)

1 −G(s)F (s)
= K

s2 + 2ζω0s+ ω2
0

s2 + 2ζ1ω0s+ ω2
0

, (14)

where ζ1 = (1 − K)ζ. The lowering of the damping ra-
tio is called “Q amplification” (Q = 1

2ζ ) and moves the
poles even closer to the jω axis. (In the case of the π
network, there is a complex pair of poles and one pole on
the negative real axis. The dominant effect, Q amplifi-
cation, takes place on the complex pair.) The frequency
is controlled by altering the capacitance of the resonator,
typically by using a varactor diode as a capacitor. A sim-
ple circuit diagram for a resonant circuit VCO is shown
in Figure 21. Other forms of VCOs, such as crystal os-
cillators and YIG oscillators essentially run on the same
principle, but modify the resonant circuit.

For the all digital and software PLLs, the VCO is re-
placed by a digitally or numerically controlled oscillator
(DCO/NCO) [8]. In this case, the input voltage is re-
placed by some digital value. The output is a digital
oscillating waveform.

8 Loop Filters

-

+

va

vovb

R1

R1

R2

R2

C2

C2

C3

C3

Figure 22: Analog loop filter for differential inputs. For
single ended input, the + terminal can be tied directly
to ground.

As noted earlier, there is – at least conceptually – al-
ways a loop filter. Typical analysis ignores the high fre-
quency low pass filter and other dynamics that do not
affect the behavior of the loop at the time constants of
the phase.

As the vast majority of PLLs are second order and as
the actions of the VCO are modeled as an integrator, loop
filters are typically first order. More specifically, since a
Type II system will track a phase ramp and this cor-
responds to tracking a step in frequency, the loop filter
almost always contains an integrator. For a double in-
tegrator system, the loop filter needs a minimum phase
zero to obtain stability. This is true whether the filter is
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Figure 23: Digital PLL filters depend upon the out-
put of the phase detector and the input of the DCO.
The integration function can be accomplished with a
counter.

implemented as an analog or digital filter. Higher order
loops (which are rarer) can be obtained by adding extra
pole/zero pairs to the filter.

The analog circuit (classical or classical digital PLL)
shown in Figure 22 shows the general form of a loop fil-
ter. This particular filter is fairly general with a transfer
function of:

Vo

Va − Vb
= − sR2(C2 + C3) + 1

sR1C2(sR2C3 + 1)
. (15)

For a typical second order loop, we let C3 = 0. For single
ended input (Va only), simply tie the positive terminal of
the op-amp to ground.

Digital filters used in all digital PLLs very much depend
upon the type of phase detector being used and the type
of DCO used at the output. There are many different
types [8]. Figure 23 shows two. When the phase detector
output is a n-bit sampled number, then it is reasonable to
construct a digital filter with classic Z-plane techniques.
However, as seen in Section 6, many phase detectors sim-
ply put out pulses. In this case, a n-bit counter can be
used. The operation of this counter can be described as
follows. Assuming the DCO has a center frequency that
is set for the nominal counter value, N , if up pulses add
to and down pulses subtract from N , then the counter
output can be seen as an average of the PD pulses:

nout(z) = (1 + z−1 + z−2 + z−2 + . . .)θd(z), (16)

which can be interpreted as a digital integrator with a
zero at z = 0:

nout(z)
θd(z)

=
1

1− z−1
=

z

z − 1
. (17)

Combining this with the digital integrator of the DCO
and the PD gain yields a PLL open loop of:

θout(z)
θd(z)

=
KdKvT

2
z(z + 1)
(z − 1)2

, (18)

which should have poles that stay within the unit circle.
A large excess in up or down pulses would saturate the

counter in one direction or another, which would lower
the effective open loop gain but not destabilize the loop.

9 Noise
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Figure 24: Linear model of input and VCO noise pass-
ing through a PLL.

Since a PLL locks to the phase of the input signal, one
of the key measures of the performance of the loop is the
phase noise (or jitter) in the output, θo. Figure 24 shows
the linear PLL model with noise at both the reference in-
put, θi, and the VCO, θvco. In particular one may design
the loop to minimize θo or to have θo track θi precisely.
As with a standard linear feedback loop,

θo = T (s)θi + S(s)θvco (19)

where T (s) and S(s) are obtained from Equations 5 and 7,
respectively. As we can assume that the PSDs of θi and
θvco are independent, the PSD of the output phase is
given by:

Goo(jω) = ‖T (jω)‖2Gii(jω) + ‖S(jω)‖2Gvv(jω). (20)

As with most feedback systems, the loop designer has
some control over the effect of θi on θo through the shap-
ing of the loop, but beyond the loop bandwidth, θo is
dominated by θvco.

This discussion has touched on two noise sources, but
every component of a PLL is a potential source of phase
noise, from the phase detector to the resistors in the fil-
ter. A survey of these sources is found in Kroupa [29].
The study of VCO noise is a field unto itself. Perhaps
most commonly used model was presented by Leeson [30].
Among the other sources of information on the analysis
of noise in PLLs is Wolaver’s book [6] and a host of pa-
pers [31, 32].

10 Applications

The ubiquity of PLLs is due to their usefulness in so
many applications that proliferate through everything
from communications systems, to computer clocks, to
wireless systems, to consumer electronics. A set of repre-
sentative examples is listed here.
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10.1 Carrier Recovery
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Figure 25: Squaring loop to recover carrier from a mod-
ulated signal.

A common process in communications systems is to
modulate a signal onto a carrier frequency. In order to
demodulate the signal from the carrier, often called RF
in a reference to the early days of radio, one must first
recover the carrier signal from the composite signal. If
the signal spectrum contains a strong component at the
carrier frequency, then this is easily accomplished with a
PLL. However, quite often there modulation removes the
carrier from the signal spectrum. The restoration of a
carrier in this case is generally accomplished by preceding
the PLL with some sort of nonlinear element. A specific
example of one of these is carrier recovery when the signal
has the form:

r(t) = m(t) sinωit (21)

and m(t) is ±1. Known as binary phase shift keying
(BPSK), this simple communication method results in
the spectrum of r having no component at ωi (for equally
probable +1 and −1 bits). In this case, the squaring loop
shown in Figure 25 is able to lock to 2ωi. The divide-by-2
circuit recovers the carrier.

10.2 Costas Loop

Bandpass
Filter

Signal
with BPSK

Reference

Loop
Filter

����

High
Frequency

LP Filter

VCO

Clock

DataHigh
Frequency

LP Filter

Quadrature

In-Phase

Figure 26: A Mixing Costas Loop

In the example of BPSK in Section 10.1, it was shown
how a squaring loop can recover the carrier. A Costas
loop, shown in Figure 26 is able to both recover the carrier
and demodulate the data from such a signal. If there
were no modulation, the upper arm could be considered
simply a PLL which could lock to a carrier. The effect
of the lower arm of the loop is to lock to the modulation
and cancel it out of the upper arm of the loop.

10.3 Clock/Data Recovery

vi
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Figure 27: RZ data (dark dashed) and NRZ data (solid
light)

Data
In

d/dt

( )
2

d/dt ( )
2 Bandpass

Filter

Figure 28: Conversion from NRZ data to RZ data using
analog circuits.

An issue that pervades communication systems is that
of extracting a data clock and the data itself from an
incoming signal. Known as clock/data recovery (CDR),
this problem presents some unique issues not found in
other PLL applications. Two common encoding methods,
Return to Zero (RZ) and Non-Return to Zero (NRZ) are
shown in Figure 27. Depending upon which format is
used, a different version of clock recovery must be used.

RZ formats have the advantage that the clock signal
shows up in the data signal spectrum. However, in do-
ing so, they require twice the bandwidth of data encoded
using NRZ format.

The tasks of recovering the clock frequency is often
separated from that of recovering the data and the clock
phase. With RZ data a PLL can usually lock onto the
clock directly. However, with NRZ data, one must first
generate a signal whose spectrum contains the clock fre-
quency. The circuit shown in Figure 28 detects the edges
of the NRZ data by differentiating and then uses a squarer
to rectify this signal. (A full wave rectifier could also have
been used.) The rectified signal is fed through a band-
pass filter to obtain an input signal for a PLL. Depending
upon the frequencies involved and noise in the signal, a
similar result can be obtained with digital logic [6].
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Figure 29: A harmonic locking PLL with optional multi-
rate harmonic correcting capability.

Figure 30: A perspective schematic of high frequency
wobbles. This allows a rewritable DVD optical drive to
use the DVD-ROM format. There are no sector marks
or edit gaps. The address and timing information are
encoded in the wobble.

10.4 Frequency Synthesis

In some cases, it is desirable to have a clock which is phase
locked with an input signal of some different frequency.
A common example of this is in synthesizing a frequency
from an input signal at a different (often lower) frequency.
A variant of a PLL called a harmonic locking loop where
the VCO frequency is at some multiple of the input sig-
nal frequency, as shown in Figure 29. The output of the
divide by N operation is at the same frequency as the
input signal and thus the phase detector can provide an
error signal. For this to happen, however, the VCO must
run at a frequency N times the input frequency. It is also
possible to have values of N which are not integers.

A recent example from the storage industry is the case
of linkless editing in the DVD+RW optical disk drive for-
mat [33, 34] is enabled by locking a harmonic locking loop
to a high frequency oscillation of the track walls on the
disk as shown in Figure 30.

In some applications, the clocking loop is affected by
harmonic disturbances. The same type of harmonic com-
pensation done in rotating storage systems can be ap-
plied to remove this component of the phase error [35] as
shown by including the highlighted harmonic corrector in
Figure 29.

11 PLL Applications in Control
Problems

Several applications of PLLs relate to controlling moving
objects, rather than only the tracking of signals. Three
examples of these will be presented in this section.

11.1 Disk Drive Control

One broad use of PLLs is in storage systems. This discus-
sion will focus on hard disks, although similar issues exist
for optical disks and tape drives. Disk drives encode the
cross-track position in a variety of ways, but they all re-
quire some type of PLL to synchronize the reading of the
position signal with the rotation of the disk [36]. In sec-
tored servo – the dominant format for modern hard disks
– the a clock must be recovered at the beginning of each
sector. Although the most common encoding is called
amplitude encoding, an alternate example uses phase en-
coding of position error [37]. In this case the phase differ-
ence between the reference mark and the position mark
gives a measure of the cross track position.

11.2 Harmonic Compensation

One of the control oriented applications of PLLs that has
arisen the in the past few years is the one cancellation
of harmonic disturbances [38, 39]. Most of these algo-
rithms assume knowledge of the frequency of the periodic
disturbance. However, when that information is not avail-
able, a PLL-like approach can be used to first estimate
the disturbance frequency and feed this into the harmonic
corrector [16, 40, 41]. Furthermore, this approach is also
useful in frequency estimation [42, 43].

11.3 Motor Control

Loop
Filter

Power
AmplifierPhase

Frequency
Detector

Motor

Analogous
to VCO

Number of segments = KZ

Optical
Coupler
(GaAs)

Setpoint
(Shaft Speed)

Measured Shaft Speed

Figure 31: Motor control using PLL techniques.

The use of PLL techniques for motor speed control is
described in Best [8]. Basically, in place of a linear control
system with a speed setpoint as the reference input and a
tachometer to measure the motor’s rotational velocity, a
system as shown in Figure 31 is used. Here, the tachome-
ter has been replaced by an “optical tachometer” con-
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sisting of a segmented wheel attached to the rotor shaft
and an optical coupler. The optical coupler consists of a
photodiode followed by a Schmitt Trigger which produces
an oscillation proportional to the motor speed. The mo-
tor and optical coupler together replace the VCO of the
PLL. A phase-frequency detector (Section 6.4) is used as
it has an infinite pull in range and barring damage to the
segmented wheel there will be no missing samples.

There are several interesting points about PLL based
motor speed control. First, the motor model itself is sec-
ond order (rather than the first order model of the VCO):

Gm(s) =
KmKz

s(1 + sTm)
, (22)

where Km is the motor torque constant, Tm is the mo-
tor time constant, and Kz is the number of segments in
the wheel. During normal operation, the PFD will be
in a nonlinear regime [17] as the motor speed is ramped
to different setpoints. Some improvements to the steady
state response have recently been reported by modifying
the behavior of the PFD [44].

12 Some Advanced Topics

With all the available topologies and technologies, it
should be clear that the choice of what to use is very
application dependent. Digital techniques have the ad-
vantages that they are relatively immune to circuit drift
and easy to integrate into small chip packages. However,
they are not suitable for every application.

For high noise input signals, the traditional mixer is
still preferred as it makes the best use of information
in the signal amplitude to reject noise. Classical digital
PLLs are extremely useful in high speed digital commu-
nications systems.

Some of the tradeoffs can be seen in high speed digital
communications systems. As the standard for these sys-
tems reaches beyond 10 gigabits per second (Gbps), to 40
and 100 Gbps, the circuit technologies are hard pressed
to produce the short pulses of phase detectors such as the
linear Hogge detector (Section 6.5). Thus, the nonlinear
Alexander detector (Section 6.6) is often preferred. This
is because the latter detector’s components are easy to
integrate and the detector itself has pulses that are no
shorter than half a bit interval.

At the other end of the spectrum, as processing power
goes up, it becomes more practical to sample the data
and perform all the relevant operations in software (Sec-
tion 5.3). Not only is this the ultimate in flexibility, but
it can also be the lowest in cost.

13 Areas for Contribution

It seems that there are several areas where use of ad-
vanced control methods might improve PLLs. The first
obvious one is in the area of nonlinear analysis. While
it is true that many loops can be considered to have lin-
ear phase detectors close to lock, this is not true when the
loop is unlocked and is never true for the Bang-Bang PLL.
Furthermore, more analysis of the high frequency detec-
tor effects on the loop performance and the injection of
noise into the clock signals would be useful. Design tools
to optimize designs of PLLs for both phase performance
and signal performance would be another area of strong
contribution. Some of these tools might also be useful in
designing new phase detectors that are optimized for a
particular type of loop.

For a variety of reasons mentioned earlier, PLLs are
always low order. However, knowing how to obtain stable
high order nonlinear PLLs should allow for extra loop
shaping so common in other control systems.

Finally, efficient simulation of the entire PLL is a broad
area to study. Most packages break the problem into sig-
nal simulation and phase response simulation. Methods
to allow for complete simulation of the system despite the
two time scales would be very useful and could further be
applied to software PLLs.

14 Useful References

Andrew Viterbi’s classic book (sadly out of print), Princi-
ples of Coherent Communication [5], has a wonderful first
introduction to the analysis of a PLL. Floyd Gardner’s fa-
mous little book, Phaselock Techniques [3], has been the
classic first book for PLLs. It provides basic analysis and
applications for PLLs. Another of the classic PLL text is
Alain Blanchard’s book, Phase-Locked Loops [4].

Dan Wolaver’s book, Phase-Locked Loop Circuit De-
sign [6] provides excellent coverage of the different cir-
cuits used in PLLs, including many different phase detec-
tor models. Wolaver tends to focus on classical analog
and classical digital PLLs.

Roland Best’s book, Phase-Locked Loops: Design, Sim-
ulation, and Applications [8] provides a more classical
analysis of PLLs. It does an excellent job of describing the
various classes of PLLs, including classical analog, classi-
cal digital, all digital, and software PLLs. Furthermore,
a software disk is included. However, the treatment of
actual circuits is far more cursory than Wolaver’s book.

The IEEE Press has published two books containing
papers on PLLs, both co-edited by William C. Lindsey.
Phase-Locked Loops and Their Application [11], co-edited
with Marvin K. Simon, contains many of the seminal pa-
pers on PLLs. Phase-Locked Loops [12], co-edited with
Chak M. Chie, has a larger emphasis on digital loops. A
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third book from the IEEE, edited by Behzad Razavi on
Monolithic Phase-Locked Loops and Clock Recovery Cir-
cuits: Theory and Design [13] goes into much more depth
on issues of integration of PLLs and CDR circuits into sil-
icon. The collection starts with an excellent tutorial [28].

Hsieh and Hung have a nice tutorial on PLLs that not
only includes the basic theory, but also some applications,
particularly to motor control [19].

Paul Brennan’s book, Phase-Locked Loops: Principles
and Practice [7] is a brief book with a practical bent. It
gives an excellent explanation of phase-frequency detec-
tors and charge pumps.

Donald Stephens’ book, Phase-Locked Loops for Wire-
less Communications: Digital and Analog Implementa-
tion [10] has an interesting history section in the front as
well as a method of approaching analysis of digital PLLs
that is closer to a typical sampled data approach than
most books. This second edition of the book includes
information on optical PLLs.

Acknowledgments

The understanding of PLL circuit components presented
here has been greatly enhanced by discussions with Rick
Karlquist, Rick Walker, and Len Cutler of Agilent Labo-
ratories and with Salam Marougi of Agilent Technologies’
Electronic Products and Solution Group. The control sys-
tems interpretation of various loop components improved
dramatically after discussions with Gene Franklin of Stan-
ford University. To them I owe a debt of gratitude for
their insight and their patience.

References

[1] S. C. Gupta, “Phase-locked loops,” Proceedings of
the IEEE, vol. 63, pp. 291–306, February 1975.

[2] W. C. Lindsey and C. M. Chie, “A survey of dig-
ital phase-locked loops,” Proceedings of the IEEE,
vol. 69, pp. 410–431, April 1981.

[3] F. M. Gardner, Phaselock Techniques. New York,
NY: John Wiley & Sons, second ed., 1979. ISBN
0-471-04294-3.

[4] A. Blanchard, Phase-Locked Loops. New York, NY:
John Wiley & Sons, 1976.

[5] A. J. Viterbi, Principles of Coherent Communica-
tion. McGraw-Hill Series in Systems Science, New
York, NY: McGraw-Hill, 1966.

[6] D. H. Wolaver, Phase-Locked Loop Circuit Design.
Advanced Reference Series & Biophysics and Bio-
engineering Series, Englewood Cliffs, New Jersey
07632: Prentice Hall, 1991.

[7] P. V. Brennan, Phase-Locked Loops: Principles and
Practice. New York: McGraw Hill, 1996.

[8] R. E. Best, Phase-Locked Loops: Design, Simula-
tion, and Applications. New York: McGraw-Hill,
third ed., 1997.

[9] J. A. Crawford, Frequency Synthesizer Design Hand-
book. Norwood, MA 02062: Artech House, 1994.

[10] D. R. Stephens, Phase-Locked Loops for Wire-
less Communications: Digital and Analog Imple-
mentation. Understanding Science and Technol-
ogy, Boston/Dordrecht/London: Kluwer Academic
Press, second ed., 2002.

[11] W. C. Lindesy and M. K. Simon, eds., Phase-Locked
Loops and Their Application. IEEE PRESS Selected
Reprint Series, New York, NY: IEEE Press, 1978.

[12] W. C. Lindesy and C. M. Chie, eds., Phase-Locked
Loops. IEEE PRESS Selected Reprint Series, New
York, NY: IEEE Press, 1986.

[13] B. Razavi, ed., Monolithic Phase-Locked Loops and
Clock Recovery Circuits: Theory and Design. IEEE
PRESS Selected Reprint Series, New York, NY:
IEEE Press, 1996.

[14] N. E. Wu, “Circle/Popov criteria in phaselock loop
design,” in Proceedings of the 1998 American Con-
trol Conference, (Philidelphia, PA), pp. 3226–3228,
AACC, IEEE, June 1998.

[15] D. Y. Abramovitch, “A method for obtaining MIMO
open-loop plant responses from closed-loop mea-
surements,” Invention Disclosure 191166, Hewlett-
Packard Co., Corporate Patent Department, M/S
20B-O, Palo Alto, CA, February 1991.

[16] M. Bodson, J. S. Jensen, and S. C. Douglas, “Ac-
tive noise control for periodic disturbances,” IEEE
Transactions on Control Systems Technology, vol. 9,
pp. 200–205, January 2001.

[17] C. A. Adkins and M. A. Marra, “Modeling of
a phase-locked loop servo controller with encoder
feedback,” in Proceedings of IEEE Southeastcon’99,
pp. 59–63, IEEE, IEEE, March 25-28 1999.

[18] K. Ogata, Modern Control Engineering. Prentice-
Hall Instrumentation and Controls Series, Engle-
wood Cliffs, New Jersey: Prentice-Hall, 1970.

[19] G.-C. Hsieh and J. C. Hung, “Phase-Locked Loop
techniques — A survey,” IEEE Transactions on In-
dustrial Electronics, vol. 43, pp. 609–615, December
1996.

[20] D. Y. Abramovitch, “Analysis and design of a third
order phase-lock loop,” in Proceedings of the IEEE
Military Communications Conference, IEEE, Octo-
ber 1988.

14



[21] D. Y. Abramovitch, “Lyapunov Redesign of analog
phase-lock loops,” The IEEE Transactions on Com-
munication, vol. 38, pp. 2197–2202, December 1990.

[22] P. C. Parks, “Liapunov redesign of model reference
adaptive control systems,” IEEE Trans. on Auto-
matic Control, vol. AC-11, July 1966.

[23] N. E. Wu, “Analog phaselock loop design using
Popov critereon,” in Proceedings of the 2002 Amer-
ican Control Conference, (Anchorage, AK), AACC,
IEEE, May 2002.

[24] A. V. Oppenheim and R. W. Schafer, Digital Signal
Processing. Englewood Cliffs, N. J.: Prentice Hall,
1970.

[25] J. Alexander, “Clock recovery from random binary
signals,” Electronics Letters, vol. 11, pp. 541–542,
October 1975.

[26] J. Charles R. Hogge, “A self correcting clock recov-
ery circuit,” IEEE Journal of Lightwave Technology,
vol. LT-3, pp. 1312–1314, December 1985.

[27] D. Shin, M. Park, and M. Lee, “Self-correcting clock
recovery circuit with improved jitter performance,”
Electronics Letters, vol. 23, pp. 110–111, January
1987.

[28] B. Razavi, “Design of monolithic phase-locked loops
and clock recovery circuits - A tutorial,” in Mono-
lithic Phase-Locked Loops and Clock Recovery Cir-
cuits: Theory and Design, IEEE PRESS Selected
Reprint Series, pp. 1–39, New York, NY: IEEE Press,
1996.

[29] V. F. Kroupa, “Noise properties of PLL sys-
tems,” IEEE Transactions on Communications,
vol. COMM-30, pp. 2244–2252, October 1982.

[30] D. B. Leeson, “A simple model of feedback oscillator
noise spectrum,” Proceedings of the IEEE, vol. 54,
pp. 329–330, February 1966.

[31] W. Rosenkranz, “Phase-locked loops with limiter
phase detectors in the presence of noise,” IEEE
Transactions on Communications, vol. COMM-30,
pp. 2297–2304, October 1982.

[32] C. Y. Yoon and W. C. Lindsey, “Phase-locked loop
performance in the presence of CW interference and
additive noise,” IEEE Transactions on Communica-
tions, vol. COMM-30, pp. 2305–2311, October 1982.

[33] D. Y. Abramovitch and D. K. Towner, “Re-writable
optical disk having reference clock information per-
manently formed on the disk,” United States Patent
6,046,968, Hewlett-Packard, Palo Alto, CA USA,
April 4 2000.

[34] D. Abramovitch, D. Towner, C. Perlov, J. Hogan,
M. Fischer, C. Wilson, I. Çokgör, and C. Taussig,
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