
A Tutorial on Real-Time Computing Issues for Control Systems

Daniel Y. Abramovitch*, Sean Andersson, Kam K. Leang, William Nagel, Shalom Ruben

Abstract— This paper presents a tutorial on the elements of
computation in a real-time control system. Unlike conventional
computation or even computation in digital signal processing
systems, computation in a feedback loop must be sensitive to
issues of latency and noise around the loop. This presents some
fundamental requirements, limitations, and design constraints
not seen in other computational applications. The logic of
presenting such a tutorial is that while the computer technology
changes at a rapid pace, the principles of how we match that
technology to the constraints of a feedback loop remain consis-
tent over the years. We will discuss the different computational
chains in a feedback system, ways to conceptualize the effects of
time delay and jitter on the system, and present a three-layer-
model for programming real-time computations. The tutorial
also presents some filter and state-space structures that are
useful for real-time computation. It concludes with an overview
of the different sample rate ranges currently used in some
typical control problems and a short discussion of how business
models affect our choices in real-time computation.

I. MOTIVATION: WHY TALK ABOUT COMPUTATION?

While computation is critical to any digital control system,

our CAD tools have gotten so effective that fewer and fewer

control engineers are competent programmers outside of

Matlab or Python. This leaves us to rely on the prepackaged

real-time implementation tools provided by manufacturers.

While these tools allow one to go from model to real-

time without writing C or C++ code, their need for gen-

erality and for hiding the computational complexity from

the user often consume much of the real-time resources of

a chip. The control engineer who hits that limit without

understanding computation is left relatively helpless. A basic

understanding of how computation-for-feedback issues affect

the performance of real-time systems will greatly expand the

performance achievable by many algorithms.

In this paper we will focus on the pieces of computation

that need to be in place in any real-time control system.

While we are focusing on control systems where the main

computation is done by a digital computer (broadly any

computation done via programmable digital logic, including

processors and field programmable gate arrays (FPGAs)),

there is always a role for analog electronics in interfacing

these means to the real world. Figure 1 shows the main

“computations” done in a feedback loop as abstracted blocks.

We can think of four chains where processing happens:

• The physical system to real-time computer “input”

signal chain and its computations.

*Daniel Y. Abramovitch is with Agilent Technologies, Santa Clara, CA
USA (abramovitch@ieee.org)
Sean Andersson is with Boston University, Boston, MA USA
Kam K. Leang is with the University of Utah, Salt Lake City, UT USA
William Nagel is with Widener University, Chester, PA USA
Shalom Ruben is with the University of Colorado, Boulder, CA USA

ParametersData
Reference

Signals Physical
System

Real-Time
Computer

Higher Level
Computer

Input
Signal
Chain

Output
Signal
Chain

Controller

Plant
(Physical System)

Fig. 1. An abstracted view of the main computational divisions in a
feedback system.

• The real-time computer to physical system “output”

signal chain and its computations.

• The physical system “computations” and discussions of

various model types.

• Inside the real-time computer itself: how to think about

computer architectures and programming in the context

of real-time control systems.

We describe the physical system “computing” because it

is transforming its input signals into output signals, and

thinking in this metaphor helps us both understand the system

and generate models. We think of the computational path

inside the real-time computer as a signal chain because once

again signals are transformed from the input of that chain

to the output, handed from one routine and data format to

another. Each has its own potential latency, jitter, and noise.

We typically only think about those of the plant. Bode’s

integral theorem [1], [2], [3] teaches us that once noise gets

into a loop we can only adjust where we amplify it. Causality

means that once latency enters a loop, we cannot eliminate

it. Jitter just makes all of this worse.

Finally, any discussion of computation issues must be

made relative to the physical system time constants. How

a control engineer looks at computation for an atomic force

microscope (AFM) sampled at 2 MHz is different from what

they face on a pressure control loop sampled at 1 Hz. This

vast speed range drives dramatic changes in computation.

For this reason, this tutorial talks about the principal drivers

of each signal chain. Knowing that they exist but contribute

little to critical loop dynamics is a far better situation than

being oblivious to them until after they have handcuffed a

brilliant new control algorithm.

Reasonable people may argue that the first three blocks

can be wrapped into a pure zero-order hold (ZOH) equiv-

alent, and dealt with via direct design [4], but this both

obscures the sources of those discrete-time features and

2023 American Control Conference (ACC)
San Diego, CA, USA. May 31 - June 2, 2023

979-8-3503-2807-3/$31.00 ©2023 AACC 3751

removes the opportunity for co-design. For these reasons,

we will try to understand the chains physically, separately,

and in their relation to the overall loop design.

In this paper, we will often refer to Moore’s Law [5], the

general rule proposed by Intel co-founder Gordon Moore

that the amount of logic one can pack onto a silicon chip

doubles roughly every 18 months. This prediction has been

remarkably accurate over the decades, not only through

the march of technology but also because the chip makers

themselves have felt pressured to make sure they meet the

line (in logarithmic space) [5]. In this paper, Moore’s Law

will be used as a generic stand-in for the rapid advance

of computer and electronic technology. Similarly, “Newton’s

Laws” usually refers to Newton’s Laws of Motion [6], but in

this paper the term is shorthand for scientific modeling and

inference, i.e. what drives the real world system.

Each of the blocks in Figure 1 affects the performance of

the feedback loop. Moore’s Law has made the left side of

Figure 1 much more powerful. Modulo being able to attack

far more physical problems than before (again Moore’s Law),

the right side is governed by Newton’s Laws. The following

should be considered fundamental to understanding compu-

tation for feedback control systems.

Newton’s Laws take precedence over Moore’s Law, and

they always will. However, Moore’s Law helps us read the

fine print of Newton’s Laws, helps us get computation close

to the real physics, close to the real model.

v

dy

ymeas yfilty
S Filter

Physical
System

Measurement
Noise

Process
Noise

Plant Output
Disturbance

Signals
to

Measure

Improved
Signals

Plant Input
Disturbance

Unknown
Inputs

Unknown
Input

Generator

du

w

S

a.k.a. plant or
device under test
or channel or ...

a.k.a. signal
processing or DSP
or signal detection

or ...

Fig. 2. A filtering structure for looking at processes.

v

ye ur

w

du dy

SS S

-

Controller
(Filter)

Measured
System
Output

Measurement
Noise

System Output
Disturbance

Process
Noise

Plant Input
Disturbance

Reference System
Output

ymeasPhysical
System

a.k.a. plant or
device under test

or channel or
process or ...

a.k.a. adjustments or
decisions

or correction ...

Meas.
Filter

Input
Filter

Fig. 3. A feedback structure for physical processes.

Finally, it is worth discussing the mental framework for

filtering, diagrammed in Figure 2 with that of feedback, di-

agrammed in Figure 3. The key differentiator of the filtering

framework is that we can never assume any access to the

input driving the physical system. Consequently:

⇒ Noise and disturbances are modeled solely at the output.

⇒ This fundamentally limits input-output modeling.

⇒ Nothing we do in our filtering will affect the process.

⇒ Because of this, we have to assume that the physical

process has to be reasonably behaved on its own.

⇒ The filtering context is insensitive to latency.

Conversely, a feedback framework only exists if we assume

that we have access to some inputs to drive the physical

system.

⇒ Noise and disturbances are modeled at both input and

output of the physical system.

⇒ Our models use both plant outputs and inputs.

⇒ We adjust our measurements to better drive our inputs.

⇒ Our inputs can and most likely will change the behavior

of the physical system.

⇒ We are sensitive to latency.

This matters because much of what has been written about

real-time computation is from a filtering framework. Access

to inputs to the system drives sensitivity to latency, and this

changes the entire perspective.

II. TIME DELAY AND SAMPLING

Frequency (Hz)

-40

-30

-20

-10

0

M
a

g
n

it
u

d
e

 (
d

B
)

Bode Plot of Time Delay vs. Nyquist Frequency

fNY,1

fNY,1

fNY,2

fNY,2

fNY,3

fNY,3

fNY,4

fNY,4

Frequency (Hz)

-150

-180

-100

-50

0

P
h

a
s

e
 (

d
e

g
)

Fig. 4. Bode plot of physical time delay versus Nyquist rate

Time delay (latency) in a feedback loop is one of the

key limiting factors of closed-loop performance [7]. Latency

in time is negative phase in frequency, and without phase

margin, feedback control is untenable. In a feedback loop,

we can think of four general sources of time delay:

a) physical properties of the system,

b) sensor/actuator effects,

c) conversion delays, and

d) computational and sample rate delays.

We will focus on conversion and computation delays in

Sections IV and VII, respectively, since these are things that

we may affect by better real-time system design (hardware

and software). Here we group sensor, actuator, and plant

delays together as delays that we cannot alter merely with

electronics. We will discuss the consequences of this delay.

We especially want to make obvious what fast sampling can

and cannot do to handle this delay.

A delay of ∆ seconds is typically modeled in the s-plane

as:

D(s) = e−s∆. (1)

3752

s PlaneRe{s} < 0 Re{s} > 0

2

Δ

2

Δ

Fig. 5. First order Padé approximation of time delay on the s-plane. Note
the non-minimum phase (NMP) zero.

We can evaluate (1) at s = jω to generate a Bode plot

as shown in Figure 4, but for our analysis we usually like

to have a rational transfer function. It is common to use a

Padé approximant [8] for this, and while many variations are

possible, a first order numerator and denominator effectively

illustrate the issues we must contend with. For a first order

Padé approximation of (1), we get

e−s∆ ≈
1− s∆

2

1 + s∆
2

=
2
∆ − s
2
∆ + s

(2)

This simple and reasonable approximation of delay has given

us a stable pole and non-minimum phase (NMP) zero, as

diagrammed in Figure 5.

It is common for control engineers to say that we need

to simply sample faster to deal with the time delay, but

fast sampling does not make physical delay disappear. This

is illustrated in Figure 4, which shows a Bode plot of

physical delay versus different Nyquist frequencies. The

faster sampling has just pushed the Nyquist frequencies to

the right, up to areas of higher phase lag due to delay. That

does not solve anything, although it gives us more room in

the frequency space to apply phase-lead to compensate for

some of this delay.

Z Plane

|z| = 1

z = 1

T + δ

T - δ

T - δ

T + δ

Re{z} = 0

Im{z} = 0

Fig. 6. Padé approximation of time delay on the z-plane. The full sample
delays result in a pole at z = 0. The partial sample delay is handled by a
first order Padé Approximation. If we have M unmatched poles at z = 0,
then we will have M zeros at |z| = ∞.

We can return to the Padé approximation and discretize it

to look at this in the z-plane. However, we will first break

up ∆ into full and partial sample periods, i.e.

e−s∆ = e−s(MTS+δ) (3)

where ∆ = MTS + δ and 0 ≤ δ < TS . We will use z−1 for

full sample period delays and the Padé approximant for the

partial delay, δ.

Using a trapezoidal rule (TR) on (2) (replacing ∆ with

δ) results in Dδ(z) = 1 for δ = 0 and Dδ(z) = z−1 for

δ = TS , which matches intuition. In between these endpoint

values of δ we get:

e−sδ ≈
2
δ
− s

2
δ
+ s

TR
−→

(TS − δ)z + TS + δ

(TS + δ)z + TS − δ
= Dδ(z) (4)

for 0 ≤ δ < TS . The poles and zeros get exposed by

reordering this as:

Dδ(z) =

(

TS − δ

TS + δ

)

(

z + TS+δ
TS−δ

z + TS−δ
TS+δ

)

. (5)

The result of this discretization is diagrammed in Figure

6. We see that we have mapped the sub-sample portion of

our delay to a stable pole and NMP zero. However, we

have M poles at z = 0. These are so benign in digital

signal processing (DSP) environments (the filtering context

of Figure 2) that signal processing engineers like to refer

to their Finite Impulse Response (FIR) filters as “all-zeros”

filters as they only have zeros in z−1. For them, it is a

harmless misstatement; a simplification.

The lack of matching finite zeros in the z-plane for the

M poles means that there are M zeros at |z| = ∞. People

who close feedback loops know that on any version of the

root locus [9], [10], [4], [11] the closed-loop poles go from

the open-loop poles to the open-loop zeros. This means that

at some point, M closed-loop poles will be going to those

M open-loop zeros at |z| = ∞, obviously outside the unit

circle. Fast sampling has not saved us from closed-loop

poles streaking towards instability. It merely allows us an

opportunity to put more compensation inside the unit circle

to allow us to push our closed-loop system a bit further. It

is up to us to properly use that opportunity.

III. UNDERSTANDING PHASE DELAY, PHASE NOISE,

AND JITTER

We should now discuss timing uncertainty, a quantity

known alternately in different fields as phase noise [12] or

jitter [13]. Phase noise is a frequency domain term related

to time through the relation:

∆θ = ejω∆t. (6)

Usually, this is considered relative to a particular frequency,

such as a carrier frequency: ω = ωC . Jitter is a time domain

term, usually relative to some sample period, TS :

jitter =
∆t

TS

. (7)

For digital systems, jitter is a more common concept than

phase noise. Much of what we try to minimize is time delay

and jitter because each of these can badly affect our control

systems and can be the result of bad computer architecture.

A few more figures illustrate this idea. In Figure 7 we

see the difference between phase delay and phase noise

in a sinusoidal signal. Phase delay is a predictable lag,

3753

ResponseInput

Phase
Delay

Time

Input

Phase Noise
(0,)σ

Time

Fig. 7. Phase delay and noise as seen in a sinusoid.

ResponseInput

Phase
Delay

Time

Input

Phase Noise
(0,)σ

Time

Fig. 8. Phase delay and noise as seen in a square wave.

phase noise is not. Phase noise makes the exact timing of

any part of the signal unknowable. Phase noise is usually

characterized by distribution, e.g. a Gaussian. Note that

neither phase delay nor phase noise change the maximum or

minimum level of the signal, but uncertainty in when signal

happens translates into uncertainty in the signal value.

Time

TS1

Ts2

Fig. 9. Jitter is usually defined relative to a sample period.

Moving to Figure 8, we see many of the same properties of

phase delay and phase noise seen in sinusoids apply to square

waves. Now, the sharp edges mean that timing uncertainty

results in uncertainty in a logic level. Logic levels trigger

operations inside programmable logic (PL) or a processor,

so jitter results in uncertainty in when operations will be

triggered. Whether or not this is important to us is highly

dependent on the amount of jitter relative to our sample

period. Figure 9 illustrates how the same amount of timing

uncertainty that would be insignificant for the longer sample

period, TS1, covers the majority of shorter sample period,

TS2. The moral of this is that if our physical system time

constants allow for a slower sample rate, then we may be

far less sensitive to jitter than we would be in a system that

requires a sample rate several orders of magnitude higher

than the first one.

We get to the last visualization of how jitter can affect

us with Figure 10. Our illustration here is to show that if

our controller computation times not predictable, we may

miss the next sample instants and lose samples. In the

illustration of Figure 10, the predictable portion of controller

computations, Tcomp, takes up most of a sample period, TS .

Jitter in the exact calculation time makes missing samples

a probabilistic problem. This can even be seen in student

Time

TS

Tcomp

Fig. 10. Jitter, added onto computational time, may make us miss samples.

laboratory systems [14]. Some systems are passive enough

that this does not cause problems for our loop performance.

However, for lightly damped, high speed, unstable, and/or

nonlinear systems, this could be disastrous.

The lesson here is that for high performance systems

with relatively short sample periods, we want to minimize

computational jitter. As much as possible, we want to have:

• deterministic computations,

• deterministic memory access,

• deterministic sampling, and

• deterministic communications in the digital system.

These desires frame how we discuss each of the computation

chains previewed in Figure 1 of Section I.

IV. THE INPUT SIGNAL CHAIN: THE REAL WORLD TO

COMPUTATION

For most real systems, there are multiple inputs and

outputs, but for simplicity of concept and visualization, we

will stay with a single-input, single-output explanation here.

Sampler
Analog
Filters

Sensor
Electronics ADC

Digital
Interface

Sensors/
Transducers

Physical
System

Fig. 11. An abstracted view of the input signal chain from the physical
system to our computation. This one is specific to use in a feedback loop.

Figure 11 shows a lot of component blocks we often ignore

in considering the implementation of getting measurements

from the physical system into digital controllers. Sometimes

they are simply bundled inside a turn-key system, but for our

purposes we want to discuss them individually. Note that the

technology changes over time, but the basic functionality of

the blocks does not. The path from the physical system to

our computer algorithm starts with a sensor.

Sensor/Transducer: A lot of science and engineering are

employed to convert some physically sensed phenomenon

into a calibrated, repeatable, electrical signal. Sensors have

their own dynamics, in terms of linearity, time constants, and

noise properties. The physical environment often determines

what sensors are available and what they cost.

Sensor Electronics: These are especially suited to the sen-

sor and environment of the sensor. They typically are pack-

aged with the sensor, but their characteristics and limitations

sometimes need to be considered apart from the sensor itself.

They are often specialized to handle tough environments,

3754

extreme levels of temperature, pressure, moisture, ambient

noise, speed, and voltages and currents. Ideally, they get

signals into the low voltage, well regulated electronics where

we like to do our small-signal filtering.

Analog Filters: While there are many elements that can

perform a “filtering function”, we focus here on analog

electronic filters. These are combinations of operational

amplifiers (op amps), resistors, capacitors, inductors, diodes,

transistors, and other components that allow us to implement

mathematical filtering functions inside of circuitry.

Why do we need analog filters when we can digitally filter

signals inside our computers using only high level languages

and none of that wiring and solder? One short answer is that

we cannot digitally filter everything. A second short answer

is that we can do a much better job of digitally filtering

signals that have been cleaned up and normalized by some

analog filters. Signals outside of our sampling bandwidth

need to be managed with analog filters. Of particular interest

to control engineers are anti-alias filters (Section IV-A).

Sampler: The role of a sampler or sample-and-hold is to

capture the well-conditioned analog signal (while minimally

affecting it) and hold it long enough for the analog-to-digital

conversion (ADC) of that signal to be done.

ADC: Analog-to-Digital Converters (ADCs) are often

grouped with samplers when discussed in controls textbooks,

but there are many cases in which the sampler can capture

signals at a higher rate than a single ADC can convert them.

(This phenomena led to a class of digital oscilloscopes called

“equivalent time” digital oscilloscopes [15].)

ADCs convert sampled signals into a digital computer

compatible signals. Note that we tend to think in terms

of floating point numbers when we analyze control signals,

but ADCs (and DACs) deal with fixed-point representations.

Their quantization is nonlinear, but usually modeled as noise

[16]. The number of bits of accuracy ties to cost and

conversion time. We will discuss this more in Section IV-B.

Digital Interface: How the converted signal is delivered to

the controller is another fundamental source of possible delay

and jitter. There are significant design tradeoffs between the

number of signal lines to a converter chip. While we may

dream of having dedicated, parallel interfaces to each ADC

in a system, the costs of laying out 16+ parallel lines for

each analog input and keeping their timing aligned at high

speed means that many of the interfaces are serial, with the

inherent delay of serialization at the ADC and deserialization

at the processor. Is each ADC dedicated to one signal or

multiplexed (Section IV-B)?

A. Anti-Alias and Oversampling

PES Pareto [3], [17], [18] gave us a way to find the most

critical noise sources affecting the error. While noise gets

shaped once it’s in the loop, we can read “Bode’s fine print”

if we attack it at the source, before it enters the loop. Almost

always, this requires an understanding of analog electronics

and how they interact with sampled data system. Here, we

focus on the issues posed by anti-alias filters, which are

10
1

10
2

10
3

10
4

-80

-60

-40

-20

0

Frequency (Hz)

M
ag

 (
dB

)

Anti−Alias Filters with Cutoff at f
Ny

 = 1000

4th Order Butterworth
4th Order Elliptical
Critically Damped 2nd Order LPF

10
1

10
2

10
3

10
4

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (Hz)

P
ha

se
 (

de
g)

Fig. 12. Frequency responses of various anti-alias filters. All filters have a
DC gain of 1, with the passband ending at the Nyquist Frequency (fNy =

fS/2 = 1kHz here). Under an assumption that the sample frequency is 10
or 20× the open loop crossover frequency, we can examine the filter phase
response, which can significantly degrade the phase margin of the system,
as documented in Table I.

Filter

Phase at

fNy/10
Phase at

fNy/5
Attenuation
at 10fNy

4th Order
Butterworth −15.0◦ −30.1◦ −80.1 dB

4th Order
Elliptical −10.6◦ −22.8◦ −40.9 dB

2nd Order
Butterworth −8.12◦ −16.4◦ −40.1 dB

TABLE I

PHASE PENALTY OF REPRESENTATIVE ANTI-ALIAS FILTERS FROM

FIGURE 12. THE CORNER FREQUENCY IS CHOSEN TO BE AT THE

NYQUIST FREQUENCY, fNy = fS/2.

typically implemented as analog low-pass filters (LPFs) with

cutoff frequencies at or above the Nyquist frequency.

From our first digital controls class, we are told that we

need to apply anti-alias filters in order to avoid aliasing of

higher frequency signals into our control bandwidth [4], [19].

What is often overlooked are the effects, particularly in terms

of negative phase in the passband, of such filters. Table I and

Figure 12 show the effects of three simple anti-alias filters,

with their corner frequencies at the Nyquist rate. The simple

take away from these is to note the substantial amount of

negative phase imparted in order to get attenuation above

the Nyquist frequency. The loss of 30◦ of phase margin at

1/5 the Nyquist rate (or 1/10 the sample rate) is nothing to

take lightly. The anti-alias filter can have strong phase lag,

and this itself can severely limit the achievable bandwidth or

destabilize the system. The selection of anti-alias filters must

be combined with the selection of sample rate and in this case

it seems that what we might think of as “oversampling” is

fundamental to achieving desired closed-loop performance.

3755

B. Analog to Digital Converters

Simply defining a block as an Analog to Digital Con-

verter (ADCs) is not specific enough. The lowest latency

version ADC could be a single dedicated converter on a

parallel digital bus, eliminating any delay based on serial-

ization/deserialization. Parallel operation is “expensive” for

two reasons. First of all, it requires far more digital lines be

laid out on the circuit board containing the ADC and the path

to the processor, consuming valuable board real estate. The

second cost is that as signaling speeds have gone up, keeping

parallel digital signals phase aligned on these buses has

gotten substantially more difficult. For these reasons, high-

speed serial buses have become increasingly popular inside

computing environments, and despite the cost of serialization

and deserialization, they may have lower overall latency than

the available parallel solutions. Unlike the filtering context

(Figure 2), those of us in the feedback context (Figure 3)

need to be highly aware of both the transmission speed and

the latency of these channels.

At the other end of the speed/dedicated line spectrum is

the shared ADC, comprising a single multiplexed sample

and hold handling many input lines and presenting these

sequentially to the converter. The ADC does each conversion

and then puts the result on a serial line to the processor. The

resulting architecture likely has significantly higher latency

than the parallel one. Control and system theory knowledge

must guide the design: the more cost effective but slower

architecture may have delays that are orders of magnitude

shorter than the physical system time constants. In such

a case, demanding the parallel interface is wasteful and

unnecessary. It is better to yield on these channels quoting

the lack of need so that we can be taken more seriously when

we need to press for the top architecture.

TSH
TP1 TP2

TPN TOUT

TADC

TS

TSH
TC TOUT

TADC

TS

Fig. 13. Diagrams of sample timing. The lower diagram shows the
pipelining of the digital computation needed for conversion.

It is also worth looking inside of the ADC itself. The

ADC and sample and hold timing can be diagrammed as in

Figure 13. Here, TSH represents the sample and hold time,

TOUT represents the transmission on the digital interface

to the processor, and TC represents the digital computation

time in the ADC conversion. What is often overlooked is

that many ADCs speed up their sample rate by pipelining

this conversion time into smaller digital processing blocks.

Even though the time for any individual sample to reach

the processor is longer, the sample period, TS , can be

shortened. This is yet another example of architectures that

are excellent for DSP applications (filtering context), but

have very negative effects on a system that is sensitive to

latency (feedback context). When someone not attuned to

latency makes the choice, they can unknowingly consume

90% of the phase margin and bandwidth. Such errors cannot

be fixed by any algorithm, and so it is critical that engineers

informed by a knowledge of control principles be involved

in the design of the input signal chain. It is not necessary to

be the expert in the latter, but only to be conversant enough

so as to inform the experts of the latency sensitivity.

V. THE OUTPUT SIGNAL CHAIN: COMPUTATION TO THE

REAL WORLD

Analog
Filters

Power
AmplifiersDAC

Digital
Interface

Actuator
Physical
System

Fig. 14. An abstracted view of the output signal chain from our
computation to the physical system.

A diagram of an output signal chain using a Digital

to Analog Converter (DAC) is shown in Figure 14. Its

components usually include:

Digital Interface: How the converted signal is delivered

from controller to the DAC is another fundamental source

of possible delay and jitter. There are significant design

tradeoffs between the number of signal lines to a converter

chip. While we may dream of having dedicated, parallel

interfaces to each DAC in a system, the costs of laying

out 16+ parallel lines and keeping their timing aligned at

high speed means that many of the interfaces are serial,

with the inherent delay of serialization at the processor and

deserialization at the DAC. Is each DAC dedicated to one

signal or multiplexed? These issues will be discussed in more

detail in Section V-A.

DAC: Digital-to-Analog Converters (DACs) convert the

computer signal into a well regulated analog voltage. They

face many of the same quantization issues as ADCs. We will

discuss these more in Section V-A.

Analog Filters: On the output chain analog filters are

often used to remove digital artifacts or smooth the analog

version of digital signals. For example, a digitally produced

sine wave will have steps if we look closely enough, but

passing it through a low-pass filter (LPF) or band-pass filter

(BPF) can considerably smooth that signal.

Power Amplifier/Drive Electronics: Theses scale up the

voltages and currents produced by the DACs to drive the

actuators.

Pulse-Width Modulation (PWM): A slightly different

output chain substitutes PWM in place of a DAC, as di-

agrammed in Figure 15. PWM is surprisingly common in

industrial environments. The use of PWM depends on the

dynamics of plant being far slower than the electronics (often

true). Its utility lies in part in the fact that a single, serial,

3756

PWM
Digital

Interface
Digital Line

to Unit
Device Under Control

(e.g. motor, heater, pump)

Analog
Low Pass

Power
Amplifier

Physical
System

Fig. 15. An abstracted view of the output signal chain from our
computation to the physical system using pulse width modulation (PWM).

binary line is very useful in noisy industrial environments.

In most of these applications, the drive electronics have been

made part of the actuator/device itself.

Actuator: This part pushes on the real world.

A. Digital to Analog Converters

Generally speaking, DACs seem architecturally simpler

than ADCs, but this does not mean they do not often include

similar pipelining to that shown in Figure 13. Again, control

engineers need to be involved in the selection of these

components so that we can avoid having our phase margin

wrecked by digital pipelining in the conversion circuits.

B. Pulse Width Modulation

Controller
Sample Points

50% Duty Cycle

10% Duty Cycle

90% Duty Cycle

Carrier Signal

PWM Signals
(Timer Based)

Fig. 16. Classic PWM converts a multi-bit number into a stream of 1s and
0s whose duty cycle on the carrier encodes the number.

A classic view of PWM is shown in Figure 16. A multi-

bit number is modulated onto a carrier on a 0-1 digital line

such that the duty cycle represents the number. It has the

advantage of a noise insensitive, inexpensive single line.

The systems driven by this are slow and the system itself

integrates/low-pass filters the modulated signal to restore the

the original multi-bit number. In essence, the PWM then

becomes an inexpensive DAC, but it finds application in a

lot of industrial systems such as pumps, heaters, and motors.

VI. THE PLANT’S “COMPUTATION”

The plant itself is the most fundamental piece of compu-

tation in our loop, and the one that sets and limits what all

the other pieces can and must do. In actuality, the plant is

doing some form of physical computation, which we try to

model with a combination of first principles (a.k.a. “physics

based” or “Newton’s Laws”) and data driven approaches. The

plant itself is – for this discussion – fixed, but the models

we choose to apply to it are quite varied. We can have:

• A linear, time-invariant (LTI) model for control design.

• A model used for parameter identification.

• A linear, time-varying model, or one with uncertain data

sampling, for observer design and operation.

• A complex, nonlinear model on dedicated hardware as

a digital twin of the system for health monitoring and

simulation.

The point of mentioning these (and many other) forms is

that Moore’s Law allows us to have many of these running

in parallel on the same system.

VII. THE COMPUTER ITSELF

We have delayed getting to this section until the other

prerequisite computational pieces had been described. At

this point, we focus on the broad issues of computation in

and out of the real-time environment. Section VII-A will

introduce and discuss a highly useful Three-Layer Model

of computation in a real-time environment. Section VIII-F

will get more basic, in the sense of how our choices of

filter structure can also affect jitter, latency, and numerical

stability.

A. The Three-Layer Model

Banshee DSP
Card Running

MIMO
Servo Loops

MIMO System

386 PC (DOS)
with Matlab

HP-IB

Ribbon Cables

-
S C P

HP 3563A

Fig. 17. The Banshee Multivariable Workstation (BMW).

This section will present a three-layer model of computa-

tion for real-time systems. This split in functionality seems

quite common when one examines many real-time systems,

but without abstracting out the different layers and their

purposes, the smearing of the boundaries can add a lot of

confusion about how they should be programmed. In other

words, it’s always been there, but we didn’t see it.

The first author’s first experience with this model was in

building something called the Banshee Multivariable Work-

station in the early 1990s at Hewlett Packard Labs (HPL)

[20]. The hardware was an old DOS based PC to hold

the upper layer, with a Banshee Floating Point DSP board

produced by Atlanta Signal Processing (ASPI) to run the

real-time operations. The intent was to have the floating point

DSP run the real-time computations while in the PC we could

run Matlab. This is diagrammed in Figure 17. With the initial

work of Carl Taussig, it was interfaced to the HP 3563A

Control Systems Analyzer (CSA), an augmented version of

HP’s 3562A DSA, that was capable of both analog and digi-

tal frequency response function measurements and curve fits

3757

[21], [22], [23], [24]. The CSA had a superset of the features

of the DSA, specifically enhanced to work with discrete-time

systems. Significantly, measurements could be coordinated

from the host computer and completed measurements and/or

parametric curve fits were uploaded to the host computer to

be used in Matlab.

Matlab

Interface Program

Banshee
CSA

(HP3563A)

Testbed
Hardware

Real-Time
Data

4 ADCs
4 DACs

FRFs,
ZPK Data

Commands,
Processed

FRFs

Real-Time Data,
FRFs, and

Zero-Pole-Gain
(ZPK) Info

servo
parameters

.mat &
.m files

.svo
files

Servo
Parameters

12 Bit Data for
Digital Measurements

Analog Measurements

Floating point DSP allowed
easy implementation of servos
designed in Matlab.

.svo file: an ASCII file that
contains an entire MIMO servo.
Written by Matlab, read by
Interface Program.

Key feature of Interface Program:
all data structures are dynamic,
so they are flexible.

Fig. 18. The BMW: a functional block diagram.

Schematically, the software architecture diagrammed in

Figure 18 reveals three distinct layers. The most ad-hoc was

the Interface Program, used so that Matlab could interact

with a real-time DSP. The considerable work to build the

Interface Program (mezzanine layer) smoothed out the inter-

actions with the upper level decision functions (Matlab) and

the Hard-Real-Time (Banshee DSP Board interacting with

disk drive testbed).

This first seemed like a special case, but over the years, the

three separate layers kept showing up. At the time technology

limits, recognition, and the difficulty of programming to the

model tended to make projects avoid it. However, the three-

layer-model remains and the rest of this section will provide

a more universal vision for it, diagrammed in Figure 19.

Hard-Real-Time
l Minimal latency
l Keep up with clock sample periods
l Avoid multi-thread
l Count processor clock cycles

Near-Real-Time
l Keep up with real time on average
l Fast numerical algorithms
l Some simple data structures
l Act as interface between hard real

time and non-real-time

Non-Real-Time
l Talk to other processors
l File access
l Configuration
l State machines
l Complex algorithms

Fig. 19. A three-layer computing model useful for understanding the
computing needs of control systems.

Figure 19 presents a more general form of a three-layer

compute model that serves well for understanding program-

ming in real-time systems. At the bottom is the Hard-Real-

Time, in which we are counting clock cycles to make certain

we complete computations between sample points. At the top

is the Non-Real-Time, which is the computing environment

most programming classes are oriented towards. In between

is the least well known mezzanine layer, which functions to

keep the two other layers happy. It must be able to outrun

the Hard-Real-Time on average, but perhaps in a burst mode.

It must also have enough memory flexibility to deal with

the Non-Real-Time. We will discuss the different forms of

this model and how programming against it improves the

performance of embedded systems and their real-time layers.

We wil now drill down to discuss the individual layers in

more depth.

The first layer to discuss is the real-time layer, which we

further delineate as Hard-Real-Time, and diagrammed at the

bottom of Figure 19. The added qualification is intended

to emphasize that the processing must meet the physical

system’s timing. Missed timing/clocks are bad, especially

when controlling devices or trying to make sense of sampled

signals. This is the reason for the discussion of Section III.

The faster the physical world – relative to the processing –

the simpler and more deterministic the processing must be.

This layer often features a lot of simple but time-critical

tasks. It is possible that the tasks are not that fast, but they

do have to happen within a tight time window. To assign one

“large” processor to one of these simple tasks is wasteful.

(Metaphorically we are using a sledge hammer to push in

a thumbtack.) To handle all of these time-critical tasks, we

either want a lot of lightweight processors in parallel or want

to multiplex in time using a single powerful processor.

FPGAs shine here as one can build small “single task”

processors, i.e. Application Specific Processing. In this layer

we avoid fancy memory access/caching due to uncertainty

in timing. Memory management using caches to hold the

most frequently/recently accessed data is fine in other layers,

but the possibility of a cache miss – when one requests

data that happens to not be in the cache – can increase the

time of that memory access by several orders of magnitude.

This is a major potential contributor to the operational jitter

diagrammed in Figure 10. For systems with dynamics that

must be tightly controlled, this is unacceptable. Simple,

deterministic memory access is critical and so we write

algorithms to rely on on-chip memory whenever possible.

We next move up to the Non-Real-Time layer, at the

top of Figure 19. This is the layer that we learn about

in most programming and computer science (CS) classes.

Non-Real-Time systems are what most people think of as

computers and smart devices. Most users will only interact

with embedded systems through this layer, and as it has no

critical timing, it needs only be responsive enough to not

annoy users. Tasks in the Non-Real-Time layer interact with

other systems, interact with users, and generally have a lot of

multi-tasked functionality. This is the land of multi-tasking

operating systems (often a form of Linux) and Graphical

User Interfaces (GUIs).

Programming-wise, this is the land of lists, Python

3758

servers, web pages, recursive algorithms, database searches,

programs that manage lots of dynamic memory, and

caching. We can (and should) use much more complex

code/algorithms/memory management in this layer than we

could ever do in the Hard-Real-Time layer. We can afford

to represent our signals and numbers in single or double

precision floating point representations. It’s what most folks

consider programming, and there are lots of tools to aid

the developer. Furthermore, nothing that we program is time

critical. Because folks are so much more comfortable in this

layer, lots of companies make money offering to take care of

the lower layers [25]. This is certainly a viable approach in

many situations, but giving up knowledge of how to program

for the lower layers makes it nearly impossible for us to port

simpler versions of our algorithms down closer to the data.

Hard-Real-Time
l Minimal latency
l Keep up with clock sample periods
l Avoid multi-thread
l Count processor clock cycles

Non-Real-Time
l Talk to other processors
l File access
l Configuration
l State machines
l Complex algorithms

API/Drivers/Wrappers

Fig. 20. When Non-Real Time is so much faster than the real world

There are times when the processing power is so fast –

compared to the physical world dynamics being handled –

that folks try to do everything from the top level. In this

case many of our computational latency and jitter concerns

from Sections II and III are not significant for our closed-

loop system. This is diagrammed in Figure 20. There are still

real-time, “touch the world” blocks that are encapsulated into

little blocks with application programming interfaces (APIs).

In some cases, small, inexpensive processors (e.g. Arduino,

Raspberry Pi) are so cheap that it is worth trying to do all

parts of a simple problem on them.

These systems certainly save us from having to deeply

consider the middle layer and the cycle-counting program-

ming typical of the Hard-Real-Time layer, but there are two

inherent dangers here. The first is that this architecture only

really works if the speed of the “main processor” swamps

the physical system dynamics and the processing needed.

The second is that there is always a temptation to add more

applications, threads, and processing requests to main proces-

sor. All of a sudden, we are violating the speed assumptions.

Almost everyone who has owned a computer or a smart

phone has experienced exactly this latter phenomenon: they

were fast when first purchased, but seemed to slow to a crawl

in the years that followed. It is unlikely that the circuits got

slower. Instead, more and more operations were being packed

into the same piece of silicon.

Yet another common approach is the advanced tool ap-

proach, diagrammed in Figure 21. The idea is that to get

more Hard-Real-Time processing without having to code

Hard-Real-Time
l Minimal latency
l Keep up with clock sample periods
l Avoid multi-thread
l Count processor clock cycles

Non-Real-Time
l Talk to other processors
l File access
l Configuration
l State machines
l Complex algorithms

Tool generated PL and RT code

API/Drivers/Wrappers

Automatic Coding Tools
High level Syntheses Tools

Fig. 21. The advanced tool approach

in a Hard-Real-Time way, there are increasing numbers of

advanced development tools. Examples include:

• Simulink® to FPGA synthesis (HDL Coder).

• MathWorks RT Workshop® (MAT-

LAB®/Simulink®/Stateflow® =⇒ real-time hardware)

• Xilinx High Level Synthesis Tools

• dSpace HIL and auto-code (MAT-

LAB®/Simulink®/Stateflow® =⇒ real-time hardware)

• National Instruments HIL simulation

• Hardware targets designed to use these flexible tools

The blocks these tools access on the real-time targets are

very standardized “Lego® blocks”. This has its own over-

head in amount of real-time processing and PL used. Often

the generality comes with a significant speed hit. However,

this method is available and popular with academics and

research folks. The overhead usually makes it far less suitable

for product.

Having passed through these variants, we are now in

a position to have a deeper discussion of the full three-

layer-model displayed in Figure 19. What has been missing

from our previous examples has been a fully fledged mid-

dle/mezzanine layer. The Banshee Multivariable Workstation

(BMW) had a definitive mezzanine layer, as denoted by the

Interface Program of Figure 18. In that example, it served

as a bridge between the highly sophisticated layer of Matlab

design and data analysis and the Hard-Real-Time of the DSP

board and testbed.

It turns out that the processing, data, timing, and memory

models of the Non-Real-Time and Hard-Real-Time are so

different that some sort of rubber/glue layer is almost always

needed. A term that serves for this is Near-Real-Time, or

Mezzanine Level Processing. It has to outrun the Hard-Real-

Time – but only on average. It features a lot of memory

buffers and message queues between the two other layers.

This middle layer wants to ensure that it never leaves the

Hard-Real-Time layer without inputs in its queue and that it

clears the Hard-Real-Time’s output queues fast enough that

they are never completely full. Doing so means that the most

time-critical layer, the one that has to keep up with Newton’s

Laws, never has to slow down because of the rest of the

embedded computing system. We can use more complex

memory/processing/algorithms in the Near-Real-Time. Once

tasks in this layer get past their initialization and allocate

3759

their memory, they go faster than the Hard-Real-Time (hence

the need for buffers). Programs in this layer can also handle

a lot of monolithic streaming data.

Depending upon the speed of the physical system dy-

namics, this Mezzanine Layer can be handled with either

a dedicated Linux thread, a Real-Time Operating System

(RTOS), or a bare metal (no operating system) implemen-

tation. However, unlike the layers on either side, far less is

formalized about this layer. Some of this is due to the very

purpose of this layer: to form a smooth interface between the

others, however this can be viewed as the Wild, Wild West

of programming.

Even if one recognizes the layers of Figure 19 and

programs them differently, there are the issues of how

to combine them and how to share data between them.

Traditionally, the choices have been:

• To combine multiple layers on one processor. However,

the swapping and the multi-tasking could cause com-

plexity and timing problems. By putting everything on

one processor, it is difficult to give the Hard-Real-Time

layer the priority it needs and wasteful to have a single

large processor handling so many simple real-time tasks.

• To put different layers on different proces-

sors/chips/boards. While this preserves the

independence between the layers, the hand-offs

of data and control between layers is usually a

bottleneck. The interfaces end up being either low

overhead and slow (old parallel buses) or higher

overhead and fast (fast serial buses). (Fast parallel

buses between boards are disappearing from everything

but video controllers.) Crossing boundaries is often

a nightmare, as we are having to create compatible

channels between very different levels of programming.

Furthermore, being on different boards usually implies

that the processors are on different clock domains.

This gives yet another opportunity for longer and

less predictable delay between different computation

layers. However, moving the data between the different

layers is a key enabler to being able to program for

each of the layers. Moving the data around cleanly is

also necessary for making processing agnostic, that

is, moving the processing to the layer which is most

appropriate for the data and the sample rate.

The key to a solution allows for separate hardware seg-

ments for each layer while still enabling fast transfer of

data between layers. In this respect, chips which feature a

System on a Chip (SoC) provide such a solution. Multiple

chip families from makers such as Altera (now part of Intel)

and Xilinx (now part of AMD), provide multiple high level

ARM processors on the same die as programmable logic

(PL), on-chip-memory (OCM) as well as communication and

interfaces for off chip memory [26], [27]. This allows multi-

ple levels of computing on one piece of silicon (processing,

programmable logic, memory, buses), and the chip makers

are moving towards advanced synthesis tools to “compile”

hardware to meet the system timing requirements (or alert

the designer when they cannot be met).

VIII. CONTROL ALGORITHM PROGRAMMING

The prior sections have focused at a high level on the

many issues that can encumber the proper execution of

control algorithms. In this section, we will discuss specifics

in how we code our filters and our state-space structures

to minimize issues such as latency, jitter, and numerical

instability in the code. There are many wonderful texts

describing the different mathematical benefits of different

controller structures. What is sometimes left to the reader

is how to implement those structures (a.k.a. write code) and

how the particular properties of the compute engine place

limits on how we write that code.

We cannot emphasize enough the principle that for al-

gorithms to make it from the notepad, through Matlab or

Python, and into systems that work, they must be debuggable.

This goes beyond commenting one’s code (although this

helps) but goes into the filter and state-space structures into

which we fit our schemes. Structure, compartmentalization,

and documentation matter. The clueless schmuck who looks

at your code in 6 months or 2 years will likely be you. Throw

that schmuck a bone.

A. It’s a Filter

In most human-built implementations of feedback con-

trollers, the computations take the form of weighted values

of functions of prior inputs to the plant, outputs from the

plant, reference signals, and auxiliary sensor inputs to the

controller block. In other words, they implement one or

more filters. Whether implemented using analog circuits [28],

digital logic, or computer code, controllers involve filters

(and decision trees). We will focus on the digital versions of

these, starting with computer code but branching into digital

logic as a special “hardware implementation” of code. Even

a state-space structure can be considered under this “filter”

rubric [11], [4], [29], [30].

When we talk about filters in code, we most often mean

that the filter is in a subroutine (or function or subprogram,

but for our purposes here, these are the same). While

filters may be coded in-line in small systems, best prac-

tices of compartmentalizing coding dictate that most filters

will be implemented in subroutines. The subroutines might

themselves have their own subprograms, but for what we

are trying to explain, one level of subprogram is enough.

Considering the most simple (and common) case of a linear,

constant-coefficient filter, we will have parameters into the

routine that need to be shared from the top level down to

the routine and some that go back. As subroutines generally

have a separate data space from that of the calling routine,

the parameters need to be either:

• Global: Shared between all routines and the top level

program.

• Passed: These are passed down via the stack during the

subroutine call.

3760

• Static/persistent: These keep their value even after the

routine ends so that on the next call they remember their

previous value.

• Part of an instance of a class: This is static data local

to an instance of a class that gets initialized through the

class, but also maintains its value until the instance is

deleted.

Of issue here is what data needs to be known in the filter

routine and which does not. In our LTI filter example, we

can imagine the common form for a polynomial form IIR

filter as:

y(k) = −a1y(k − 1)− a2y(k − 2)− . . .− any(k − n)

+b0u(k) + b1u(k − 1) + . . .+ bnu(k − n). (8)

In this filter, we have have three sets of parameters:

• Filter Coefficients: Our values of {ai, bj} define what

we think of as a filter as they are the filter coefficients.

Most often, these are defined before the filter is ever

run and they do not change.

• Previous filter inputs and outputs: This signifies the

{y(k − i)} and {u(k − i)} values that are known prior

to the current time step.

• Current filter inputs and outputs: This signifies u(k),
the current input at step k, and y(k), the output of the

filter to be computed based upon the coefficients, the

prior inputs and outputs, and the most recent input to

the filter.

In a very simplified understanding, only u(k) is a new input

to the filter, and only y(k) is a new output. Given the right

programming methods, no other parameters from above need

to be passed in to or out of the filter at any one step.

This is a very good spot to mention the difference between

batch mode programming and sequential programming. In

batch mode programming, we present all of the data to

the subroutine or program at the entry point. It applies the

parameters and generates all of the data to be output. In

this mode, the routine would be called only once. It would

execute its operations on the large data space, then return the

result in (probably) an equally large data space. We are used

to this type of programming for much of our off-line data

processing, e.g. when we run filter() or filtfilt() in Matlab.

While the filter of (8) might only process one new input

at a time, in batch mode processing all the data would be

passed down to the filter routine which would loop through

repeatedly before returning a column of results.

However, this type of programming makes no sense in

the most critical operations of a feedback controller. Instead

of a batch of data, we have new data coming in at each

time step (probably) and need to generate a response at

each time step (probably). The filter routine only sees a

tiny bit of new data at each step and must respond to it.

It is this incremental use of filters and programs that we

will focus on, since these are the ones that will be running

in a feedback loop that must run “forever”. In this mode

of programming, passing the coefficients and old inputs and

outputs on the parameter stack every time the filter routine is

called is tremendously wasteful of computation time. It does

not advance our algorithm; only increasing our computation

delay while adding no functionality. In such programs, it is

far more efficient to have both filter coefficients and signal

values (delays/states) as static/persistent data so that only

new information gets passed on the parameter stack.

B. The Wire

Besides being a classic HBO show, The Wire is the name

the first author gives to the first filter subroutine one writes

in any computer environment. The role of The Wire is

akin to the role of the various “Hello world!” programs in

programming environments: it is the first proof of concept

that helps debug the basic structure of the code. The Wire

is simply a filter that takes the input and passes it to the

output. In terms of (8), all coefficients are 0 except for b0
which is 1. By first coding The Wire engineers can debug

their filter code structure without worrying about numerics,

time constants, and discretization.

Once The Wire is working, the next version involves

having all coefficients at 0 except for b0 and b1 which are

both set to 0.5. Once this simple FIR averager is working,

the next version sets all coefficients to 0 except for b0 = 1
and a1 = −0.5 to set up a simple IIR low-pass filter. With

these, one can test impulse and step responses and generally

debug most of the filter structure. After that, one can get

more complicated with the numerics.

C. Numerics, Parameterization, and Operations

The successful implementation of algorithms into filter

routines relies on doing a variety of different things well,

or at the very least, not screwing up a whole bunch of small

things. Experienced programmers (just like experienced prac-

ticing engineers) realize that every implementation will need

to be debugged, and so a key aspect of coding is to design

the code in such a way that it can be easily debugged. This

is one of the reasons for breaking code up into smaller

subprograms or subroutines. Taken to the next level, we get

to Object-Oriented Programming (OOP) where much of the

data and code specific to that data, are wrapped up into a

class. (Discussing OOP in detail is beyond the scope of this

tutorial, but some parts are keenly relevant to this discussion.)

Those used to programming in feature rich, Non-Real-

Time environments, can often not see the need for such

careful attention to structure, but for any practical program-

ming system, structure comes before numerics. Once the

data handling is properly handled, then one can look at how

the algorithm handles the numerics. This is not an either-

or situation: the structure puts one in a position to better

understand the numerics and the numerics then may well

mandate a change to the structure.

A feature of programs that needs to be understood is

the cost of different mathematical operations. In most mod-

ern computation architectures, additions, subtractions, and

3761

multiplications take 1–5 clock cycles while operations such

as division or computation of transcendental functions take

on the order of 30+ clock cycles (depending upon the

particular processor). Accesses to on-chip memory take 1–

2 clock cycles and so certain real-time operations are far

better accomplished via a local look-up-table (LUT) and

interpolation, than by following the complete algorithm.

When working with Hard-Real-Time, one might often

need to give up on floating-point operations in the name of

resources and speed. For example, using Xilinx’s DSP48E

blocks in PL, one can perform a multiply of a 25 and 18-

bit twos-complement number and accumulate with another

25-bit number in 5 clock cycles with one block. To perform

the same calculation using floating-point requires 10 clock

cycles and four of these same blocks [31], [32]. Thus, when

the precision is less critical than speed and resources, one

may very well opt for fixed-point operations.

D. Understanding Sampling and Discretization Methods

While there are many ways to discretize a linear model,

the Zero-Order Hold Equivalent (ZOH) [4] has been the most

used form for many years. As it is the default method for

Matlab’s c2d() function, this dominance has only increased.

The ZOH equivalent provides exact matches at the sample

instances, but with it comes a loss of physical understandabil-

ity [18]. Its use only makes sense when one is discretizing

the entire plant model in one step. However, as John Madden

famously taught, “One size doesn’t fit all” [33].

For example, most proportional, integral, derivative (PID)

controllers are discretized using a backwards rectangular

rule (or backwards rule, BR) equivalent [18]. This will be

discussed in Section VIII-E, but it is worth noting that

the only place in Matlab where one finds the BR built in

is in the PID design tools. Matching higher end resonant

structures is far more intuitive if one breaks them into

second-order transfer function blocks (biquads). For such

lightly damped second order sections, discretizing them with

pole-zero matching is not only highly accurate, but preserves

the physical intuition for each biquad (Sections VIII-G and

VIII-H). If one wishes to model the rigid body modes of

a system in such a way as to directly extract both position

and velocity directly from the discrete-time state space, a

trapezoidal rule (TR) equivalent makes a lot of sense (Section

VIII-I).

Finally, while the “sampling fast” mantra does bring a lot

of benefits, it can also bring forth several issues. The first

is that if one samples so rapidly that the measurement and

quantization noise is larger than any signal change in the

sample instant, the signal to noise ratio (SNR) of our mea-

surements drop, with consequentially bad results. Secondly,

because all discretization is calculating or approximating

some version of esTS , the shrinking value of TS will squeeze

more poles and zeros into a pack around z = 1. This may not

matter when the numbers are represented in double-precision

floating point, but for real-time systems with single-precision

floating point or even fixed-point coefficients, this can be

disastrous. Trimming a few bits of the numeric representation

can flip poles and zeros from inside of to outside of the unit

circle in unpredictable ways [34]. Several schemes have been

proposed to shift the design space back to a more continuous-

time like representation, including the δ parameterization

[35], [36] and the τ parameterization [37]. The ∆ coefficients

used in the Multinotch (Section VIII-G) [34], change the

coefficients to be more accurate but do not alter the signal

space. For biquad structures, ∆ coefficients provide greater

accuracy of coefficients [38] but do not do anything about

signal growth. The signal growth limiting properties of the

δ parameterization can actually be traced to the fact that

TS ends up scaling many of the signals. As this shrinks, it

compensates for having more values in the accumulator [37],

[39]. The issue with this scaling by TS is negligible when

the numbers are represented in floating point, but potentially

disastrous when TS is in an unscaled fixed point number. All

of this is to say that “sampling fast” should be done fully

aware of the potential downsides.

E. PIDs

While many controls researchers see the PID controller as

“Brand X” controller against which to compare their research

[18], it is still the case that most practical controllers are (or

start with) some variant of a PID. There are many good

discussions on various forms, aspects, and tuning of PID

controllers [40], [41], [42], [19], we will focus here on some

of the important computational features. One point to be

clarified is that while PIDs are considered “standard” there is

no one standard PID form. There is an attempt to consolidate

many of the forms into one of four different archetypes in

[43], and [44] adds the ISA standard form PID equation

[45]. We will focus on one form from [43] that has nice

discretization properties.

Design: Modern PIDs are typically designed in continuous

time and implemented in discrete time. Almost universally,

discretization is done using the BR, where

s −→
z − 1

TSz
=

1− z−1

TS

, and (9)

TS is the sample period. Consider one continuous-time form,

Explicit Time with No Derivative Filtering from [43]:

C(s) = KP +
KI

TIs
+KDTDs, (10)

where KP ,KI , and KD are the proportional, integral, and

derivative gains, while TI and TD are integration and differ-

entiation times. Setting TD = TI = TS and applying the BR

from (9) yields

C(z) = KP +
KI

z − 1
+KD

(

z − 1

z

)

. (11)

We see that modulo the TI and TD factors there is a tight

correspondence between (11) and (10). Using this parame-

terization and the BR has not only led to a very intuitive cor-

respondence between the continuous and discrete-time PID

parameters, but it has also made the non-proper derivative

term in (10) proper in (11). In essence, the conservatism of

the BR has inserted a needed low-pass filter. Operationally,

3762

this means that the discrete PID is internally stable, so long

as the integrator is not operated when the actuator is in

saturation. This last issue is one of the likely reasons why

PIDs are broken out from the rest of the filter blocks in

most industrial systems. Being able to isolate the integrator

for anti-windup purposes is extremely helpful.

offset

-

measured
signal

clamping
anti-

windup

reference
signal

error u uscale
usat

SS

z
-1

S S

KP

KI K

KD1-z
-1

C(z)

Fig. 22. Conditional integration/integrator clamping

Anti-Windup: We know from the Final Value Theorem

that in order to track an input step with 0 steady state error,

we need an integrator in the forward portion of the loop

[11]. The issue for an integrator in the controller is that it is

only stable in the presence of the feedback loop. Saturation –

typically at the actuator – breaks that feedback. The breaking

of the loop can cause a buildup of error in the integrator

(wind up) causing the actual error to take much longer to

settle when the system comes out of saturation.

An advantage of the PID structure is that the integrator can

be isolated so that anti-windup schemes can be implemented.

The workaround of integrator anti-windup involves some

method of detecting the saturation and then using this to

change/limit the input to the integrator. The two prevalent

methods are back-calculation and conditional integration

(also known as integrator clamping). Back calculation aims

to remove from the integrator input a portion of the controller

output that did not get past the saturation block. If properly

scaled, this should drive the input to the integrator to 0,

eliminating the windup. Most descriptions of this seem to

focus on the integrator or the PI action, giving the im-

pression this is usually reserved for systems where the D

portion is not enabled. Back calculation has an advantage

in that it can be readily applied in continuous or discrete-

time implementations. Conditional integration, diagrammed

in Figure 22, implements a decision tree to zero out the input

to the integrator during saturation. As such, it is more easily

understood with discrete-time implementations. It also has

the advantage that even in saturation, input to the integrator

may be allowed if the sign of the error is different from

the output of the integrator, thereby moving away from

saturation.

Derivative Filtering: Depending upon the application,

various forms of filtering are often recommended. When the

plant dynamics are substantially slower than the computation,

one can apply fairly aggressive low-pass filtering to the entire

PID to limit electronics noise while not affecting the needed

closed-loop performance [41]. For higher speed systems

such as mechatronics, we may stick with only filtering the

derivative term [18], [43].

The point of this is that the most common PID blocks

should be implemented in their own special filter subroutine.

The form of discretization matters and can affect the intuition

one keeps about the overall control system. Furthermore, this

block can contain some anti-windup code, not found in most

other filter blocks.

One more feature of integrators is that even without

saturation and windup, their internal signals can get quite

large compared to other filter signals. When using fixed point

number formats, we often need to allocate extra bits just for

the integrator accumulation.

F. Filter Structures and Latency

TSH
TADC

TDACTCOMP

TS

TLATENCY

No Precalculation

TSH
TADC

TDAC

TPRECALCTFC

TS

TLATENCY

With Precalculation

Fig. 23. Input and output timing in a digital control system. The top
drawing is without precalculation; the bottom drawing is with.

As Section IV-A showed the phase-margin killing effects

of careless selection of anti-alias filters, this section deals

with computational latency. In particular, Figure 23 illustrates

how the lack of precalculation makes the closed-loop latency

dependent on the controller filter size. Restructuring the

calculation to push as much as possible into precalculation

makes the computational latency fixed and shorter. It is rela-

tively straightforward to apply precalculation on a controller

implemented as an IIR filter as in Figure 24, but polynomial

filters have poor numerical properties, particularly when the

filter has lightly damped poles and zeros. Since these are

common in mechatronic systems, we want to implement

our control filters using a biquad cascade that has better

numerical properties than a polynomial filter [46].

G. The Multinotch

S S

S S

-

u(k)

z
-1

a1

d(k) y(k)

b1

S S

z
-1

an-1

d(k-1)

d(k-n+1)

d(k-n)

bn-1

an bn

b0

Fig. 24. nth order polynomial filter in Direct Form II configuration [47].

The development of the Biquad State-Space (BSS) starts

with the Multinotch (MN), a way of turning a polynomial

form IIR filter as diagrammed in Figure 24, into a cascade

of biquads with the direct feedthrough coefficients factored

3763

S SS S

S SS S

- -

u(k)

z
-1

z
-1

z
-1

z
-1

a0,1 a1,1

d (k)0 y (k)0 y (k)1d (k)1

a0,2 a1,2

~ ~ ~~

S SS S

S SS S

- -
z

-1
z

-1

z
-1

z
-1

an-1,1 an,1

d (k)n-1 y (k)n-1 y (k)n y(k)d (k)n

b

an-1,2 an,2

~ ~ ~~

b0,1

~

bn-1,1

~

b1,1

~

bn,1

~

b0,2

~

bn-1,2

~

b1,2

~

bn,2

~

Fig. 25. The updated biquad cascade, with factored out b0 terms.

out to the end, as shown in Figure 25 [34], [46]. With this

factorization, one can discretize each biquad individually

so that the discretized biquads have a one-to-one corre-

spondence with the continuous-time biquads. By judicious

choices of which poles and zeros from the physical model

are assigned to each biquad, one can minimize effects of the

signals of any one biquad on the others. The Multinotch is a

highly efficient digital filter because it not only has greater

numerical stability than standard polynomial and state-space

forms, but also allows for precalculation of most of the

filter, minimizing the latency between reading a sample and

responding to it (Figure 23). This particular form of the direct

feed-through scaling allows for precalculation, but others are

available if we want the internal states of the filter to be

scaled as they are in the system.

H. The Biquad State-Space (BSS)

S SS S

S SS S

- -

a01 a11

y0,k+1 y1,k+1b00 b10b00

a02 a12b02

S SS S

S SS S

- -

an-1,1 an1

bn0b ...b bn-1,0 10 00

an-1,2 an2

b01

~

~
b12

~

b11

~

bn-1,1

~

bn-1,2

~
bn2

~

bn1

~

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

d0,k
u0,k

uk

x0,k

x0,k-1

d1,k

x1,k

xn-1,k

xn,k-1

xn,k

dn-1,k dn,k

yn,k+1

yk+1

Fig. 26. The updated discrete biquad cascade, with factored out bi,0 terms
and scaling the output of each block.

One of the easiest ways to clear a room full of practicing

mechatronic control engineers is to suggest that they employ

state-space methods for the control of their structure with

many lightly damped resonances. State-space models of

highly flexible systems can present severe numerical issues.

The models derived from physical principles often lack

structure. Canonical form models, are compact, but obscure

any physical structure and can have coefficients that are

highly sensitive to model parameters. What is needed is a

1
s

1
s

1
s

1
s

1
s

S SS S

S SS S

- -
u

a01 a11

u0

x0 x1

xn-1 xn

y0 y1
b00 b10b00

a02 a12b02

S SS S

S SS S

- -

1
s

1
s

1
s

an-1,1 an1

yn

y
bn0b ...b bn-1,0 10 00

an-1,2 an2

b01

~

~
b12

~

b11

~

bn-1,1

~

bn-1,2

~
bn2

~

bn1

~

Fig. 27. The analog biquad cascade, with factored out bi,0 terms and
scaling the output of each block. This is completely analogous to the digital
form of Figure 26.

10
0

10
1

10
2

10
3

-60

-40

-20

0

20

Frequency (Hz)
M

ag
ni

tu
de

 (
dB

)

Comparing Analog and Digital Biquad Intermediate Outputs (3 biquads)

10
0

10
1

10
2

10
3

-250

-200

-150

-100

-50

0

Frequency (Hz)

P
ha

se
 (

de
g)

CT Biquads 1-3 Out
DT Biquads 1-3 Out
CT Biquads 2-3 Out
DT Biquads 2-3 Out
CT Biquad 3 Out
DT Biquad 3 Out

Fig. 28. BSS with three biquads including a low-pass filter in Biquad 1.
This plot compares the Bode responses of the individual CT and DT biquad
sections. The outputs of biquad 3 and biquad 2 show the magnitude and
phase flattening out at high frequency (due to the matched number of poles
and zeros). Once the response of biquad 1 is added in, we see the low pass
roll off. At each biquad output, the match between continuous and discrete
responses is incredibly close, a unique and useful feature of this structure.

form that has the compact representation of the canonical

forms, the physicality of the forms derived from physical

equations, and maintain numerical accuracy and physical

intuition, even after discretization.

The first of these is the Biquad State-Space (BSS) [48],

[49], based on the Multinotch (MN) of Section VIII-G. The

BSS captures the endearing characteristics of the Multinotch

while providing the flexibility of model based control. A

significant feature of the BSS is the ability to move easily

between the states of the continuous and discrete-time forms.

The digital version of the BSS shown in Figure 26 looks

very similar to the Multinotch, although as we are more

focused on accurate modeling than precomputation, we scale

the outputs of each biquad to get to the proper output states.

This form results in a block upper triangular state transition

matrix [48]. If one were to mistakenly substitute 1/s for

z−1, one would end up with the continuous-time structure

of Figure 27. Furthermore, if one were to discretize the

structure of Figure 27 one biquad at a time, then one would

3764

end up with the structure of Figure 26, with the added

advantage that the signals at the outputs of the biquads

would correspond between the analog and digital versions.

Figure 28 demonstrates this with a 3-biquad system, where

one of the biquads implements a LPF [50]. Note the tight

correspondence between the outputs of both analog and

digital biquads. The roll up in phase in the DT plot is due

to mapping the LPFs continuous-time zeros at s = −∞ to

z = −1.

I. Rigid Body Modes and the Bilinear State-Space (BLSS)

Structure

S S

-

ui
ui+1

xi+1

yi

yi+1

yi+1

~
1
s xi

S S

- 1
s

xi+1xi
1 1

ai1
ai+1,1

bi0
bi+1,0

bi1

~
bi+1,1

~

Fig. 29. Continuous-time bilinear state-space (CT-BLSS) form.

S S

-

u (k)i

xi+1(k)
y (k) = u (k)i i+1

yi+1(k)y (k)i+1

~

xi(k)

S S

-

xi+1(k+1)xi(k+1)
1 1

ai1

bi0

bi1

~

z
-1

z
-1

ai+1,1 bi+1,1

~

bi+1,0

Fig. 30. Discrete-time bilinear state-space form (DT-BLSS).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.4

-0.2

0

0.2

0.4

0.6

Time (s)

B
iq

ua
d

S
ig

na
ls

Biquad, TR: Double Int. Test: f
in

 = 1 Hz, f
S
 = 100 Hz

Input/2
d

i,k

y
i,k

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.4

-0.2

0

0.2

0.4

0.6

Time (s)

B
LS

S
 S

ig
na

ls

BLSS, TR: Double Int. Test: f
in

 = 1 Hz, f
S
 = 100 Hz

Input/2
d

i,k

y
i,k

d
i+1,k

y
i+1,k

Fig. 31. Double integrator with square wave input. Implemented using a
trapezoidal rule equivalent biquad (top) and BLSS (bottom).

For all the advantages of the BSS for flexible modes, we

still need to find some way not only to represent rigid body

modes, but also to have the internal states of those structures

correspond to the internal states of the rigid body, e.g. veloc-

ity and position. Furthermore, we would also like that rigid

body state-space structure to have an equivalence between

the continuous and discrete-time forms. This is accomplished

via the Bilinear State-Space (BLSS) structure [50]. Figures

29 and 30 show continuous and discrete versions of the BLSS

[50] which accomplishes that, and can be combined with a

cascade of biquads into one overall state-space structure. This

is shown in the simulation of Figure 31. After all, it is a bit

embarrassing to go through all the mathematical machinery

of state space, and not be able to access the discrete states

for both position and velocity.

IX. EXAMPLE BANDWIDTH RANGES, APPLICATIONS,

AND PLATFORMS

In this as in many other sections, there are general state-

ments based upon where the state of the art of technology

(“Moore’s Law”[5]) is at the time of the writing. We expect

that the specific numbers and ranges will change over time,

but the basic idea of what defines a range should remain.

The best advice here seems to be to paraphrase Sun Tzu

[51]: “Know your time constants, and know your dynamics,

and you can close 100 loops without disaster.”

We will provide some platform examples, in a direction

of ever increasing speed. Of common interest is the tradeoff

between preemption – being able to run multiple tasks by

multiplexing – and timing certainty. As we move down the

list, we move towards more and more dedicated hardware to

a specific computation and less opportunities for preemption.

The second trend as we move down the list is that there are

a decreasing number of electronic components between the

physical system and the electronic computation. The increase

in speed comes along with a potential increase in cost and

almost always decrease in flexibility. However, the march

of technology means that as the years pass, more physical

systems with faster time constants move up these layers. One

path through the different computation technologies is:

On a Linux Thread: Linux is a free, customizable

operating system. Among the many variants are complex

versions for servers and simple versions that run much of

the embedded systems in the world. It is not uncommon to

select a Linux thread to run some of the slower real-time

applications. Because a real-time Linux thread can be given

higher priority than Non-Real-Time threads, this can reduce

the delay and jitter to acceptable levels for relatively slow

applications.

On a Real-Time Operating System (RTOS): An RTOS is

the next level up in capability. This is a compromise between

maintaining a preemptive operating system with its ability to

manage memory, communications, and scheduling, with the

priority of real-time tasks. Many applications that use digital

signal processor (DSP) chips will fall into this area.

On a bare metal (minimal/no OS) chip: In this case, our

need for precise control of timing has overridden our desire

for the convenience of an operating system. Many of these

processors are relatively small and made for running a single

process with minimal interruptions.

On an FPGA or other PL: Programmable Logic (PL)

started as a way of prototyping custom integrated circuits

(custom ICs) or of generating the glue logic that tied many

processing chips together. As the capabilities have grown,

so have the PL chips and market. What FPGAs give is a

chance to generate custom hardware processors for specific

mathematical tasks. Instead of multiplexing these tasks in

time as one would have to do on a single processor, they

are multiplexed in space on the FPGA. Some algorithms are

relatively simple and can be implemented very efficiently in

relatively simple, customized logic. Thus, we are not wasting

the processing power of a large processor by having it switch

3765

to many simple tasks.

On custom digital or mixed signal IC: A custom chip can

include mixed analog and digital signals without incurring

any of the (albeit small) overhead of an FPGA chip. The

cost of laying out a custom chip means that this solution

is only feasible for either high-cost applications or for mass

market applications. In either case, something has to make

up the cost of chip layout to gain that extra speed.

In analog electronics: The fastest speed systems often

require us to give up on digital methods in the Hard-Real-

Time layer. With this move to fully analog implementation

comes the loss of flexibility, reproducibility, and updatability

that are a key advantage of digital methods.

An alternate view starts with the general speed ranges that

we can group by sample rates, often with overlapping edges:

Low End Speed fS ≤ 1Hz: The typical applications

include thermal systems, pressure control, biological reac-

tors, and chemical process control. Such slow systems can

often be handled as a Linux thread with the API approach

of Figure 20 or the advanced tools method of Figure 21.

Next Level 1Hz ≤ fS ≤ 100Hz: In this zone we currently

have rigid systems; typically medium to large mechatronic

systems, or small toy class systems. We might find personal

robots in this region. While the sample rates are pushing the

boundaries, one might still find some of these handled by

Linux threads. The more complex or safety critical systems

might run on an RTOS, and the chips involved might move

from low end processors to DSP chips.

Next Level 10Hz ≤ fS ≤ 50kHz: Typical applications

here might include fast rigid body and/or mechatronic sys-

tems, such as motion stages, fast robotics, flight, safety, au-

tomotive, and disk storage. These would be usually handled

with an RTOS or bare metal computing environment. The

hardware has moved away from conventional or inexpensive

processors fully in the range of DSP and/or FPGA chips.

The Need for Speed 50kHz ≤ fS ≤ 50MHz: Typical

applications requiring these sample rates might include high-

end instrumentation, mid-level electronic test, and high-speed

small mechatronics, such as Atomic Force Microscopes

(AFMs). These might use DSP chips at the lower end FPGA

implementations at the higher end, and run with minimal

operating system interference.

X. BUSINESS MODELS AND BANDWIDTH

Control theory might seem unified, but the space to imple-

ment is dramatically varied. As was described in Section IX,

the physical system time constants are a main determinant

of the required sampling rates, and these in-turn affect the

version of the Three-Layer-Model from Section VII-A that

we will program against.

This section is about how much computing power we can

afford to apply to any given control application. The comput-

ing cost limits may or may not affect the implementation of

our control algorithms, but it is good to have some idea when

those limits occur. The earlier Sun Tzu paraphrase applies

well here.

For very slow applications (e.g. pressure, temperature, or

chemical and biological process control) the computer is so

much faster than the process dynamics that we can forget

about latency inside the digital unit. This is where lots of

compute intensive learning algorithms are first tried. A great

example of this is Model Predictive Control [52], [53], which

finds a natural home performing optimization between the

relatively-slow sample instants of chemical process control

systems. At the same time, the types of dynamic structures

for which the control system must compensate are different.

Chemical engineers rarely think about resonances, but are

keenly aware of transport delay and the limitations on their

sensors and actuators. Similarly, the long time constants

mean that frequency domain measurements are almost mean-

ingless to this group. As a result, the raw processing costs

will be relatively low. Such bandwidth requirements can

often be met with the API method diagrammed in Figure

20. Where the money will be spent is on the input and

output signal chains, where – depending upon the system

– the environment in which those electronics operate often

determine the cost.

At the other end of the spectrum are intense, expensive

applications (e.g. fighter planes, space launch and spacecraft,

wafer scanners). For these systems, the cost of process-

ing is a tiny part of the machine cost. These types of

systems might have substantial numbers of lightly damped

dynamics, as well as substantial instrumentation challenges.

Time constants may be short, prompting higher sample rates

and more stringent computational requirements. However for

these systems, the engineering teams are large and (relatively

speaking) resources are flush. Latency, noise, performance

limits all matter, but the proverbial checkbook is open. These

systems are characterized in part by being so expensive

that each device can be tuned by a team of engineers.

Such systems can afford high-end, high-cost processing, and

plenty of engineers to design and program each of the layers

in Figure 19.

Perhaps the largest price-performance demands come from

consumer level systems. This may present the largest chal-

lenge and opportunity. The prevalence of feedback-based

devices in our everyday use require a lot of performance

in relatively inexpensive processing solutions. These must

be increasingly self-tuning and self-diagnostic. The low unit

cost mandates that we cannot afford to have engineers touch

every device. That being said, their penetration to the public

is far more visible, so reliability is critical. The path for

these computation systems is usually to start with more

complex, powerful chips and algorithms in the early test

phases, and then port the simplified versions down into the

low-cost hardware. While the Hard-Real-Time layer is made

as efficient as possible, it is common in these systems to thin

out the top two layers to reduce cost. After all, when it is

cheaper to replace a device than to diagnose and fix it, this

makes economic sense. (We are ignoring the more complete

accounting costs on the environment due to throwing away,

rather than repairing or recycling broken devices. We do

not endorse this incomplete accounting; we simply view

3766

it as a current – and flawed – business practice for many

operations.)

Consumer level devices where the feedback loop is used

as a selling point include fuzzy logic washing machines and

rice cookers. Two salient features of these are that the system

dynamics are relatively simple and benign and that the fuzzy

logic control is advertised as a feature. They are highly

unlikely to do damage to anyone or anything even with a

flawed or failing feedback loop. Such systems feature hard

limits on internal temperature, cooking or cleaning time, and

the like, so that even if the feedback fails, the system will

shut down with nothing more than a ruined dinner. If one

views fuzzy control as more of a control implementation than

a control design method [54], then we can realize that a key

feature of these devices was the implementation of feedback

on a benign but improvable process.

Few consumers are aware of the key role of feedback in

their hard disk drives and optical disks [55], [56], [57], [58].

At the same time, devices that visibly depend upon feed-

back for their fundamental operation are rapidly becoming

prevalent in our society, from all types of robots, to drones,

to self-driving modes in vehicles, to self-driving vehicles

themselves. These are not systems with benign dynamics

and so the proper implementation of feedback on a low-

cost embedded platform is critical. As control engineers

we need to understand both how to fit our algorithms into

such inexpensive platforms and how to justify our push

for some computational head space in those systems for

improved diagnostics and code revisions. The team will

likely only have one or two engineers with any knowledge of

feedback. Being able to communicate design considerations

to everyone from business types, to chemists, to software

designers is a critical skill.

Finally, with all the discussion of machine learning (ML)

and artificial intelligence (AI) in the public consciousness,

we can neither shy away from these discussions, turn off

our connection to the laws of physics, nor pout in the

corner because we are not getting the same attention. Anya

Tsalenko, an expert in machine learning, big data, and

artificial intelligence at Agilent Labs often points out that

the main advancement between the neural network methods

of the 1980s and 1990s and today are a massive increase in

the amount of training data and computer power available

now. What was once a parallel scheme run on a single

Intel processor is now a massive parallel scheme tuned with

terabytes of data on GPUs (Graphics Processing Units) and

implemented in parallel on FPGAs. Still, the demonstrations

all seem to focus on systems for which the dynamics are

orders of magnitude slower than the processing, obviating the

need for discussions of jitter and latency through the system.

We have tried to make the case in this tutorial that control

engineers cannot ignore these factors in how we think about

computing. This is a function of the problem itself, rather

than our choice of computing platforms. As ML/AI systems

are increasingly applied in real-time feedback loops, they

will likely face the same computing issues discussed here.

XI. SUMMARY

This paper has tried to show how the computation in a

feedback loop extends far beyond the processor itself, and

into four signal chains in the loop: the plant’s “computation”,

the input signal chain, the output signal chain, and the

computer itself.

Each of these is a potential source of delay, noise, and

jitter. They can each wreck the performance of even the best

control algorithm. If we simply block these together into a

single discrete-time plant model, we loose the opportunity

to optimize each of these signal chains so as to improve the

overall performance of the feedback loop.

Furthermore, we cannot separate these computation chains

from the time constants of the plant itself. We have tried to

show how the pain points for a control engineer working on a

high-speed mechatronic system are likely very different than

those for a control engineer working on a bioreactor. What

we have tried to show is that the principles underlying each

of these signal chains is the same across applications, which

allows us to gain understanding of where the pain points will

be as we move our control knowledge between applications.

Understanding the role of real-time computation for different

time constant problems is critical.

Once we get into the actual computation, we need to un-

derstand how different aspects of the problem are addressed

by different layers of computation. The proposed Three-

Layer Computer Model helps us understand how to program

for different parts of the loop.

Finally, none of this can be separated from the business

model versus bandwidth tradeoffs. How much computing we

can afford to apply on any given control problem will often

limit what we can do with our algorithms.

REFERENCES

[1] H. W. Bode, “Relations between attenuation and phase in feedback
amplifier design,” Bell System Technical Journal, vol. 19, pp. 412–
454, July 1940.

[2] G. Stein, “Respect the unstable,” IEEE Control Systems Magazine,
vol. 23, no. 4, pp. 12–25, August 2003.

[3] D. Y. Abramovitch, “A tutorial on PES Pareto methods for analysis of
noise propagation in feedback loops,” in Proceedings of the 2020 IEEE

Conference on Control Technology and Applications, IEEE. Montreal,
Canada: IEEE, August 2020.

[4] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of

Dynamic Systems, 3rd ed. Menlo Park, California: Addison Wesley
Longman, 1998.

[5] Wikipedia. (2022) Moore’s law. [On line; accessed September 21,
2022]. [Online]. Available: https://en.wikipedia.org/wiki/Moore’s law

[6] ——. (2022) Newton’s laws of motion. [On line; accessed
September 21, 2022]. [Online]. Available: https://en.wikipedia.org/
wiki/Newton’s laws of motion

[7] D. Y. Abramovitch, “Trying to keep it real: 25 years of trying to get
the stuff I learned in grad school to work on mechatronic systems,”
in Proceedings of the 2015 Multi-Conference on Systems and Control,
IEEE. Sydney, Australia: IEEE, September 2015, pp. 223–250.

[8] Wikipedia. (2018) Padé approximant. [Online; accessed June 6, 2018].
[Online]. Available: https://en.wikipedia.org/wiki/Pade approximant

[9] K. Ogata, Modern Control Engineering, 3rd ed., ser. Prentice-Hall
Instrumentation and Controls Series. Englewood Cliffs, New Jersey:
Prentice-Hall, 1970.

[10] ——, Discrete-Time Control Systems, 2nd ed. Englewood Cliffs, New
Jersey: Prentice-Hall, 1994.

3767

[11] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control

of Dynamic Systems, 5th ed. Upper Saddle River, New Jersey:
Prentice Hall, 2006.

[12] Wikipedia. (2022) Phase noise. [On line; accessed September 28,
2022]. [Online]. Available: https://en.wikipedia.org/wiki/Phase noise

[13] ——. (2022) Jitter. [On line; accessed September 28, 2022]. [Online].
Available: https://en.wikipedia.org/wiki/Jitter

[14] S. D. Ruben, “Respecte the implementation: Using NI myRIO in un-
dergraduate control education,” in Proceedings of the 2016 American

Control Conference, AACC. Boston, MA: IEEE, July 6-8 2016, pp.
7315–7320.

[15] Keysight Technologies, “What is the difference? between an
equivalent time sampling oscilloscope and a real-time oscilloscope,”
Keysight Technologies, Santa Rosa, CA USA, Application Note
5989-8794, April 9 2021, [On line; accessed September 28,
2022]. [Online]. Available: https://www.keysight.com/us/en/assets/
7018-01852/application-notes/5989-8794.pdf

[16] B. Widrow, “A study of rough amplitude quantization by means of
Nyquist sampling theory,” IRE Transactions on Circuit Theory, vol. 3,
pp. 266–276, 1956.

[17] D. Y. Abramovitch, “Determining Kalman filter input noises using PES
Pareto,” in Proceedings of the 2021 American Control Conference,
AACC. New Orleans, LA: IEEE, May 2021, pp. 4292–4298.

[18] ——, Practical Methods for Real World Control Systems. Self,
December 1 2022.

[19] K. J. Åström and B. Wittenmark, Computer Controlled Systems,

Theory and Design, 3rd ed. Englewood Cliffs, N.J. 07632: Prentice
Hall, 1997.

[20] D. Abramovitch, “The Banshee Multivariable Workstation: A tool for
disk drive servo research,” in Proceedings of the ASME Winter Annual

Meeting, ASME. Anaheim, CA: ASME, November 1992.
[21] HP 3563A Control Systems Analyzer, Hewlett-Packard, 1990.
[22] z-Domain Curve Fitting in the HP 3563A Analyzer, Hp 3563a-1

product note ed., Hewlett-Packard, 1989.
[23] Control System Development Using Dynamic Signal Analyzers: Appli-

cation Note 243-2, Hewlett-Packard, 1984.
[24] Curve Fitting in the HP 3562A, Product note HP 3562A-3 ed.,

Hewlett-Packard, 1989.
[25] S. B. Andersson, “Lessons from the advanced tool world,” in Proceed-

ings of the 2023 American Control Conference, AACC. San Diego,
CA: IEEE, May 31–June 2 2023.

[26] Xilinx. (2022) Xilinx adaptive SoCs. [On line; accessed October
4, 2022]. [Online]. Available: https://www.xilinx.com/products/
silicon-devices/soc.html

[27] Intel. (2022) Intel FPGAs and Soc FPGAs. [On line; accessed
October 4, 2022]. [Online]. Available: https://www.intel.com/content/
www/us/en/products/details/fpga.html

[28] S. D. Ruben, “Controller implementation via analog computers,” in
Proceedings of the 2023 American Control Conference, AACC. San
Diego, CA: IEEE, May 31–June 2 2023.

[29] W. S. Nagel, A. Mitrovic, G. M. Clayton, and K. K. Leang, “Discrete
input-output sliding-mode control with range compensation: Appli-
cation in high-speed nanopositioning,” in Proceedings of the 2022

American Control Conference, AACC. Atlanta, GA: IEEE, May
31–June 2 2023, pp. 4371–4376.

[30] W. S. Nagel and K. K. Leang, “Discrete input-output state-space
models for real-time control,” in Proceedings of the 2023 American

Control Conference, AACC. San Diego, CA: IEEE, May 31–June 2
2023.

[31] 7 Series DSP48E1 Slice Users Guide, Ug479 (v1.6) ed., Xilinx,
August 7 2013.

[32] LogiCORE IP Floating-Point Operator v6.0, Ds816 (v1.2) ed., Xilinx,
January 18 2012.

[33] J. Madden and D. Anderson, One Size Doesn’t Fit All. Jove, October
1 1989.

[34] D. Y. Abramovitch, “The Multinotch, Part II: Extra precision via ∆

coefficients,” in Proceedings of the 2015 American Control Confer-

ence, AACC. Chicago, IL: IEEE, July 2015, pp. 4137–4142.
[35] R. H. Middleton and G. C. Goodwin, “Improved finite word length

characteristics in digital control using δ operators,” IEEE Transactions

on Automatic Control, vol. 31, no. 11, pp. 1015–1021, November
1986.

[36] G. Li and M. Gevers, “Comparative study of finite wordlength effects
in shift and delta operator parameterizations,” IEEE Transactions on

Automatic Control, vol. 38, no. 5, pp. 803–807, May 1993.

[37] D. Y. Abramovitch, “A comparison of the δ parameterization and the
τ parameterization,” in Proceedings of the 2019 American Control

Conference, AACC. Philadelphia, PA: IEEE, July 2019.
[38] ——, “A comparison of ∆ coefficients and the δ parameterization,

Part I: Coefficient accuracy,” in Proceedings of the 2017 American

Control Conference, AACC. Seattle, WA: IEEE, May 2017.
[39] ——, “A comparison of ∆ coefficients and the δ parameterization,

Part II: Signal growth,” in Proceedings the 2018 American Control

Conference, AACC. Milwaukee, WI: IEEE, June 2018, pp. 5231–
5237.

[40] K. J. Åström and T. Hägglund, PID Controllers: Theory, Design, and

Tuning. ISA Press, 1995.
[41] ——, Advanced PID Control, ser. Oxford Series on Optical and

Imaging Sciences. ISA Press, August 15 2005.
[42] T. Wescott, “PID without a PhD,” Embedded Systems Programming,

pp. 86–108, October 2000.
[43] D. Y. Abramovitch, “A unified framework for analog and digital PID

controllers,” in Proceedings of the 2015 Multi-Conference on Systems

and Control, IEEE. Sydney, Australia: IEEE, September 2015, pp.
1492–1497.

[44] ——, “Thoughts on furthering the control education of practicing
engineers,” IEEE Control Systems, vol. 43, no. 1, pp. 64–88, February
2023.

[45] V. VanDoren, “Understanding PID control and
loop tuning fundamentals,” Control Engineering Mag-

azine, 2023, [On line; accessed September 30,
2022]. [Online]. Available: https://www.controleng.com/articles/
understanding-pid-control-and-loop-tuning-fundamentals/

[46] D. Y. Abramovitch, “The Multinotch, Part I: A low latency, high nu-
merical fidelity filter for mechatronic control systems,” in Proceedings

of the 2015 American Control Conference, AACC. Chicago, IL:
IEEE, July 2015, pp. 2161–2166.

[47] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing.
Englewood Cliffs, N. J.: Prentice Hall, 1975.

[48] D. Y. Abramovitch, “The discrete time biquad state space structure:
Low latency with high numerical fidelity,” in Proceedings of the 2015

American Control Conference, AACC. Chicago, IL: IEEE, July 2015,
pp. 2813–2818.

[49] ——, “The continuous time biquad state space structure,” in Proceed-

ings of the 2015 American Control Conference, AACC. Chicago, IL:
IEEE, July 2015, pp. 4168–4173.

[50] ——, “Adding rigid body modes and low-pass filters to the biquad
state space and multinotch,” in Proceedings of the 2018 American

Control Conference, AACC. Milwaukee, WI: IEEE, June 2018, pp.
6024–6030.

[51] S. Tzu, S. B. Griffith, and B. H. L. Hart, The Art of War, reissue ed.
Oxford University Press, January 1 1963, iSBN-10: 0195015401
ISBN-13: 978-0195015409.

[52] J. B. Rawlings, “Tutorial overview of model predictive control,” IEEE

Control Systems Magazine, vol. 20, no. 3, pp. 38–52, June 2000.
[53] R. R. Negenborn and J. M. Maestre, “Distributed model predictive

control: An overview and roadmap of future research opportunities,”
IEEE Control Systems Magazine, vol. 34, no. 4, pp. 87–97, August
2014.

[54] D. Y. Abramovitch, “Some crisp thoughts on fuzzy logic,” in
Proceedings of the 1994 American Control Conference, AACC.
Baltimore, MD: IEEE, June 1994. [Online]. Available: dabramovitch.
com/pubs

[55] ——, “Magnetic and optical disk control: Parallels and contrasts,”
in Proceedings of the 2001 American Control Conference, AACC.
Arlington, VA: IEEE, June 2001, pp. 421–428.

[56] W. Messner and R. Ehrlich, “A tutorial on controls for disk drives,”
in Proceedings of the 2001 American Control Conference, AACC.
Arlington, VA: IEEE, June 2001, pp. 408–420.

[57] D. Y. Abramovitch and G. F. Franklin, “A brief history of disk drive
control,” IEEE Control Systems Magazine, vol. 22, no. 3, pp. 28–42,
June 2002.

[58] ——, “Disk drive control: The early years,” in Proceedings of the

2002 IFAC World Congress, IFAC. Barcelona, ES: IEEE, July 2002.
[59] J. A. Chantel K. Lapins and K. K. Leang, “Real-time control of

mobile robotic systems through the Robot Operating System (ROS),”
in Proceedings of the 2023 American Control Conference, AACC.
San Diego, CA: IEEE, May 31–June 2 2023.

3768

