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Abstract— One of the key questions that befalls anyone about
to design a Kalman Filter is the question of determining the
noise inputs. As methodical and systematic as Kalman filter
design is, it is wholly dependent upon the choice of noise source
values, and these are usually ad-hoc. On the other hand, the
PES Pareto Methodology [1] provides a systemic method for
modeling and measuring broadband noises in a feedback loop.
As with the old Reece’s Cup commercials, it seems that one
might want to know if these two techniques can be combined,
so that we obtain well quantified process and sensor noise
estimates based upon our PES Pareto based measurements.
That is the subject of this paper.

I. INTRODUCTION
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Fig. 1. Closed-loop system with a standard process (w) and mea-
surement (v) noise sources.

Kalman Filters provide a well known way to modify a
current mode estimator [2], [3], [4] so that the observer
feedback gains are determined as a least-squares balance
between the process noise and measurement noise. The
process noise disturbs the plant, while the measurement noise
is separate from the plant dynamics. Once a discrete-time,
linear time-invariant model of the plant is determined, the
difficulty is really about estimating the process (w) and
measurement (v) noises in Figure 1. These are generally
modeled as Additive White Gaussian Noise (AWGN) with
a zero mean. Given the importance that is attributed to
(w) versus (v), it would seem that there should be a more
systematic way to quantify those values.
The PES Pareto methodology [1] provides a way of

analyzing the sources of noise in a feedback loop. Originally
conceived for analyzing noise contributors in magnetic hard
disk drives [5], [6], [7], [8], the method provides a means of
systematically identifying uncertainty contributors to a servo
loop. Once identified and ranked according to their overall
effect on the error and output signals, the top ranking sources
can be worked on first, either by finding ways to reduce
their magnitude or by altering system components to reduce
sensitivity to the noise contributors.
This paper demonstrates how PES Pareto can use the

quantified measurements of a variety of modeled noise inputs

*Daniel Y. Abramovitch is a system architect in the Mass Spec Division
at Agilent Technologies, 5301 Stevens Creek Blvd., M/S: 3U-WT, Santa
Clara, CA 95051 USA, danny@agilent.com

and map their effects as if they were contributing at either
the w or v inputs to the loop. From that point, the cumulative
Power Spectral Densities (PSDs) can be integrated over
the relevant frequency range to give the effective noise
covariances, W and V . The contribution of this paper is that
the Kalman Filter is run based on accurate noise estimates
derived from measurable quantities.

II. A REVIEW OF BASIC KALMAN FILTERING

The Kalman Filter starts with an assumption that the model
of the physical world that is linear, time-invariant, and in
discrete time [2], [3], [4]. For a Single-Input, Single-Output
(SISO) system,

xk+1 = Fxk +Guk +GWwk (1)

zk = Hxk +Duk + vk. (2)

The matrices describe how the system evolves from one
time step to the next. The terms, wk and vk, denote noises
that affect the system, with wk being a “process” noise that
actually affects where the actual states will go, while vk is
a “measurement” noise that does not affect the actual states,
but affects our ability to measure the output.
As used in feedback systems, a Kalman Filter takes the

form of a Current Estimator. In this usage, we have access
to the plant input generated by the controller, uk, which
we would not have in many signal processing formulations.
For feedback systems where uk is generated and therefore
known, this results in the D term canceling out from the
error dynamics. The Current Estimator Time Update is:

x̄k+1 = F x̂k +Guk (3)

while the Measurement Update is:

ȳk = Hx̄k +Guk

x̂k = x̄k + LC [zk − ȳk]
(4)

In the Kalman Filter we modify LC to possibly vary every
step, LC,k and it is chosen as a least squares balance between
how the process noise, wk, and the measurement noise, vk,
affect the measurement error. Here, W is the covariance
matrix of the process noise, wk, and V is the covariance
of the measurement noise, vk, i.e. wk ∼ N(0,

√
W ) and

vk ∼ N(0,
√
V ). The key update to the current estimator

is the propagation of uncertainty which is used to pick the
feedback gain, LC,k at every step.
The Kalman Time Update is now:

x̄k+1 = F x̂k +Guk (5)

Mk+1 = FPkF
T +GwWGT

w (6)
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where (5) represents the state time update as before and (6)
represents the uncertainty time update.
From a programming/simulation point of view, the Time

Update projects forward one or more steps in time to the
point of the next measurement. (For the Kalman Filter, one
step in time.) Therefore at the time of the next measurement
(the new k), the Kalman Measurement Update is:

ȳk = Hx̄k +Guk, (7)

Pk = Mk −MkH
T
(
HMkH

T + V
)−1

HMk, (8)

LC,k = PkH
TV −1, (9)

x̂k = x̄k + LC,k [zk − ȳk] , (10)

ŷk = Hx̂k +Guk. (11)

Here (7) is the part of the Time Update that uses the projected
state to estimate the incoming measurement. It could very
well have been grouped with the previous equations, but
from the use of the time indices, we want to be certain to
understand that we form an error based on the predicted
and actual measurement. The state Time Estimate is in (8),
and the uncertainty update is in (8). We can also give our
best estimate of the system output, ŷk, although this is not
necessary for feedback control.
Likewise, the steady-state Kalman Filter is can be written

using the same state update equations, but now we have
steady-state values of uncertainty, Pk = PSS = P and
LC,k = LC,SS = LC as:

P = FPFT +W −FPHT
[
HPHT + V

]−1
HPFT (12)

and LC = FPHT
[
HPHT + V

]−1
, (13)

where (12) is an Algebraic Riccati Equation (ARE) [2].
For a given system model, the noise covariances, W and
V , uniquely determine the feedback gains, whether they be
evolving, LC,k, or stead state, LC .
The Kalman Filter is the least squares solution to a

particular mathematical problem, but when one asks if it is
optimal, the true answer is in the form a question: How well
did we model reality? More specifically, How accurate are
{F,G,Gw, H,D,W,&V }? It is this author’s experience that
people usually pour a lot more effort into the optimization
algorithm than they do in obtaining a good model [9]. This
author is still confused about what utility optimizing on a
poor model can have, and so this paper is intended to address
part of that problem.
In particular, while we will not discuss improvements

to the model parameters, we believe that the PES Pareto
Methodology [1] for measuring and quantifying noise prop-
agation through a feedback loop can be used to create
measurement based estimates for W and V , which should
improve at least half of this problem.

III. A BRIEF REVIEW OF PES PARETO

This section will review the fundamentals of the PES
Pareto Method. The original papers can be found at [5], [6],
[7], [8], while a recent tutorial was presented in [1].

The PES Pareto Method is based on three ideas: (1) an
understanding of how Bode’s Integral Theorem [10], [11],
[12] applies to servo system noise measurements, (2) a
measurement methodology that allows for the isolation of
individual noise sources, and (3) a system model that allows
these sources to be recombined to account for the strata
of the servo loop’s error signal. The method requires the
measurement of frequency response functions (FRFs) and
output power spectra for each servo system element. Each
input noise spectrum can then be inferred and applied to
the closed loop model to determine its effect on error signal
uncertainty.
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Fig. 2. Closed-loop system with each block having its own noise
source.

In a more complex model where each block can be
modeled to have its own noise source (Figure 2), how do
we:

• Isolate and measure some noise source at some down-
stream output or measurement point?

• Back up through whatever effective filter there is to get
to the particular noise source as an input?

• Push that source (and others) forward through the
closed-loop system to see the effects of that noise source
on the rest of the loop?

The second two questions are answered by setting up the
math:

• We need Power Spectral Densities (PSDs) in a mea-
surement frequency range with frequency bins that
are consistent with the Frequency Response Functions
(FRFs) generated from our system model.

• We need measurements and/or models of all the blocks
in such a way that we can match the frequency bins.

• We need to understand the relationship between phys-
ical PSDs, the integral across the frequency band, and
(via Parsevall’s Theorem [13]) the noise variance in
time, σ2.

The first question involves a lot of hands-on cleverness
and some fudging, but it is worth it.

• We see right away that in order to isolate some noise
sources, we need to open the loop.

• In other cases, we cannot make the measurements
without the system being in closed-loop.

• Some noises are arrived at when we channel Sherlock
Holmes and eliminate all the others as a potential source
[14].

To quantify the noises in the loop more systematically,
we would like to include more of the noise sources in our
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Fig. 3. Simplification for analysis of Figure 2. Closed-loop system with
each block having its own noise source as an additive output noise.

block diagram, as shown in Figure 2. In this model we
have included such sources of “noise” as quantizers, power
amplifiers, broadband disturbances, and sensor noise. While
more complete, this formulation is not overly tractable. A
compromise model is diagrammed in Figure 3, in which the
noises are now modeled as additive noise on the output of
each block.
In PES Pareto, we choose a set of potential input noise

sources. Knowing that AWGN is still considered additive
and Gaussian after passing through a linear filter, we realize
that we can often model noise measured inside a closed-
loop system as a closed-loop reference input coming into
the system, by applying the appropriate magnitude-squared
filter at the same frequency points as the Power Spectral
Density (PSD) of the noise measurement. Using a different
magnitude-squared filter, we can then compute the effect of
that noise source at different points along the loop. We can
also make a rather weak assumption that the reference input
noises are independent of each other, meaning that their
cross-correlation and cross spectra will be 0. In practical
terms, it means that multiple measurements need to be made,
their auto and cross spectra computed, and these need to be
averaged to approximate an expected value. This allows us
to have a set of independent input noises characterized at
a set of inputs around the loop. As these noise sources are
independent, their filtered PSDs can be compared or added at
any particular measurement point. For this paper, our interest
will be in translating some of these noises to be associated
with the process noise, w, and some to be associated with
the measurement noise, v.
Given that we have decided which noises we wish to

quantify, say from a diagram such as Figure 3, we need
to find a measurement or set of measurements that can give
us an isolated measurement of that source. As mentioned in
the tutorial paper, [1], this is by far the most ad-hoc part of
the method, particularly when the measurements are not built
into the digital controller itself. For brevity will not spend
too much space on this aspect [1], except to give a handful
of useful insights here:

1) The measurement point is often downstream in
the loop from the closed-loop injection point. Gen-
erally, the closer to the closed-loop injection point,
the cleaner the measurement.
2) The point of a measurement is to generate a
Power Spectral Density (PSD) of the isolated noise

signal (with physical unit scaling) from DC to the
Nyquist frequency (0 −→ fS

2 ). To evaluate the
noise content at other points along the loop, it must
be filtered by the magnitude-squared frequency re-
sponse of the appropriate frequency domain model.
The magnitude-squared filter must have the same
frequency bins as the computed PSDs of the noise
measurements.
3) Some measurements can be made with the loop
open, and so translating them to a different refer-
ence input along the loop does not involve closed-
loop dynamics. Many measurements require the
loop to be closed and so a translation from a
measured closed-loop signal to an independent
reference input involves inverse filtering with a
magnitude-squared filter that has the inverse of the
closed-loop dynamics.

A. Useful PSDs from Measurements

The Fourier Transform of a signal x(t) is defined as

X(f) =

∫ ∞

−∞
x(t)e−j2πftdt, (14)

If x(t) is sampled N times over a span, T , with a sample
period of Δt, then xn = x(nΔt). By letting fk = k

T = k
NΔt

we get

Xk = X(k) =
X(fk)

Δt
=

N−1∑
n=0

x(n)e
−j2πnk

N . (15)

This is what a standard FFT, including the one in Matlab
computes. Note that

X(fk) = ΔtX(k) (16)

which returns the FFT to something closer to the physical
units. We want physical units when measuring signals in the
lab but they do not have arbitrary scaling. We often need
to learn the scaling of a particular instrument or software
tool, so we can scale everything in the same way. Given
that physical units stay consistent, it is a good idea to map
everything to them.
As we are backing noises out to the point where they are

independent inputs, we consider the Cross Spectral Densities
(CSDs) of these noises to be 0. PES Pareto is really about
Power Spectral Density (PSD). To produce the PSD from
X(f), we compute the complex conjugate X∗(f). At that
point we compute the element by element product of the
two complex vectors:

PSD(x) =
X∗(f)X(f)

Be
(17)

where Be is the Resolution Bandwidth of the filter used
to compute the spectrum and where X(f) is the Fourier
Transform from Equations 14–16. This is the smallest change
in frequencies that a given measurement can resolve and
generally is inversely proportional to the length of the
measurement time window, T . For an FFT,

Be =
1

T
=

1

NΔt
(18)
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where N is the number of points in the FFT and Δt is the
sample period between points, so that we have the

PSD(x) =
X∗(f)X(f)

NΔt
(19)

Several other ways of obtaining PSDs from measurements
and using other values of Be are discussed in [1].

IV. COMBINING THE METHODS

Given that a set of noises have been measured and backed
out to their reference inputs, and given that we can consider
the reference inputs to all be statistically independent, we
can now combine them to form the reference noise inputs of
w and v.
The key judgment comes in which noises to combine at w

and which to be combined at v. If we look at Figures 3 and
1, we need to first understand what to do with the physical
system disturbances (labeled d in Figure 1 and Phys. Sys.
Noise in Figure 3). We can first divide this into any part of d
that can be measured using a sensor or seen as a deterministic
input. This would clearly not fall into the KF’s assumption of
Additive, White, Gaussian Noise (AWGN) and should not be
part of the w or v noises. However, if there is a portion that
is or looks random, then we must make another distinction
about whether we consider it to be altering the behavior of
the plant or whether it simply disturbs the measurement.
Anything that disturbs the plant should be transformed

as part of the process noise input, w. This would include
not only any relevant portions of d, but also the DAC noise
and Power Amp noise in Figure 3. The air flow disturbance
described in the earlier PES Pareto papers would also be
part of this process noise. Anything that only affects the
measurement would be assigned to the measurement noise
input, v. Sensor noise, demodulation noise, input electronics
noise (which often shows up as noise above the quantization
noise in the ADC), and ADC noise would go into this term.
One more distinction needs to be made: PES Pareto

involves measuring and magnitude-squared filtering PSDs,
while the Kalman Filter is looking for noise variance (or
covariance) quantities. The former is a far richer, more
detailed trove of data, but we can reduce the cumulative noise
input PSDs at w and v by integrating each over the relevant
frequency range. This is most likely over the frequency bins
from DC (0 Hz) to Nyquist ( fS2 ). This gives the variance in
frequency for each of these noises and then we know from
Parseval’s Theorem that these equal the noise variance in
time for each of these [13].
We can make a few assumptions that simplify our explana-

tion here. We will assume that we can model the quantization
in an ADC or a DAC via the Widrow model [15] and spread
the variance across the frequency band from −fS

2 to − fS
2

[16], [17]. As we will only measure from 0 to fS
2 we will

double the variance to stay consistent, so the nominal PSD
due to quantization level, q is:

ΦQQ(f) =
q2

6fS
=

q2TS

6
, using f ∈ [0,

fS
2
], (20)

and is flat across frequencies from DC to fS/2[18]. However,
we have seen that we often measure fewer bits of resolution
than what is quoted via the converter number of bits, and
we can scale the quantities in (20) to represent an equivalent
number of quantizer bits [1]. We will assume that apart from
these scaled quantization noises, the gains of ADC and DAC
are 1, although we could get equivalent results with longer
equations by assuming KADC = 1/KDAC . We will assume
that in the Nyquist band, the ADC and DAC have a flat
response.
For clarity and brevity, this paper assumes that the power

amplifier has a response, I(f), that is flat out far beyond the
Nyquist frequency as does the sensor response, M(f). Here,
we let I(f) = KPA and M(f) = KM in the frequencies of
interest. Setting the plant and controller models to P (f) and
C(f), the closed-loop denominator used in forward filtering
any independent references is given by:

‖Δ(f)‖2 = ‖1+KMKPAKADCKDACP (f)C(f)‖2. (21)
Consider if we could measure the spectrum of the dis-

turbance noise, d, at y in Figure 3, (Φdd,y(f)), but only in
closed-loop. To get that back to an independent reference
input at w, we would filter the measured PSD by:∥∥∥∥1 +KMKPAKADCKDACP (f)C(f)

KPAKDACP (f)

∥∥∥∥
2

. (22)

Similarly, if we could measure the power amplifier noise
by zeroing out the DAC output, thereby opening the loop.
As this is an open loop measurement we do not need the
closed-loop dynamics and merely need to scale our measured
quantity, (Φii,i(f)), by 1

(KDACKPA)2 to get it back to w. Our
DAC, with quantization level q and unity gain is an input
quantity right at w, so no inverse filtering is needed. Thus,
we can related these three noise inputs, d, DAC noise, and
Power Amplifier noise, back to the traditional process noise
input, w.
In measuring the components of v we have assumed that

we would include the ADC noise, using a scaled Widrow
model (20), and assume that this is already generated as a
reference input at the same point as v. The sensor noise has
to go through the ADC, so it is affected by the ADC gain,
KADC . It is often the case that we cannot assess the sensor
noise without the loop being closed, [1], and so we assume
that we measure it at e with reference input, r that is known
(and can be subtracted off of the measurement). Often, we
determine the sensor noise by eliminating all other sources at
e, but in this example we will assume that we have measured
it at z in closed-loop (Φmm,z(f)), and so must get to the
noise PSD as a reference input, Φmm,m(f) via∥∥∥∥1 +KMKPAKADCKDACP (f)C(f)

KADC

∥∥∥∥
2

, (23)

but to shift this over to v, we would have to forward filter
the results filtered by (23) by ‖KADC‖2.
We can now add the constituent PSDs at both the w and

v inputs – as they are independent noise sources – and
finally have a noise spectra PSD input at each of these
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injection points. The Kalman Filter does not need noise
spectra, though, only the noise variance. Recalling Parseval’s
Theorem [13]). the noise variance in time,

σ2
w =

∫ fS/2

0

Φww(f)df ≈
NFFT−1∑

k=0

Φww(fk)Δf, and

(24)

σ2
v =

∫ fS/2

0

Φvv(f)df ≈
NFFT−1∑

k=0

Φvv(fk)Δf. (25)

Obviously, things could be much more complicated than the
above map, but the key point is that PES Pareto provides a
systematic way to go from noise measurement PSDs to the
critical noise variances required by the Kalman Filter.

V. A DESIGN EXAMPLE

In this section, we will demonstrate the method using
a simple but illustrative example. For a simple plant we
choose a double integrator, P (s) = K

s2 . Our controller needs
phase lead. so we will chose a discretized Proportional Plus
Derivative (PD) controller. One of the first things that we
need to do is make an adjustment to the plant. Normally, we
evaluate the FRF of a plant with integrators on a logarithmic
frequency scale, so the infinite values at DC are never an
issue. When computing the PSDs for PES Pareto, we need
to use a linear frequency scale from 0 – fS

2 , so that we
cannot avoid the infinite DC gain. Instead, we replace the
integrators with low pass filters containing extremely low
frequency poles. Thus, our plant model is

P (s) =
K

s2
≈ K

(s+ aint)2
(26)
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Fig. 4. Double integrator and finite gain approximation.

In Figure 4 we replace each integrator with a low pass pole
at 0.1 Hz. We have chosen a sample rate of 1024 Hz and 4096
frequency bins for the FFTs so that the frequency bins tile
into integer frequency spans. We have the finite DC gain we
need for the filtering of PSDs, but the differences between
the different continuous time curves is negligible and the
discretized responses, both Zero-Order Hold and Trapezoidal
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Fig. 5. Double integrator and finite gain approximation, plotted on a
linear frequency axis.

Rule equivalents, are also very close. The same responses
look very different in Figure 5 when they are plotted on the
linear frequency scale we use in our spectrum analysis. Our
PD controller – discretized with the backwards rectangular
rule equivalent used almost universally for PID controllers
[19] – is:

CBR(z) = (KP +KD)

[
z − KD

KP+KD

z

]
. (27)
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Fig. 6. Open and closed-loop response of P (z)C(z), plotted on the
linear frequency axis used for noise measurements and analysis.

Most readers will be very familiar with open and closed-
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loop frequency response functions of double integrators
stabilized with a lead, but are probably less familiar in seeing
these plotted on a linear frequency scale, as shown in Figure
6. This provides an interesting perspective, because while we
often focus on lower frequency dynamics, broadband noise
factors in across much of the frequency range beyond our
closed-loop bandwidth. The linear plots help to bring that
into focus.
We will apply the simplifying assumptions of Section

IV for clarity. We model the power amplifier and sensor
bandwidths far above the Nyquist frequency so that we can
use a model of simple gains for KADC , KDAC ,KPA, and
KM . The quantization noises and power amplifier noises are
considered flat out to Nyquist. To make it interesting, we
will shape the disturbance noise and the sensor noise.
A logical assumption is that the disturbance would be a

physical phenomena and therefore low pass and therefore
could be modeled as AWGN filtered by a low pass filter to
generate the disturbance input spectrum. For this example,
the input shaping filter is a discretized second order low-
pass filter with a natural frequency of fN,d = 40Hz, a
damping factor of ζN,d = 2, and a DC gain of 0.1. Applying
a magnitude squared version of this filter to an AWGN noise
variance of σ2

dist = 0.01 spread from 0 – fS
2 results in a

shaped PSD at the disturbance input (the green curves in
the upper plots of Figures 7 and 9). Integrating these curves
from 0 to fS

2 yields σ2
dist,in = 19.152 · 10−6.

Similarly, we can assume the sensor noise to be high pass,
and therefore could be modeled as AWGN passed through a
high pass filter to generate the sensor input spectrum. In this
example, we chose a simple lead with the zero at f = 5Hz,
the pole at f = 50Hz, and the DC gain of 0.001. Applying
a magnitude squared version of this filter to an AWGN noise
variance of σ2

sense = 0.01 spread from 0 – fS
2 results in a

shaped PSD at the sensor input (the blue curves in the lower
plots of Figures 7 and 9). Integrating these curves from 0
to fS

2 yields σ2
sense,in = 5.3764 · 10−6. The plots of the

ADC noise, PA noise, and DAC noise are – because of our
simplifying assumptions for these first example – flat. The
fact that some of the noises do not have flat PSDs means that
their relative importance as contributors to w and v cannot
be known until they are magnitude squared filtered to that
point and then integrated to generate variances.
In the first example, a 12-bit ADC and DAC are chosen.

The input noises that feed w, that is noise in the DAC, the
power amplifier, and the disturbance, are shown in Figure 7.
By the time they are magnitude squared filtered to the inputs
we need at w and v in Figure 8, their relative importance has
changed. The individual source PSDs can be summed at each
of the “Kalman inputs” resulting in the black dashed curves.
Note that for w the disturbance noise is the key component,
despite falling below the power amp noise and DAC noise
for much of the frequency span. For v, the sensor noise
dominates the overall noise PSD for most of the frequency
span. While the specific numbers in this example are not
important, we can note that V = σ2

v is an order of magnitude
higher than W = σ2

w.
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Fig. 7. Input noise reference PSDs that feed w (top) and v (bottom)
for 12-bit ADCs and DACs.
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Fig. 8. Input noise reference PSDs mapped to w (top) and v (bottom)
for 12-bit ADCs and DACs.

In the second example, we merely reduce the number of
bits in the ADC and DAC from 12 to 10, shown in Figure 9.
This small change, once filtered around to w and v result in
considerably different looking w and v PSDs, seen in Figure
10. For w, the DAC noise becomes a far more dominant
signal, while for v the ADC noise is no longer trivial, but still
not the dominant noise source. Because of how the different
noise inputs are shaped in being mapped to w and v, the net
effect is a disproportionate scaling of W = σ2

w and V = σ2
v ,

so that W is now only a third of V . Since the Kalman Filter
feedback gain matrix is dependent upon W and V , we see
how these small changes in input noises at their sources can
be mapped to different Kalman feedback gains.
These examples are simple, but they do illustrate the

method. Furthermore, they demonstrate that because of
where the different noise inputs are and how they follow
different paths to their respective “Kalman inputs”, changing
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Fig. 9. Input noise reference PSDs that feed w (top) and v (bottom)
for 10-bit ADCs and DACs.
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Fig. 10. Input noise reference PSDs mapped to w (top) and v (bottom)
for 10-bit ADCs and DACs.

something as simple as the flat PSDs of the ADC and DAC
noises can affect w and v in dramatically different ways,
thereby altering both the uncertainty propagation and the
gains of the Kalman Filter.

VI. CONCLUSIONS

This paper has shown how to use the noise analysis in PES
Pareto to map a variety of noise sources around a loop into
the process and sensor noises used for determining (along
with the system model) the gains of a Kalman Filter. The
process described in Section IV was demonstrated in two
simple examples in Section V to show that once the system
model is known and the input noises have been quantified (in
terms of PSDs) we can filter this to show up as variances at
w and v. Because of the different filters that each noise must
pass through to arrive at it’s “Kalman input”, small changes
in flat spectrum input noises can dramatically change the

relative importance ofW and V . The user now has a method
for extracting these from measurements.
This can be applied to systems with much more complex

block models and noise inputs while maintaining the same
essentially methodology. A similar application could be made
to the continuous-time Kalman-Bucy Filter [2], with the
caveat that as we invariably measure noise spectra using
discrete-time tools, we must be careful to properly translate
those measurements to continuous-time spectral models.
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