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Abstract— This paper asks: how do we apply the fundamental
principles of feedback in physical systems to business processes?
This is a tempting idea because feedback is clearly present
in business/decision processes, but as in the case of feedback
of biological systems, getting beyond the qualitative and phe-
nomenological descriptions to models with structure for which
parameters can be determined from measurements is difficult.

In this context, what can feedback principles, so often based
on rigid mathematical analysis, provide to such systems for
which any mathematical rigor is hard to find? Our approach
in this section will be inspired by the words of Captain Barbosa
in Pirates of the Caribbean[1], as to think of fundamental
feedback principles as guidelines, rather than actual rules. That
being said, we believe those guidelines provide a rich source
of correction for business processes. In the end our feedback-
fundamentals inspired guidelines may not guarantee us only
correct decisions, but they can keep us away from practices we
would never try in engineering systems.

I. INTRODUCTION
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Fig. 1. A generalized control block diagram for business processes.

A variety of factors make analytical feedback difficult with
business/management/decision processes. A non-exhaustive
list of these includes:

• They are complex, nonlinear, and time varying.
• They are hierarchical with asymmetric information flow

and actuation authority between layers.
• They are mediated by human interaction, including

emotion, individual desires (and personal/local opti-
mization), and imprecise language and information.

• More than hierarchical, many businesses have author-
itarian elements: top down, emotion driven decision
making, limited feedback authority from the lower
layers interacting with the real world.
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• Meanwhile, more democratically run businesses can
suffer from “paralysis by analysis” – a metaphor that in
this case refers to the inability of some well-meaning
organizations to sift through data and make a decision
(or choose a course of action) in a reasonable time.

• Information gathering (measurement) is uneven and of-
ten under sampled. While tracking of supplies, products,
individual components, and money have gotten far more
accurate, analysis of larger trends, marketing directions
(or the effects of marketing trends), or matching a
company’s technology and cultural strengths to new
product directions is still more of an art than a science.

• Models that go beyond empirical observations, best
practices, heuristics, or black box models; anything with
structure, are hard to derive and harder to verify against
measurements, particularly if the measurements are un-
dersampled. This makes having a causal understanding
of any predictions from models difficult.

What can feedback principles, so often based on rigid
mathematical analysis, provide to such systems for which
any mathematical rigor is hard to find? Our approach in
this section is inspired by the words of Captain Barbosa
in Pirates of the Caribbean[1], as to think of fundamental
feedback principles as guidelines, rather than actual rules.
That said, we believe those guidelines provide a rich source
of correction for business processes.

The dual of this approach is to look for busi-
ness/management/decision phenomena that show a tight cor-
respondence to known feedback and/or optimizations asso-
ciated with control systems. For example, one can view
the recently exposed fragility of the Just-in-Time (JIT)[2]
optimized global supply chain – as evidenced by shortages
and bottlenecks in the delivery of components and finished
products during the Covid-19 pandemic – as a system
that was optimized for maximum performance (bringing to
mind H2 optimization) with little concern for robustness
to uncertainty in the supply model (as might be associated
with H∞ optimization)[3]. The practice of Management By
Wandering Around (MBWA) employed by tech pioneers Bill
Hewlett and Dave Packard [4] can be viewed as a business
version of compressive sensing: generating a more accurate
image from limited measurements by making randomized
direct measurements of primary data. This is discussed in
the session main tutorial paper [5].

A generalized control framework for business processes
is shown in Figure 1. Here, input tracking takes the place
of extra disturbance sensors in a physical system feed-
back/feedforward loop. The feedforward control generation
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is within the Decisions/Directions block, analogous to the
physical system control block. The Measurement Process
contains all the ways that businesses try to measure their
outputs in order to improve their Decisions/Directions (and
thereby Adjustments). Technically, Input Tracking could
fall into the Measurement Process, but its current location
preserves the analogy to the extra sensors used to track input
disturbances in physical systems.

The Process Outputs include those that we measure and
those that we do not. In a physical system feedback loop,
measurements are typically made on a regular sampling
interval and whatever data conversion we need is available.
We cannot rely on such assumptions in business models.
However, awareness of the need for such self-consistent
measurement, conversion, and data handling – which occur
by necessity in physical control systems – can be of great
utility in improving the use of measurements in business. It
is also worth becoming aware that not all outputs may be
measured, so that this can be factored into any confidence in
the Decisions/Directions process. These unmeasured outputs
themselves are a form of Dark Data, which can sometimes
surprise is in bad ways [6]. In business, there may also be
“occasionally measured” outputs; ones that only get looked
at when there is a problem. On can consider the idea of
measured more of these outputs far more consistently as the
first step on early diagnostics or predictive maintenance.

Perhaps worth of its own paper is the modeling block
(discussed in Section VII), where all the various system
signals are pushed into the Modeling Process to extract
improved Process Models, which lead to better Decision
Rules and Measurement Adjustments. In feedback control of
physical systems, we know that the level of our improvement
due to feedback (and feedforward) is directly tied to the
quality and accuracy of our modeling.

In many instances, we might explicitly include a model
block as part of the feedback mechanism e.g., internal model
control (IMC) or in a state observer. We know, though, that
these depend completely on a precisely defined and highly
accurate model. As we are lacking in such precision for our
application to business processes, we skip this in Figure 1.

II. THE ROLE OF HONEST FEEDBACK IN OPTIMIZING

BUSINESS, MANAGERIAL, AND DECISION PROCESSES

One of the hallmark methods of modern business school-
based decision process optimization is to follow some case
study of success or failure to try to learn “the lessons”, while
rarely examining the surrounding circumstances. In the con-
trols world we would call this coupling and feedback from
related processes that might have been far more impactful on
the results than the “cause” that is being credited. Why would
this more complete root cause analysis not be examined? The
simplest answer is to “Follow the money” i.e., someone is
selling something.

This issue is far more prevalent in organizational dynamics
and business than in peer-reviewed research. While both
idioms have individuals seeking personal reward based on

their own success and “innovation”, it seems that the inten-
tional and far more immediate feedback of peer review is
more consistent at finding false thinking metaphors than the
less objective and personalized correction that may (or may
not) happen in organizations. For peer reviewed research,
the presence of anonymous feedback works to remove any
biases based on personal or power relationships. It can be
reasonably argued that the differences in behavior can be
tied to the vastly weaker and delayed feedback in a large
organization, coupled with the dramatically better (we might
call it nonlinear) opportunities for personal success if we
can be given credit for something. As HP co-founder, Bill
Hewlett, said: “Tell me how I am going to be measured
and I will tell you what I’m going to do.” When one can
have more effect on how they are measured by their skills
of persuasion than their skills of problem solving, there is a
recipe for future issues. The idea of the market correcting bad
behavior is premised on notions of linearity, invertibility, and
perfect information. When unchecked bad practices lead to
outcomes that cannot be easily (or ever) reversed, no amount
of market correction does as much good as early feedback
that prevented the issue from the outset. (It is the old idea
of putting in more effort to stay out of an accident rather
than completely relying on a good mechanic and orthopedic
surgeon.)

III. THE FILTERING FRAMEWORK VERSUS THE

FEEDBACK FRAMEWORK
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Fig. 2. A filtering structure for looking at processes.
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Fig. 3. Filtering framework applied to business processes.

Filtering and feedback are akin to cousins that both fight
and get along. Despite many similar features, there are core
differences in the way the two frameworks approach similar
looking problems. Understanding those differences helps us
apply them towards business decisions.

A filtering framework/perspective is depicted in Figure 2.
Somewhere beyond our direct access is a physical process
generating an input. Perhaps this unknown input is passing
through some physical process or channel that shapes it
(and for which we may have some form of a model). That
unknown input can be corrupted by noise and disturbances
(what we would call process noise and plant input distur-
bances). While both noise and disturbances are forms of
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uncertainty, we define noise as driven by a random process
which we cannot predict (but we can characterize). We
consider disturbances a form of uncertainty that has some
predictable, repetitive, or structural component in it, so that
with the right algorithm and/or extra sensors it would be
measurable. The key point of the filtering framework is that
we do not have access to any of these signals as they flow
into a physical system, process, or communication channel
only the measured outputs. Those outputs are corrupted by
uncertainty (what we in the controls community would call
measurement noise and plant output disturbance). It is on
this latter type of signal that the filtering framework applies.

The lack of access to the original physical signal (the
reason why we need to do filtering in the first place) places
fundamental limits on the modeling that can be done to
generate a filter. Learning systems, such as an adaptive
filter or supervised machine learning (ML), would require
“ground truth” (known as the desired signal in adaptive signal
processing [7]) to train the model or digital filter. Without
this ML is limited to unsupervised methods, which are far
more limited. Figure 3 shows a filtering framework, applied
to business processes. The term “analytics” is used now to
make filtering seem more thoughtful. Certainly, the list of
offline processes that can be applied to the measured data
if we do not need to feed it back into a decision process
is huge. However, without access to any system inputs, our
ability to affect the process does not exist and our modeling
will be limited.
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Fig. 5. Feedback framework applied to business processes.

The feedback framework, of Figure 4, considers access
to the physical system input (at least some of them) as
fundamental – else we cannot do feedback. The feedback
framework allows us to affect the inputs to the physical
process and so is in some ways far more relevant for decision
making in business processes. After all, in business we would
want to improve the process behavior by our adjustments.
We still do filtering, but this can be in one or more locations
including the feedback path (to filter measurement data), the
input path (to filter the input commands or references) and
in the controller itself (which is often implemented as yet
another filter).

The filtering framework beckons as a simpler metaphor
because it appears to have fewer perils. As we cannot affect

the physical process, we do not take into account time delay
or input disturbances. In fact, we must assume that the
process is stable and relatively well behaved on its own, or
there would be nothing to filter. We cannot get input-output
behavior models from input-output measurements since we
cannot generate inputs.

The filtering framework blinds us to the danger posed
by latency, how a good correction done too late is a bad
correction. It lacks the notion that measurement noise trav-
els straight through to any corrected system output – a
fundamental takeaway from that first controls class. Thus,
without the feedback framework, decision makers would lack
some fundamental intuition of how strongly measurement
uncertainty limits their decision making.

The feedback framework tells us that we can use what
we have measured to correct the process but a broader
understanding would tell us that there are inputs to the
process that we do not or cannot affect and outputs of the
process that we do not or cannot measure. In this framework
we would then be able to ask if more sensing and/or actuation
is helpful in improving the behavior of the original process.
On the other side, we could ask ourselves if there are outputs
that – if ignored – can cause “Dark Data” problems [6].
Similarly, are there parts of the process that are far more
easily adjusted and improved by adding another input to the
system?

Even these intuitive arguments tell us that feedback is a
far more complete framework than the filtering one. To be
certain, as with physical systems, there are many processes
that are so well behaved that only cleaned up observation
and analysis a.k.a. filtered measurements are needed. To keep
this interesting, we are focusing on those that could benefit
from feedback. A feedback framework, as applied to business
processes, is diagrammed in Figure 5.

IV. MIMO SYSTEMS AND COUPLING

Most physical systems have multiple inputs and multiple
outputs (MIMO). Perhaps this allows us to determine if we
can minimize the effect of the individual controllers on the
cross-term outputs. A more complete design would likely
attempt to add control structures to decouple the axes. Thus,
the feedback control perspective brings in:

• Awareness of unintentional, parasitic coupling.
• Awareness that optimizing one sub-loop at a time may

result in negative effects due to this cross-coupling.
• A sense that if we characterize the coupling, we can

design our actions so as to minimize its effect.
In business processes there is always cross-coupling, often

referenced as “The Law of Unintended Consequences”.
We optimize one measured variable only to inadvertently
negatively affect the performance of others.

The big difference here is that for dynamic systems we
generally have a model of the system and if that model
is representative of the real-world behavior, we can min-
imize the negative effects of our adjustments by being
clever with our algorithms (i.e., decisions and actions).
The controls metaphor teaches us to look for unintended
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coupling, teaches us to be careful about over-optimizing on
any one axis/decision/process without paying close attention
to possible effects on others. We also know from dynamic
systems that it might be possible to shape our actions so as
to minimize the effects of cross-coupling.

In engineered dynamic systems, we can often make iso-
lated measurements where only one input is stimulated and
all measured outputs are observed. This is rarely feasible
in an existing fully operational business environment. One
engineering method that might be available is to prototype
the new method/environment/organization as we do with
an engineering prototype. Prototyping would allow us to
observe the hidden coupling we might not have been aware
of in or initial deigns.

V. SIMPLIFYING HIERARCHICAL SYSTEMS: USING AN
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COMPLICATED COMPONENT IN A LARGE SYSTEM
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Fig. 6. Creating a simpler subsystem with feedback.

Model simplification of subsystems is often accomplished
with a tight inner feedback loop, as diagrammed in Figure
6. In principle, such an arrangement would allow us to turn
even the most badly behaved original component, P, to a
new subsystem, T, whose behavior can be assumed good
enough to be simplified to a constant. As we know that
all physical systems and connections have finite bandwidth,
our subsystem is really an ideal low pass filter: constant in
the frequencies we are operating, and rolling off safely and
smoothly outside our needed bandwidth.

The insight that feedback thinking for physical systems
can give to business processes comes from the inherent
underlying assumptions that are needed in order to take
our subsystem from P to our ideal low-pass-filter, T. Those
assumptions are not just on C, but on components left out
of the diagram of Figure 6. Those assumptions provide our
guidelines for mapping this into business processes.

• We want to have the behavior of the original component
improved so much that it simplifies the subsystem –
ideally to a constant – but more realistically to a low-
pass-filter (LPF), constant in our needed frequencies and
rolling off safely and smoothly above that.

• T as an ideal LPF implies that the inner loop has
great gain and phase margin so as to minimize closed-
loop peaking. At higher bandwidths, we know that
these come from neutralizing any resonant peaks while
minimizing the phase effects of that neutralization. The
grim reaper of phase margin is time delay and so we
must also look for places where either our sample period
or the transport delay are unnecessarily large.

In a business decision context, we need to look for
behaviors in the “business P” that result in large oscil-
lations/deviations and avoid stimulating them. We also
need to be acutely aware of the effects of time delay on
our decisions and corrections. This type of sensitivity
only comes from a feedback-thinking framework.

• What is the business equivalent of sampling data 20–
100 times the closed-loop bandwidth? The first lesson is
the very non-intuitive guidance that we need to look at
data at significantly higher rates that would be expected
in from a pure decision/business perspective. (We can
expect to get a lot of pushback from folks not schooled
in a feedback framework, including those with a filtering
background. The systematic understanding of the effects
of time delay on measurement-based decisions is unique
to the controls framework.) As such, we will push for
higher and more regular sampling than would be normal
in “business intuition”. What the controls framework
would help us do is avoid having good adjustments
turned into bad adjustments because they were made
too late.

• We know from our control framework that sensor noise
goes right through the controller to the system output.
In our subsystem, we want to avoid driving sensor noise
through the system. The natural “filtering framework”
intuition would lead us to average the data to reduce the
noise, but as control engineers we know that averaging
is equivalent to a Finite Impulse Response (FIR) filter,
and that this imparts significant time delay to our feed-
back loop. Instead, the feedback framework tells us that
instead of haphazardly filtering without consideration
for delay, we will explore a combination of improving
the signal path, improving the sampling mechanism,
sampling faster to allow more bandwidth for filtering,
and a very judicious use of filtering to clean up the
loop signals. In the business, this means taking a good
look at how measurements on which these decisions
are done, and what are the obvious sources of delay
and uncertainty. It means making measurements more
carefully and more often than what would be intuitive
to non-controls folks.

• Feedback control also has a fundamental concept of
limits: saturation of actuators and sensors, saturation
of internal signals, slew rate limits, etc. For an inner
loop to achieve its goal of simplification, those limits
must either be gracefully handled or rarely approached.
What do such limits look like in business processes?
Perhaps the limit is on cash in an organization or what
it can throw at any one project. Furthermore, certain
business processes have slew rate limitations and they
cannot be sped up simply by throwing more resources
at them. Looking for these limits, and understanding
how to avoid them or get graceful degradation is a real
contribution we can get from control.

• In a physical system, we would test and verify the
behavior of the inner loop before using the simplifi-
cation. The rigorous testing of subsystems is the part of
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any real design. For our business subsystem we know
that we would want to test the input-output behavior,
to prototype the policy as it were, fairly rigorously to
assure ourselves that it behaved as expected in a robust
way.

These are fundamental principles that show up in every
system that incorporates feedback. Thus, we can look for
the local loop opportunities in business processes and apply
the above principles to guide those business loops.

VI. MEASUREMENTS, SAMPLE RATES, AND TIME

DELAY

Section V brought up the issue of time delay and sample
rates for allowing an inner loop to simplify the system. The
issues of time delays and concepts of gain and phase margin
become less well defined as we move up the hierarchy of a
physical system or a business process. Still, we know that
time delay affects all feedback systems in a negative way,
limiting bandwidth.

• It cannot be negated or inverted, only minimize through
better design and slightly mitigated via model-based
prediction.

• Rigid analysis is only really feasible on the simplest of
problems but good rules of thumb exist.

• Minimizing time delay does not guarantee the success
of any feedback loop, but it does help keep good
corrections from becoming bad ones.

• In business processes, we can use the rules of thumb
about the negative consequences of time delay in any
measurement-based feedback process.

• Finding and minimizing useless sources of time delays
in business process can also keep good decisions from
becoming bad decisions, just because they are too late.

Similarly, the rigors of feedback systems teach us a bit
about the need for getting measurements right in a minimal
amount of time (of course, relative to the dynamics of the
process). Measurements can be affected by bias, nonlinear-
ities, time delay (again), and noise. Considerable effort is
made to identify and calibrate out bias and nonlinearities
(assuming they are repeatable). Once these have been cali-
brated out, we are looking at noise and time delay. Moore’s
Law allows not only faster sampling, but sampling of far
more signals, allowing us to digitize far more processes.
Understanding that those samples are still tied to physical
processes and that the noise, biases, and timing of those mea-
surements matter as much as our computation is something
that is fundamental to the feedback perspective.

Section V mentioned the idea that to minimize negative
phase effects of anti-alias filters, systems with feedback
likely need to sample much faster than 20x the desired
closed-loop bandwidth. This seeming oversampling comes
almost entirely from a feedback framework: Averaging with-
out extreme phase lag requires oversampling.

In business processes, the concepts of measurements, their
timing, their biases, and the concept of uncertainty can be
informed by our experience with physical feedback systems.
This includes:

• Timing of measurements: Control and signal processing
have well established that repeating measurements on
a fixed schedule (Ts = 1/fs fixed), is a good idea.
A fixed sample period provides an understanding of
the “bandwidth” of the knowledge i.e., how fast we
can make inferences and predictions. The faster the
measure, the more tightly we can assess time windows
for actions.

• In a business environment we would use this knowledge
to adjust their measurement process by:

– Measuring at regular intervals/sample rate, rather
than some sort of ad-hoc scheduling.

– Making the measurement rate 10-20 times faster
than the behaviors/processes they are trying to ad-
just. (Understanding the time constants of business
processes is a major modeling issue.)

– Adding more automation to regularize and simplify
the measurement collection.

– Improving ways to aggregate small, easier to make
measurements into a larger data set.

– In business practices, measurements are noisy and
biased (perhaps more so than in physical systems).
Questionnaires/surveys based on what management
chooses can bias or even blind measurements to
things that should be measured.

One more truism from feedback control perspective is
that – given enough signal-to-noise-ratio (SNR) – the faster
the sampling, the simpler the model has to be. Thus, we
know that looking at the data in a regularly spaced way and
making those intervals significantly shorter, generally boosts
the accuracy of anything we try without having to match
complex models which may be difficult to derive.

VII. ACTIONABLE MODELS FROM MEASUREMENTS

In any environment, the fundamental need of a model –
as Stephen Hawking so clearly stated [8] – is to describe
behaviors we observe and predict behaviors we may see. In
dynamic systems, models might be derived using anything
from deep learning neural network models to first principles
“physics” models. While the former may give a more accu-
rate empirical representation of the input-output behavior of
the system, it may well be brittle (not able to handle new
data that was slightly different from the old data). The latter
would be easier to tie to physical properties and causes.

In both contexts we should ask how critical is the knowl-
edge of physical properties and parameters to successfully
understanding and using the model? We know that in many
applications of DSP and feedback control that the physical
meaning of any digital filter or model parameters not only
are hard to extract, but also unnecessary for use of the model.
On the other hand, modeling and control of highly flexible
mechanical systems, as well as chemical and biological
systems are far more successful with a close tie between
physical properties and parameters [9], [10], [11], [12].

Our ability to make predictions and/or adjustments –
whether in feedback or feedforward – depends upon mod-
eling. The kind of analytical modeling is far more difficult
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in a business environment. This may be one of the reasons
for the current stampede towards deep learning (neural
network) methods, including large investments by corpora-
tions, universities, and governments: the lack of ability to
extract analytical models from the tuned networks seems to
give folks permission to not even try. Still, we know that
modeling is critical to anything we want to do. A model that
yields understanding and intuition can be a powerful tool in
improving a process. To be certain, deep learning can provide
advantages when physical insight is not easily accessible, but
we would also like to find some structure in the latter models.
We will at least touch on how to improve measurements and
some possible considerations for modeling below.

So-called “intuitive, model-free” control is fully adequate
to catch a ball on the run or to steer a car through a curve. In
this human-in-the loop example “model-free” is a misnomer,
as we know that the buildup of the intuition to catch a ball or
drive a car can be either, the long training of a deep neural
network or constructing an intuitive rule-based inferencing
engine. The training is supervised (there is ground truth,
be that not dropping the ball or driving off the road), and
the training takes time. Through rule-based methods, we
capture process experience; however, building such a rule
base requires skill – another view of ground truth. In either
case, there is a model being tuned. While tuning takes a lot of
time (think years to learn tennis) the use of the model (called
inference in AI speak) can be very fast (think of returning a
serve in tennis).

We also realize that many model-based control strategies
are very effective with substantially reduced-order models
of the process. Experience indicates that if the sampling
sampling and adjustment are fast relative to the process
dynamics, feedback using a simple model can be more
than adequate. This aligns with the inner-loop approach and
correlates with the design of disturbance observers in the
physical systems world.

For business processes, again it seems to depend on
whether or not we need a physical explanation of our model.
In some cases, we might cast a large deep learning network to
draw out input/output considerations that might describe and
predict behavior. On the other hand, for insight about what
the trends mean, what causes them, or what specific actions
should be taken, then we need more physical models.

It matters what types of measurements we can actually
make to identify and model our systems. While engineers
working on mechatronic, electrical, and/or mechanical sys-
tems are used to characterizing those systems with a lot
of different types of external stimuli (step, pseudo-random,
stepped sine, chirped sines, impulse tests), chemical and
biological systems do not respond well to such inputs.
Instead, the latter must characterize systems using mostly
operational data. The presence of steps, ramps, and impulse
like inputs to these systems enables some of the classical
characterization. Identifying discrete parameters from oper-
ational data is possible, but these are hard to tie to physical
meaning.

For business processes, we can think of very few pro-

cesses involving people that would tolerate large sinusoidal
stimuli (apart from roller coasters), chirps, or purposefully
injecting noise. Instead, most modeling of business processes
would likely be done using operational data. Even with
this limitation, we can immediately glean some insights
from measurements of chemical and bioprocesses. The most
obvious is to look for the input steps in the operational
data of the system. By locating the input steps and the
output synced to those input steps as triggers, we can extract
step responses from operational data. Now, the models that
one can extract using step response data are only first or
second order, and one usually needs to pick one to find all
the parameters, but still these parameters are often easily
relatable to physical properties.

VIII. FUTURE DIRECTIONS

There are many possibilities raised here and it is a bit
early in the process to draw many conclusions. It seems that
every section above yields a possible way of examining these
connections. The key challenges are not the core principles
but how to implement them in such an uncertain and non-
analytical environment.
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