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Abstract: This tutorial paper will focus on the author’s state-space structures, the Biquad
State Space (BSS) and the Bilinear State Space (BLSS). These two structures are have shown
some remarkable advantages in the modeling and control of mechatronic systems, including
numerical stability and model explainability. Furthermore, they have the remarkable property
that the states of digital BSS and BLSS structures correspond to the states of the analog BSS
and BLSS structures, at the outputs of each biquad or bilinear section. This gives the control
engineer the ability to connect their digital model far more closely to the physical system,
allowing digital “scope probes” to compare the same signals as one might get from the physical
system. We believe that adapting these structures will go a long way towards making it easier
and more practical to apply state-space methods to higher order models while still retaining
physical intuition once they are discretized.
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1. MOTIVATION: WHY ANOTHER STATE-SPACE
FORM?

One of the easiest ways to clear a room full of practicing
mechatronic control engineers is to suggest that they em-
ploy state-space methods for the control of their structure
with many lightly-damped resonances. State-space models
of highly flexible systems can present severe numerical
issues. The models derived from physical principles often
lack structure. Canonical form models (Kailath (1980a)),
are compact, but obscure any physical structure and can
have coefficients that are highly sensitive to model param-
eters. What is needed is a form that has the compact
representation of the canonical forms, the physicality of
the forms derived from physical equations, and maintain
numerical accuracy and physical intuition, even after dis-
cretization.

State-space models of highly flexible systems can present
severe numerical issues. The models derived from physical
principles often lack structure and have large parameter
sets. On the other hand, canonical form models (Kailath
(1980a)) reduce the number of parameters (and therefore
computational operations) to a minimum set equivalent to
those in a transfer function form. However, in doing so for
anything more sophisticated than a second-order model,
most – if not all – physical intuition is lost. Furthermore,
the compaction of these parameters into a canonical set
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often results in parameters that are highly sensitive to
small changes in the underlying physical parameters. Such
models often fail when used with systems of higher order.
Furthermore, even if the models are usable in continuous
time, they can become even more sensitive and far less
physical once the system is discretized. This is particularly
true for mechatronic systems, which often are character-
ized by a “rigid body” model followed by multiple sharp
resonances and anti-resonances.

All of this creates a situation where state-space approaches
are used only by experts in the field, while more basic,
physically intuitive approaches continue to dominate in
industrial applications. These intuitive methods may work
fine when the system is low order, but they break down
as the system complexity rises. What is needed is a
form that can capture higher order dynamics in a way
that maintains physical intuition and preserves numerical
accuracy through the discretization process.

This tutorial will familiarize the audience with a set of
structures that meet these needs. The first of these is the
Biquad State Space (BSS) (Abramovitch (2015c,a)), based
on the multinotch structure (Abramovitch (2015e,g)).
The BSS captures the endearing characteristics of the
multinotch while providing the flexibility of model based
control. A significant feature of the BSS is the ability
to move easily between the states of the continuous and
discrete time forms, as they are tightly related to the
output of the biquads. The material here has largely been
published earlier in the separate works noted, but it is
hoped that putting them together in this way will make
for a more cohesive picture.

The BSS has several desirable characteristics:



• It uses a structure based on a serialized biquad filters
which can be physically matched to resonance/anti-
resonance pairs observed in measurements.

• The number of parameters is comparable to that of a
canonical form, although many appear multiple times
in the matrix structures.

• The basic structure remains the almost the same
through discretization.

• The underlying biquad structure leads to a state-
space structure with high numerical stability, even
through discretization. The ∆-parameters from the
multinotch (Abramovitch (2015g)) can be used to
improve the numerical accuracy of discretized coeffi-
cients (Abramovitch (2015c)), allowing this form to
be implemented in fixed point math, such as that
found on inexpensive DSP chips and FPGAs.

The BSS is excellent for capturing the flexible modes of a
system, but with any system model, we also need to allow
for rigid body modes. More specifically, we would also like
that rigid body state-space structure to have an equiva-
lence between the continuous and discrete time forms. The
discussion of forms not handled well by standard biquads
starts in Section 12. Specifically, adding low-pass filters
(LPF) is described in Section 13. Looking at separate rigid
body states is accomplished via the Bilinear State Space
(BLSS) structure, described in Section 15 (Abramovitch
(2018)). Together, these allow us to divide and conquer
the state-space model. In doing so, they let us stay close
to a model parameter representation. This, in turn, allows
us to consider the systematic effects of a parameter change
without getting lost in numerical differences every time the
sample rate changes by 1%.

While the structure is quite regular and works for large or
small numbers of biquads, the regular pattern becomes ob-
vious in the three biquad case. Thus, most of the structural
equations will be three biquad ones. The format considera-
tions of this will mean that many of these matrix equations
are in two column figures, but seeing the matrices in this
way makes the structural properties fairly obvious. This
will result in some of the larger equations being pushed
into two column figures.

The BSS does most of the heaving lifting here. It allows
us to map a biquad filter cascade into a state-space
form. Part of the elegance of this form is that it handles
cases with direct feedthrough easily. However, as we adopt
continuous-time models of physical dynamics we see many
examples of systems without direct feedthrough. As we
discretize these we have several choices, some of which
preserve the direct feed through in the discrete domain
(by mapping zeros at s = −∞) to z = −1) and some that
break it. Those options will be discussed in Section 14.

The rest of the paper will be organized as follows. The
Multinotch, which is the origin of these structures, will
be reviewed in Section 2. The Biquad State Space (BSS)
will be first described in Section 3. We will explain how
this structure can be employed in a current estimator
(which would include a Kalman filter) and state feedback
in Section 4. We will switch from discrete to continuous-
time biquads in Section 5, and show how modulo the z to
s switch, the structures look very much the same. We will
introduce the Analog Biquad State Space (ABSS) Form

in Section 6. This will naturally lead us to discussions
of discretization choices for analog biquads in Section 7.
Section 8 will get into more of the structural similarities
between discrete and continuous forms.

We will then show some examples of the utility of the BSS,
with some discrete-time examples in Section 9 and some
examples showing how closely the CT and DT responses
match in Section 10. We will show one early example
of adding rigid body modes to the BSS with a simple
double integrator in Section 11, but will later see that
this is limited. The whole discussion of handling rigid
body modes will begin in earnest in Section 12. First we
will discuss continuous-time, rigid-body dynamics and low-
pass filters in Section 13. These both exhibit a lack of direct
feedthrough, discussed in Section 14. In Section 15, we
introduce an unbundled Bilinear State Space (BLSS) form
– an option when the rigid body poles and zeros are real
– which can easily replace a biquad block without much
pain, and allow convenient access to the internal state of
a rigid body model, particularly unique in discrete time
state-space formulations.

Again, the “divide-and-conquer” nature of building up
a state-space via the BSS or BLSS requires that we
think about how we will discretize these sections. This
is discussed in Section 16. This leads into a discussion of
discrete-time, rigid-body models in Section 17, with the
goal of matching these to their continuous-time counter-
parts. Finally, Section 18 will provide a few examples to
aide in visualizing these tradeoffs. Again, the goal is to
provide the missing algorithmic “LEGO Blocks” needed
to make our MNF and BSS models more complete. We
end with the proverbial summary in Section 19. This entire
approach rests upon being willing to discretize a section of
the state-space structure at a time, which flies in the face
of the conventional theoretical construct of discretizing the
entire model, usually via a Zero-Order Hold (ZOH) Equiv-
alent. This discussion will be presented in (Abramovitch
(2023)).

Two brief notes about notation. The first is that the state-
space diagrams use the same “mixed-metaphor” combina-
tions of time and frequency notation used in (Franklin
et al. (2006)), (Franklin et al. (1998a)), and (Kailath
(1980b)). While s blocks and signal derivatives belong
to different domains, the meaning should be clear from
the context and it provides a compact way to encode
information in the block diagrams. Likewise z−1 blocks
have signals with time shift notation going in and out
of them, e.g. xk, x(k). In difference equations the z−1

becomes the unit delay operator, similar to q−1, but we
still recognize the that we can also get a frequency response
from the structure with z−1. Although, inexact, this usage
is common and well understood.

The second is that both continuous and discrete biquads
feature the parameter sets of {ai1, ai2} and {bi0, b̃i1, andb̃i2}.
In other contexts, it has been convenient to denote one of
those sets with an extra C or D subscript to differentiate
one or the other as continuous or discrete (or to move
between Roman and Greek alphabets). However, they have
seemed cumbersome in the notation of this paper, and so
they will be differentiated here by their context. It is in
fact the similarity of structures between the discrete and
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continuous BSS that is one of the strengths of this for-
mat. If one takes a continuous transfer function equation,
reparameterizes it as a chain of biquads, puts that chain
into the continuous BSS form as done in (Abramovitch
(2015b)), and then does a biquad-by-biquad discretization
to the discrete BSS (Abramovitch (2015d)), then the out-
puts of the CT biquads and the DT biquads correspond.
The internal coefficients of each biquad form (CT vs.
DT) are of course different, but the matrix structures and
the biquad input-output relationships are consistent. This
allows one to tap a discrete time model signal deep within
the state-space structure that is equivalent to a continuous
time signal from a physical parameter.

2. THE MULTINOTCH

The development of the BSS starts with the Multinotch,
a way of turning a polynomial form IIR filter as dia-
grammed in Figure 1, into a cascade of biquads with the
direct feedthrough coefficients factored out to the end,
as shown in Figure 3 (Abramovitch (2015e)). With this
factorization, one can discretize each biquad individually
so that the discretized biquads have a one to one corre-
spondence with the continuous-time biquads. By judicious
choices of the which poles and zeros from the physical
model are assigned to each biquad, one can minimize
effects of the signals of any one biquad on the others. The
Multinotch is a highly efficient digital filter because it not
only has greater numerical stability than standard state-
space forms, but also allows for precalculation of most of
the filter, minimizing the latency between reading a sample
and responding to it. This particular form of the direct
feed-through scaling allows for precalculation, but others
are available if we want the internal states of the filter to
be scaled as they are in the system.
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Fig. 1. An nth order polynomial filter in Direct Form II
configuration (Oppenheim and Schafer (1975)).

There are many potential causes of time delay in a feed-
back system, many of which are outlined in (Abramovitch
et al. (2023)). Here, we limit ourselves to computational la-
tency. It is well understood that latency, including compu-
tational latency, erodes phase margin by adding negative
phase. Some textbooks mention precalculating operations
which do not depend upon the current input in the pre-
ceding sample interval (Franklin et al. (1998b); Åström
and Wittenmark (1990)). Figure 2 illustrates how the lack
of precalculation makes the closed-loop latency dependent
on the controller size. Restructuring the calculation to
push as much as possible into precalculation makes the
computational latency fixed and shorter. It is relatively
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Fig. 2. Input and output timing in a digital control
system. The top drawing is without precalculation;
the bottom drawing is with. Note that precalculation
can be started as soon as the output has been sent
to the DAC and therefore is in parallel with the DAC
conversion time. The computation time, TCOMP , of
the top diagram is now split into TPRECALC + TFC

where TPRECALC is the computation time needed for
the precalculation and TFC is the time needed for
the final calculation after the input sample. Modulo
some small programming overhead, the split time
should equal the total computation time. Here TSH ,
TADC , and TDAC represent the sample and hold, ADC
conversion, and DAC conversion times, respectively.

straightforward to apply precalculation on a controller
implemented as an IIR filter as in Figure 1.

In the Single-Input, Single-Output (SISO) case this is
tedious, but relatively straightforward if the controller can
be cast into the form of a high order polynomial filter. This
is shown in Figure 1, and represented as transfer functions
in the unit delay operator, z−1:

Y (z−1)

U(z−1)
=

b0 + b1z
−1 + b2z

−2 + . . .+ bnz
−n

1 + a1z−1 + a2z−2 + . . .+ anz−n
. (1)

This gets implemented in a filter as (Texas Instruments
(1993)):

yk =−a1yk−1 − a2yk−2 − . . .− anyk−n

+b0uk + b1uk−1 + . . .+ bnuk−n. (2)

Looking at (2), we see that yk depends mostly on previous
inputs and outputs. The only current value needed is uk

and this is only multiplied by b0. So we can break this up
into (Franklin et al. (1998b)):

yk = b0uk + preck, where (3)

preck =−a1yk−1 − . . .− anyk−n

+b1uk−1 + . . .+ bnuk−n. (4)

We can see that preck depends only on previous values
of yk and uk. This means that preck can be computed for
step k immediately after the filter has produced the output
for time index, k − 1 (Åström and Wittenmark (1990)).
When the sample at time step k, uk, comes into the filter,
it need merely be multiplied by b0 and added to preck
to produce the filter output. Thus, the delay between the
input of uk and the output of yk is small and independent
of the filter length. Small latency improves performance,
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but fixed latency implies predictable behavior, which may
be more critical in debugging real time system.

S SS S

S SS S

- -

u(k)

z
-1

z
-1

z
-1

z
-1

a0,1 a1,1

d (k)0 y (k)0 y (k)1d (k)1

a0,2 a1,2

~ ~ ~~

S SS S

S SS S

- -
z

-1
z

-1

z
-1

z
-1

an-1,1 an,1

d (k)n-1 y (k)n-1 y (k)n y(k)d (k)n

b

an-1,2 an,2

~ ~ ~~

b0,1

~

bn-1,1

~

b1,1

~

bn,1

~

b0,2

~

bn-1,2

~

b1,2

~

bn,2

~

Fig. 3. The updated biquad cascade, with factored out b0
terms.

The precalculation is helpful, but polynomial filters have
poor numerical properties, particularly when the filter has
lightly-damped poles and zeros. Since these are common in
mechatronic systems, we want to implement our control fil-
ters using a biquad cascade that has better numerical prop-
erties than a polynomial filter. In (Abramovitch (2015e);
Abramovitch and Moon (2012)), the multinotch was intro-
duced as a discrete time filter whose structure allowed for
fixed and low latency between the most recent signal input
and the filter output, while having the excellent numerical
properties inherent in biquad structures. In (Abramovitch
(2015g)) we demonstrated a filter coefficient adjustment,
the ∆ coefficients, which allowed high numerical fidelity
even when the sample frequency was several orders of
magnitude higher than that of the dynamic feature being
filtered. Both of these papers implement the filter in a
transfer function form.

This paper will demonstrate how to adapt the multinotch
for state space structures (Abramovitch and Johnstone
(2013)). We will see that the same basic principles can
be used to improve the computational latency and numer-
ical fidelity of current mode observers, thereby allowing
state feedback with fixed and low latency. Furthermore,
state-space models of highly flexible systems can present
severe numerical issues. The models derived from physical
principles often lack structure. Canonical form models
(Kailath (1980a)), are compact, but obscure any physical
structure and can have coefficients that are highly sensitive
to model parameters. What is needed is a form that has
the compact representation of the canonical forms, the
physicality of the forms derived from physical equations,
and maintain numerical accuracy and physical intuition,
even after discretization.

While the multinotch was applied primarily to shap-
ing loop dynamics with high Q resonances and anti-
resonances, a good state-space model also needs to be able
to account for low frequency and rigid body dynamics.
This will be demonstrated, using the classic double inte-
grator as an example, in Section 11.

The numerical benefits of this form exist even when low
latency is not a consideration, so we will show forms of the
structure applicable in offline modeling and simulation in
(Abramovitch (2015a)). Finally, we will show a modeling

example from experimental data of a mechatronics system
where the Biquad State Space (BSS) form holds numerical
accuracy far beyond conventional methods, as will become
obvious in the examples of Section 9.

For all the advantages of the BSS for flexible modes,
we still need to find some way to not only represent
rigid body modes, but also to have the internal states
of those structures correspond to the internal states of
the rigid body, e.g. velocity and position. Figures 18 and
20 show continuous and discrete versions of the Bilinear
State Space form (BLSS) (Abramovitch (2018)) which
accomplishes that, and can be combined with a cascade
of biquads into one overall state-space structure.

The implementation of controllers and filters is most often
digital. Whether in transfer function or state-space real-
izations, filters and controllers often end up as polynomial
form, i.e. filters where the numerator and denominator are
polynomials in s, z, z−1, or q−1. Consider a continuous
time (CT) filter,

F (s) =
b0,cs

n + b1,cs
n−1 + · · ·+ bn−1,cs+ bn,c

sn + a1,csn−1 + · · ·+ an−1,cs+ an,c
, (5)

which has to be discretized for implementation on a real-
time computer. A function of z−1

F (z−1) =
b0 + b1z

−1 + · · ·+ bn−1z
−n+1 + bnz

−n

1 + a1z−1 + · · ·+ an−1z−n+1 + anz−n
, (6)

allows us to express the output directly as a combination
of past outputs and inputs:

yk) = −a1y(k − 1) + · · · − an−1y(k − n+ 1)
−any(k − n) + b0u(k) + b1u(k − 1)+
· · ·+ bn−1u(k − n+ 1) + bnu(k − n).

(7)

The issues with these filters (or canonical state-space forms
(Kailath (1980b))) are:

a) While they are compact, they obscure physical
intuition.

b) Any residual physical intuition is lost in the
discretization process, especially in moving from
continuous to discrete state-space models.

c) The discrete polynomial forms are often badly
conditioned, especially for high Q dynamics.

d) As the sample rate goes up relative to the
dynamics in the filter/state-space, large changes
in physical parameters can be scattered into a
few bits of the digital polynomial coefficients
(Abramovitch (2015h)).

The Multinotch Filter (MNF) (Abramovitch (2015f,h))
was created to address these issues by breaking up poly-
nomial form filters into a serial cascade of biquads (Fig.
4), while maintaining the ability to do precalculation for
minimum latency control. The individual biquads are pa-
rameterized as:

Yi(z
−1)

Ui(z−1)
= Bi(z

−1) = bi,0

(

1 + b̃i,1z
−1 + b̃i,2z

−2

1 + ai,1z−1 + ai,2z−2

)

, with(8)

Ui+1(z
−1) = Ỹi(z

−1), for 0 ≤ i < n,
U0(z

−1) = U(z−1), and

Ỹn(z
−1) = Ỹ (z−1).

(9)
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Biquad State Space (BSS) mapped the multinotch’s bi-
quad structure to state space, first in discrete time (DT)
(Abramovitch (2015d)) and then in continuous time (CT)
(Abramovitch (2015b)). It was found that by discretizing
the model on a biquad by biquad basis, the essential
structure was preserved across discretization. That is, the
outputs of the CT biquads mapped to the outputs of the
DT biquads. However, in all that work, there were some
fundamental pieces left out. This paper fills in those pieces.

3. THE BIQUAD STATE SPACE (BSS)
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Fig. 4. The updated discrete biquad cascade, with factored
out bi,0 terms and scaling the output of each block.

The digital version of the BSS shown in Figure 4 looks very
similar to the Multinotch of Figure 3, although as we are
more focused on accurate modeling than precomputation,
we scale the outputs of each biquad to get to the proper
output states. This form results in a block upper triangular
state transition matrix (Abramovitch (2015c)). If one
were to mistakenly substitute 1/s for z−1, one would
end up with the continuous time structure of Figure 8.
Furthermore, if one were to discretize the structure of
Figure 8 one biquad at a time, then one would end up with
the structure of Figure 4, with the added advantage that
the signals at the outputs of the biquads would correspond
between the analog and digital versions.

There is no need to repeat the equations of (Abramovitch
(2015e)) here, but looking at the structure the multinotch
in Figure 4 there are a few things to note before generating
our first state-space form:

• The delay terms in the biquads are equivalent to
states in a state-space structure, but they are offset in
time. Looking at Figure 4, di,k = xi,k+1. That is, the
digital filter approach defines delays on the input of
time shifts (z−1) while standard state-space notation
defines states on the outputs of time shifts.

• While ỹi,k+1 depends on xi,k+1, it can be recalculated
as a weighted sum of prior delays and the current
input. That is, we can calculate ỹi,k+1 in parallel to
xi,k+1.

We can look at each of these biquad sections as a state-
space realization. In this case:

[

xi,k+1

xi,k

] [

−ai1 −ai2
1 0

] [

xi,k

xi,k−1

]

+

[

1
0

]

ui,k (10)

while the state output equation is given by:

[ ỹi,k+1 ] =
[

b̃i1 − ai1 b̃i2 − ai2
]

[

xi,k

xi,k−1

]

+ [ 1 ]ui,k (11)

Finally, the properly scaled output is generated via:

[ yi,k+1 ] = [ bi0 ] [ ỹi,k+1 ] . (12)

The indexing of ỹi,k+1 and yi,k+1 are a bit odd because
since we have direct feedthrough in our structure, ỹi,k+1

depends on xi,k+1 as well as xi,k, xi,k−1, and ui,k. Thus,
it’s cleaner in what follows to call the biquad outputs,
ỹi,k+1 and yi,k+1, respectively. We chain these together by
noting that:

ui+1,k = ỹi,k+1, for 0 ≤ i < n,
u0,k = uk, and
ỹn,k+1 = ỹk+1.

(13)

If one is willing to go through the algebraic pain and
suffering of applying Equation 13 to each biquad structure
a very regular state-space structure results. For a 3-biquad
model, we get the state equation of 14. The unscaled
output is in Equation 15, both displayed in Figure 5
due to their size. Finally, the properly scaled outputs are
generated via:
[

y2,k+1

y1,k+1

y0,k+1

]

=

[

b20b10b00 0 0
0 b10b00 0
0 0 b00

][

ỹ2,k+1

ỹ1,k+1

ỹ0,k+1

]

. (16)

One key of this form is that the generation of the state
update (output vector) involves:

• Multiplication of the prior state vector by the state
transition matrix (state output matrix) – none of
which involves the current input. This can therefore
be done in a precalculation step.

• Addition of the unscaled current input to each prod-
uct row of the above multiplication. This can be
parallelized so that the latency once the current input
is available is that of a single addition.

Looking at this critically, the state transition and output
matrices are always multiplied by the old state, and
therefore could be precalculated in any form. If there
is no direct feedthrough from the input to the output,
such a model can be used without incurring much delay.
However, the BSS is structured so that direct feedthrough
from the input to the output needs one addition and one
multiplication per output. This is a big benefit for using
state space in real time control. The fact that the BSS also
provides excellent numerical properties as will be seen in
the example of Section 9.

The generation of the final, scaled output takes a single
multiplication per output. Therefore, updating the state
and output using the BSS using precalculation has a
computational latency of two operations: one addition and
one multiplication.

4. CURRENT ESTIMATOR AND STATE FEEDBACK

In a prediction estimator, the measurement error is formed
using the previous measurement and a state output gener-
ated entirely from quantities available before the current
measured output. This means that the BSS does not have a
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[

ỹ2,k+1

ỹ1,k+1
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]

=
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b̃21 − a21 b̃22 − a22 b̃11 − a11 b̃12 − a12 b̃01 − a01 b̃02 − a02
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+

[

1
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]

uk (15)

Fig. 5. State equations for discrete time Biquad State Space (BSS) with scalar output scaling.

significant latency advantage in a predictor form observer,
simply because the latter already has a full sample of
latency. A current estimator, on the other hand, depends
on the current measurement. It is for this type of estima-
tor where we can get some latency savings as shown in
Figure 2.

In order to use our form in an observer, we need to
generate time update and measurement update equations.
For the 3-biquad case, the time update equation is given
by Equation 17. For the SISO case, there will only be a
single output, and so the output equations become what
is shown in Equation 18.

Finally, the properly scaled time update output is gener-
ated via a single multiplication of concatenated feedthrough
coefficients, in a similar manner to (Abramovitch (2015e)).

ȳk = ȳ2,k = b20b10b00ỹ2,k. (19)

For the SISO measurement update, the equations are quite
simple:

ek = ymeas,k − ȳk, and (20)

x̂k = x̄k + Lcek. (21)

Now, Equation 20 involves one subtraction. Equation 21
involves one multiply and addition for each state, but these
are independent and so can be done in parallel. The latency
then, for the state state update, is that of 2 multiplies, plus
3 add/subtract operations, independent of the size of the
state. To use the state estimate in state feedback would
require

ufb,k = Kfbx̂k = Kfbx̄k +KfbLcek, (22)

in which the Kfbx̄k and the KfbLc products can be
precalculated. Thus for a SISO system, state feedback
involves one more multiply and one addition.

5. CONTINUOUS TIME BIQUADS

A standard Single-Input, Single-Output (SISO) transfer
function is shown in Figure 7, and represented as transfer
function by

Y (s)

U(s)
=

b0s
n + b1s

n−1 + b2s
n−2 + . . .+ bn

sn + a1sn−1 + a2sn−2 + . . .+ an
. (23)

We can consider such high order polynomial transfer
functions as filter models and factor these into a series
of biquad filters such as:

Y (s)

U(s)
=

(

b00s
2 + b01s+ b02

s2 + a01s+ a02

)(

b10s
2 + b11s+ b12

s2 + a11s+ a12

)

· · ·
(

bm0s
2 + bm1s+ bm2

s2 + am1s+ am2

)

.
(24)

If n is even, then the number of biquads, m is set to n/2.
If n is odd, then there are are (n+ 1)/2 biquads, but the
last one is first order filter (by setting bm,2 = am,2 = 0.
As was shown in (Abramovitch (2015e,c)), there can be
advantages to factoring out the direct feedthrough gains,
resulting in

Y (s)

U(s)
= b00

(

s2 + b̃01s+ b̃02
s2 + a01s+ a02

)

b10

(

s2 + b̃11s+ b̃12
s2 + a11s+ a12

)

· · ·

bm0

(

s2 + b̃m1s+ b̃m2

s2 + am1s+ am2

)

,

(25)

where b̃ij =
bij
bi0

. Note that if bi0 = 0 and bi1 6= 0, then the
factored out gain is bi1. Likewise if both bi0 and bi1 are 0,
then then the factored out gain is bi2.

If we call this transfer function H(s), then H(s) =

bm0 · · · b10b20H̃(s) which gives:

H̃(s) =

(

s2 + b̃01s+ b̃02
s2 + a01s+ a02

)(

s2 + b̃11s+ b̃12
s2 + a11s+ a12

)

· · ·

(

s2 + b̃m1s+ b̃m2

s2 + am1s+ am2

)

.

(26)

Again, if one of the bi0 terms is 0 it is replaced by the first
non-zero bi1 or bi2 term. by the first non-zero bi1 or bi2
term.

Returning to a more modal representation, a single biquad
can be represented as:

B(s) = K

(

s2 + 2ςnωns+ ω2
n

s2 + 2ςdωds+ ω2
d

)

(27)

which in turn can be represented in a two step differential
form as:

ẍ + 2ςdωdẋ+ ω2
dx = u

y = K
(

ẍ+ 2ςnωnẋ+ ω2
ndx

) (28)
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1
0
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uk−1. (17)

[

¯̃y2,k
]

=
[

b̃21 − a21 b̃22 − a22 b̃11 − a11 b̃12 − a12 b̃01 − a01 b̃02 − a02
]


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+ [ 1 ]uk−1 (18)

Fig. 6. Time update equations for discrete time Biquad State Space (BSS) with scalar output scaling.
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Fig. 7. An nth order continuous-time, polynomial filter in
Direct Form II configuration similar to the discrete-
time filter form in (Abramovitch (2015c); Oppenheim
and Schafer (1975)).

This can be represented in state-space form as:
[

ẍ
ẋ

]

=

[

−2ςdωd −ω2
d

1 0

] [

ẋ
x

]

+

[

1
0

]

u (29)

and

y = K
[

2ςnωn ω2
n

]

[

ẋ
x

]

+Kẍ (30)

but we need to get rid of ẍ and get the output in terms of
the actual state vector:

y = K
[

2ςnωn ω2
n

]

[

ẋ
x

]

−K
[

2ςdωd ω2
d

]

[

ẋ
x

]

+

[

K
0

]

u
(31)

y =
[

K(2ςnωn − 2ςdωd) K(ω2
n − ω2

d)
]

[

ẋ
x

]

+

[

K
0

]

u
(32)

What is important in this structure is that the output
depends on the first two states and the input. In this case,
the input can feed through directly. Now, we would like
to move this to a more general form such as we had in

(Abramovitch (2015e)) and (Abramovitch (2015c)), so we
replace these resonance parameters with filter coefficients:

[

ẍi

ẋi

]

=

[

−ai1 −ai2
1 0

] [

ẋi

xi

]

+

[

1
0

]

ui (33)

while the state output equation is given by:

[ ỹi ] =
[

b̃i1 − ai1 b̃i2 − ai2
]

[

ẋi

xi

]

+ [ 1 ]ui (34)

Finally, the properly scaled output is generated via:

[ yi ] = [ bi0 ] [ ỹi ] . (35)

6. THE ANALOG BIQUAD STATE SPACE (ABSS)
FORM

1
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b12
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b11
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~

bn-1,2

~
bn2

~

bn1

~

Fig. 8. The analog biquad cascade, with factored out bi,0
terms and scaling the output of each block. This is
completely analogous to the digital form of Figure 4.

If we have multiple biquads of the form shown in Equa-
tions 33, 34, and 35, we can chain these together by noting
that:

ui = ỹi, for 0 ≤ i < n,
u0 = u, and
ỹn = ỹ.

(36)

If one is willing to go through the algebraic pain and
suffering of applying Equation 36 to each biquad structure
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[

ỹ2
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ỹ0

]

=




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Fig. 9. State equations for continuous time Biquad State Space (BSS) with scalar output scaling.

a very regular state-space structure results. For a 3-biquad
model (with no bi0 = 0), we get the state equation of 37.
The unscaled output is in Equation 38, both displayed
in Figure 9 due to their size. Finally, the properly scaled
outputs are generated via:

[

y2
y1
y0

]

=

[

b20b10b00 0 0
0 b10b00 0
0 0 b00

][

ỹ2
ỹ1
ỹ0

]

. (39)

This structure has a very regular iteration which continues
with the addition of extra biquads. It is worth noting
several properties of this structure.

• First of all, it is a relatively sparse structure where a
lot of the multiplies are 1.

• Secondly, we have put off multiplying by gain terms
until the end. This provides the same input output
behavior as the transfer function model, although the
internal states may not be scaled the same way as the
internal signals in the biquad chain.

• The eigenvalues of the state matrix are still defined by
the denominator terms of the transfer function, and
these show up in the “block diagonals” of the state
matrix.

• The off diagonals contain differences of the numera-
tor and denominator coefficients. Proper selection of
these terms can minimize these differences and keep
the size of the off diagonal terms well constrained.

It is worth discussing what it means to select these terms,
the b̃i1 − ai1 and b̃i2 − ai2 terms. In the case of a biquad,

b̃i1 − ai1 = 2ςinωin − 2ςidωid and b̃i2 − ai2 = ω2
in − ω2

id.(40)

This structure then allows the designer to pick pole/zero or
resonance/ant-resonance combinations that minimize the

off diagonal terms in the system matrix, the b̃i1 − ai1 and
b̃i2 − ai2 terms, as well as their effect on the output.

What we will see in the next section, is that the biquad
matrix structure is the same for discrete time biquads,
although the physical interpretation of the coefficients
is different. However, it is helpful to keep in mind the
similarity of the numerical structures.

7. DISCRETIZATION OF THE ANALOG BSS

One major difference in using the BSS compared to general
textbook methods is that we choose to discretize the
BSS on a biquad by biquad basis. While this looses the
satisfaction of analytical mathematical exactness, it does
have the following positive properties:

1) Discretization approximations, and therefore dis-
cretization errors, are on a biquad by biquad
basis. This has the potential to bound the error
growth as the number of biquads (and therefore
the number of states) grows.

2) The discretization method most appropriate to
any one biquad can be applied independently
of how adjacent biquads are discretized. For
example, with lightly-damped resonance/anti-
resonance pairs, the pole zero mapping used in
(Abramovitch (2015e)) and the ∆ coefficients of
(Abramovitch (2015g)) work extremely well. On
the other hand, representing a double integrator
as a discrete biquad can be accomplished using
a Trapezoidal Rule equivalent (Franklin et al.
(1998b)) as described in (Abramovitch (2015c)).

3) Moreover, discretizing on a biquad by biquad
basis means that the digital BSS for a given
system has largely the same block structure as
its analog BSS.

If one considers debugging a physical system, the impor-
tance of the last item cannot be overstated. The “invari-
ance under discretization” means that a discrete state-
space model can be compared to an analog state-space
model or to modal test points on a physical system. It
means that we can closely relate the digital state-space
model to the physics of the problem, and therefore to
physical measurements of real systems.

8. THE MATRICES, RELOADED

Generating coefficients from continuous time biquad pa-
rameters is discussed in some detail in (Abramovitch
(2015e)) and (Abramovitch (2015g)). Suffice it to say that
continuous time, physical parameters can be mapped into
the discrete time biquads which form the basis of our state
matrices.
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Both the state transition matrix (14) and the state matrix
of (37) have very regular, block upper triangular forms.
On the block diagonals are 2 × 2 blocks with the biquad
denominator parameters (from which we can extract the
model poles). Below the diagonal blocks are empty, while
above the diagonal blocks is a repeated set of 2× 2 blocks
with 0s on the lower rows and

[

b̃i,1 − ai,1 b̃i,2 − ai,2
]

(41)

on the top row. The top rows of these blocks represent
the feedthrough of the biquad states to the other states.
This is true for both continuous and discrete-time forms,
although the meanings of the coefficients differs. Likewise
in the DT output matrix of (15) or the CT one of (38),
these same subsections in (41) represent the feedthrough
of the biquad states to the outputs. Note that in both of
these matrix equations, the input is passed unscaled to the
states and unscaled outputs. The gain scaling is applied in
(16) (or (39) for CT).

Note that while these matrices are denser than a typical
canonical form, many of the needed multiplications and
additions are repeated, so that proper coding of the state
and unscaled output updates makes this form no more
computationally intense than a canonical form.

The above the block diagonal blocks are governed by
the terms in (41), and these terms are determined by
how the overall system model is partitioned into biquads.
One way to minimize these terms is to arrange the pole-
zero groupings so that each biquad consists of poles and
zeros that are closest to each other. Assuming two zeros
accompanying the two poles of the biquad and thinking of
this from a root-locus perspective, one would see that such
an arrangement would minimize the effect of the biquad’s
poles and zeros on the closed-loop poles that were not close
to any of those dipole pairs.

9. DISCRETE TIME EXAMPLES

Fig. 10. Laboratory system: Aerotech air bearing linear
stage, including linear grating for position measure-
ment. The Aerotech system implements a PID con-
troller and samples the data at 8 kHz. It has a built
in swept-sine measurement. In the center of the image
is a laser interferometer (IF) to provide an alternate
measurement of the stage position. The stage itself is
to the left of the IF.

20 Biquad Fit Parameters for Aerotech Stage

Biquad # fN,n (Hz) Qn fN,d (Hz) Qd

1 2116.5 46.9420 1871.2 9.0188

2 1162.6 9.3768 1301.8 1.9112

3 619.9 4.8004 631.5 13.2948

4 1792.6 13.1546 1726.6 27.3882

5 702.0 0.3261 1374.2 0.1245

6 428.7 25.2154 449.4 7.3544

7 559.7 10.4940 549.4 18.6003

8 248.3 2.5601 241.9 3.2069

9 1891.1 31.8588 1874.3 21.0130

10 1484.5 14.0540 1506.3 11.2718

11 720.5 5.0254 718.5 7.0045

12 458.0 24.6218 459.3 19.0552

13 287.8 9.7413 286.8 9.8888

14 225.7 14.7047 225.4 14.0349

15 3590.2 7.4186 3203.0 10.2562

16 2159.3 60.0000 2143.5 21.8389

17 1947.3 11.7009 1954.3 9.3325

18 1982.2 9.2703 1982.1 9.2825

19 1936.4 9.2163 1936.5 9.2002

20 2128.2 60.0000 2121.7 84.6660

Table 1. Model parameters from curve fit of
Aerotech frequency response data.
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Fig. 11. Comparing state-space forms to AeroTech stage
frequency response. Modeling the system with first
12 biquads and a rigid body, there is no discernible
difference in the plots. The measured plant exhibits a
phase roll off at high frequency not fit by the biquads.

In order to demonstrate the numerical improvements aris-
ing from the BSS structure, an example is take from
measurements of an Aerotech linear stage used in exper-
iments for the Quintessential Phase project (Johnstone
and Abramovitch (2013)). The Aerotech single axis stage
as shown in Figure 10. The Aerotech 3300 stage con-
troller includes a PID like feedback controller along with
a feedforward portion. The sample rate for these is 8 kHz.
In order to obtain a clean frequency response, the Eric
Johnstone (Johnstone and Abramovitch (2013)) turned off
the feedforward compensator and then used the Aerotech
controller’s built in swept-sine functionality. A 1000 point
swept-sine frequency response function (FRF) was taken
on a logarithmic frequency axis from 10 Hz to 4 kHz. The
Aerotech controller returned an open loop FRF, which was
uploaded to Matlab. There a model of the Aerotech PID
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Fig. 12. Comparing state-space forms to Aerotech stage
frequency response. Modeling the system with first
14 biquads and a rigid body, we start seeing signif-
icant differences in the different methods of realiz-
ing the state-space form. The conventional methods
are clearly not matching the measured Aerotech fre-
quency response, while the BSS method is.
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Fig. 13. Comparing state-space forms to Aerotech stage
frequency response. Modeling the system with first
20 biquads and a rigid body, there is a massive
difference between the conventional methods and the
BSS method.

was constructed using Aerotech parameters. A FRF for
this controller was synthesized on the same frequency axis
as the stage open loop response measurement, and this
controller FRF was divided out of the open loop FRF to
obtain a “plant” FRF. This plant FRF was fit to a stage
model that consisted of a double integrator plus 20 analog
biquads. The biquads are ranked in order of significance
on the frequency response so that if one wants to simplify
the model, one removes the latter biquads. The identified
model parameters are in Table 1.

In order to compare the BSS to more conventional meth-
ods, the fit parameters were then used to generate both
transfer function models and state-space models in Mat-
lab. The linear system concatenation functions were used
for both of these. From these high order models, Bode

plots were generated to compare to the original measure-
ment. Similarly, model terms were used to construct a BSS
structure and again, a Bode plot was generated. Note that
these plots are not made using fixed point math, but with
all terms represented in Matlab’s dual precision floating
point format.

In Figure 11, we see that with up to 12 biquads and a
rigid body, all the methods produce essentially equivalent
Bode plots, that match the magnitude data exceptionally
well. The phase features are matched, with the exception
of the general rolloff that can be attributed to time delay
not modeled in the rigid body or the biquads.

However, just the addition of two more biquads in Fig-
ure 12, we see that the two “conventional” methods deviate
significantly from the measured frequency response. At 20
biquads plus the rigid body as shown in Figure 13, it is
very clear that the conventional methods are so affected
by numerical issues that they cannot come close to repre-
senting the measurement, either a low frequency or high
frequency. In both of these cases, we see that the BSS
continues to match the original measurement.

10. MATCHING CT AND DT RESPONSES
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Fig. 14. Comparing analog and discrete BSS outputs.
With 3 biquads, the outputs of each analog biquad
section was plotted against it’s digital version. This
demonstrates the invariance of the biquad outputs
under discretization.

In order to compare the biquad state space to more conven-
tional methods, the resonance/anti-resonance parameters
were then used to generate both transfer function models
and state-space models in Matlab. The linear system con-
catenation functions were used for both of these. From
these high order models, Bode plots were generated to
compare to the composite Bode plots described above.
These are the “standard” or “conventional” methods. Sim-
ilarly, model terms were used to construct both continuous
and discrete biquad state space structures and again, Bode
plots were generated. Note that these plots are not made
using fixed point math, but with all terms represented in
Matlab’s dual precision floating point format.

Figure 14 plots a 3-biquad structure, and in this case we
plot neither conventional methods nor the composite plots.
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Instead we tap off the individual biquad outputs of the
first, second, and third biquads so that we can demonstrate
the almost exact match of the discrete biquads to the
continuous biquads.

As mentioned earlier, this “invariance under discretiza-
tion” is a very useful property. In particular, it allows
one to construct an analog model from physical principles,
convert this model to an analog BSS form, convert that to
a discrete time BSS form for implementation, and then
easily extract information about the continuous model
from the discrete model results.

11. ADDING RIGID BODY DYNAMICS TO BSS:
DOUBLE INTEGRATOR

For modeling any real mechatronic system, there will have
to be some sort of rigid body or low frequency resonance
model. In this section, we will show how to add a double
integrator to this biquad structure. The simplest way, of
course, would be if the double integrator could just be
modeled as a biquad. Defining our double integrator as
D(s) = K/s2 and applying the Trapezoidal rule yields

DT (z
−1) = K

(

T

2

)2(

1 + z−1

1− z−1

)2

. (42)

Neglecting the gain, K
(

T
2

)2
, we define

D̃T (z
−1) =

(

1 + z−1

1− z−1

)2

=
1 + 2z−1 + z−2

1− 2z−1 + z−2
(43)

from which we can extract the time domain equations

dk − 2dk−1 + dk−2 = uk. (44)

Remembering that in the traditional state-space notation
xk+1 = dk we get

xk+1 = 2xk − xk−1 + uk (45)

and

ỹk+1 = xk+1 + 2xk + xk−1. (46)

Note that ỹk+1 depends upon xk+1 which we have defined
in terms of previous values of xk and the current input,
uk, so we can make the substitutions to get

ỹk+1 = xk+1 + 2xk + xk−1

= 2xk − xk−1 + uk + 2xk + xk−1

= 4xk + uk.
(47)

We put this in state-space form as:
[

xk+1

xk

]

=

[

2 −1
1 0

] [

xk

xk−1

]

+

[

1
0

]

uk. (48)

The output is defined as:

[ỹk+1] = [ 4 0 ]

[

xk

xk−1

]

+ [ 1 ]uk. (49)

Finally,

[yk+1] =
[

KT 2/4
]

[ỹk+1] . (50)

This is great news. What we have seen is that we can treat
a double integrator as a digital biquad, and so we can drop
it right into our structure, simply by choosing

a1 = −2, a2 = 1,

b̃1 = 2, b̃1 = 1, and b0 =
KT 2

4
.

(51)

12. RIGID BODY MODES AND THE BILINEAR
STATE SPACE (BLSS) STRUCTURE

The BSS handles most of the second-order portions of
responses, but it has some limitations. In particular, state-
space models or filters may require low pass or high pass
sections. High pass filters (HPF) are typically modeled as
proper transfer functions, but low pass filters (LPF) often
exhibit a pole-zero excess in the continuous time (CT)
form. This is a necessity for the frequency response to go
to 0 at s = ∞.

Similarly, state-space models would be limited without
being able to add in rigid body dynamics. Assuming that
rigid body dynamics can be modeled as one or more
second-order sections, we can focus on a basic second
order, rigid body model and note the following charac-
teristics:

1) The CT models usually have a pole-zero excess.
2) They are often not resonant and therefore are

more likely to have distinct and real poles.
3) Unlike the LPF, there is usually some benefit

to accessing the internal “physical” state of the
rigid body model.

We may wish to have low pass and/or high pass filters
in our Multinotch, or single or double integrators in our
BSS model of a physical system. We might note that
while it is theoretically possible to add integrators into
a Multinotch, say as part of a controller that includes
integral action, practical implementation of integrators
usually involves useful nonlinearities, such as integrator
anti-windup (Åström and Murray (2016)) which neces-
sitated the integrators being broken off from the rest of
the filter. However, in linear state-space models, single or
double integrators are common in rigid body models. .

The common feature of most of these filters is the lack of
direct feed through from the input to the output of any
one filter stage, at least in the continuous time model.
As noted briefly in (Abramovitch (2015d,b)) this lack of
direct feedthrough affects the propagation of states and
the structure of the state-space matrices.

13. CONTINUOUS-TIME, RIGID-BODY DYNAMICS
AND LOW PASS FILTERS

The most common rigid body models we might see would
be a double integrator as shown in the tortured biquad
form of Fig. 15 with a1 = 0 or an integrator plus low
pass form (a1 > 0), where there is a real stable pole
in place of one of the integrators. Spring-mass-damper
actuators, such as those in an atomic force microscope
(AFM) (Schitter et al. (2006); Abramovitch et al. (2007))
would require a more difficult access to velocity. The
double integrator is modeled as:

D(s) =
K

s2
, (52)
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Fig. 15. Continuous time (CT) rigid body biquad. Setting
a1 = 0 turns it into a CT double integrator..

while the single pole rigid body is modeled as

D(s) =
Ka1

s(s+ a1)
. (53)

where a1 might be viscous friction applying velocity feed-
back.
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Fig. 16. Analog biquads without direct feedthrough. On
the left, bi0 = 0. On the right, both bi0 and bi1 = 0. In
either case, the leading gain is the gain of the highest
order numerator term that has a non-zero coefficient.
In both, the lack of direct feedthrough means that
the output is only determined by the state of the
block. All downstream blocks from this one will not
have direct feedthrough from the cascade input to the
cascade output.

Let’s consider a few forms of continuous time low pass
filters (CT-LPF). When possible, we will set the DC gain
to 1 as a common scaling. A pair of first order models are
presented in:

L1,a(s) =
a

s+ a
and (54)

L1,b(s) =
(a

b

) s+ b

s+ a
. (55)

In the case of (54), it is low pass because the “zero” is
at infinite frequency. At some point, for positive a, it
has to roll off. Equation (55) is only a low pass filter if
0 ≤ a < b. It doesn’t have infinite rejection at infinite
frequency. It is a lag filter, where the response at low
frequency is higher than the response at high frequency,
and the level of attenuation is set by the distance between
a and b. Our method of translating filters from continuous
time to discrete time in the multi-notch is based on pole-
zero mapping, and this has worked fine as long as the zeros
were finite, so there is no problem with (55). Likewise,
there would be no problem with:

L2,b2(s) =

(

a2
b2

)

s2 + b1s+ b2
s2 + a1s+ a2

. (56)

Equation (54) is a different matter as are:

L2,b0(s) =

(

a2
b2

)

b2
s2 + a1s+ a2

, and (57)

L2,b1(s) =

(

a2
b1

)

s+ b1
s2 + a1s+ a2

. (58)

Equations (54), (57), and (58) all have zeros when |s| −→
∞ or when s is evaluated on the jω axis, when |ω| −→ ∞.
A general form for such structures is diagrammed in Fig.
16 and will be discussed in Section 14.

14. HANDLING LACK OF DIRECT FEEDTHROUGH

One of the nice properties of the BSS is that it handles di-
rect feedthrough from the input to the output in a system-
atic structure. In the discrete time world, we can provide
direct feedthrough for models of analog systems by choice
of discretization method. For example, the analog double
integrator inserted into the discrete BSS in (Abramovitch
(2015c)) was discretized with the Trapezoidal Rule approx-
imation, which gave it direct feedthrough. In the analog
world, the rationale for this does not exist and since most
mechatronic systems have some sort of low frequency be-
havior that has a pole zero excess (e.g. double integrator,
simple resonance), we need to know how to accommodate
this.

Furthermore, our focus on LPF and rigid body models
raised the importance of entering models with no direct
feedthrough into the BSS and MNF. One of the nice
properties of the BSS is that it handles direct feedthrough
from the input to the output in a systematic structure. In
the discrete time world, we can provide direct feedthrough
for models of analog systems by choice of discretization
method, as described in Section 16. In the analog world,
the rationale for this does not exist and since most mecha-
tronic systems have some sort of low frequency behavior
that has a pole-zero excess, we need to know how to
accommodate this.

Figure 16 shows two examples of biquads tasked with
modeling such systems. On the left side is a biquad model
for a system where only bi0 = 0. This would model a pole
zero excess of 1. On the right, both bi0 and bi1 are 0. In
either case, we factor out the non-zero bij corresponding
to the highest order. This will be used in our downstream
gain calculations. Note that when any such biquad is in
the chain, the direct feedthrough from the system input,
u, to any of the downstream inputs and outputs, uj and
yk for j > i and k ≥ i, is 0. This affects the form of our
state matrices.

In both cases, the state equation from (33) is unchanged.
However, the state output equations change a lot. In the
left hand case, Equation 34 becomes

[ ỹi ] =
[

1 b̃i2
]

[

ẋi

xi

]

+ [ 0 ]ui (59)

where b̃i2 = bi2/bi1 and (35) becomes:

[ yi ] = [ bi1 ] [ ỹi ] . (60)

In the right hand case, Equation 34 becomes

[ ỹi ] = [ 0 1 ]

[

ẋi

xi

]

+ [ 0 ]ui (61)
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and (35) becomes:

[ yi ] = [ bi2 ] [ ỹi ] . (62)

This may seem like an awful lot of bookkeeping for such
a simple concept, but doing this bookkeeping allows us to
maintain a the overall system structure, which allows us
to write scripts and programs to build up BSS matrices
from individual biquad models.

To illustrate this, consider a 4-biquad system model. We
choose bi0 = 0 for biquad 1. (Here the first biquad in the
chain is biquad 0 and the last one is biquad 3. Again,
algebraic pain and suffering results in a very regular state-
space structure. For our 4-biquad model, we get the state
equation of 63. The unscaled output is in Equation 64,
both displayed in Figure 17 due to their size. Finally, the
properly scaled outputs are generated via:




y3
y2
y1
y0



 =





b30b20b1xb00 0 0 0
0 b20b1xb00 0 0
0 0 b12b00 0
0 0 0 b00









ỹ3
ỹ2
ỹ1
ỹ0



 , (65)

where bix = bi1 if bi1 6= 0 and bix = bi2 if bi1 = 0. In
Equations 63 and 64 b̃11 = 1 and b̃12 = b12/b11 if b10 = 0

and b11 6= 0. Similarly, if b10 = 0 and b1100, then b̃11 = 0
and b̃12 = 1. Note that the direct feedthrough from the
input to any outputs downstream of biquad 1 is blocked.
Also note that direct feedthrough of any states upstream
of biquad 1 to any states downstream of biquad 1 is also
blocked. Like the input, those states affect the downstream
states through the output of biquad 1. However, it is clear
that they still have a regular structure.

While lack of direct feedthrough may be unavoidable in
continuous time, the real design choice comes when we
wish to discretize continuous time models without direct
feedthrough and represent them in an equivalent discrete
time BSS or MNF. The key is preserving the structure so
that we can automate the addition of extra blocks while
maintaining readability and explainability.

15. BILINEAR STATE SPACE (BLSS) FORM

One of the issues with biquads is that while the continuous
time biquads map to the discrete time biquads, and
the input-output relationships hold, the internal states
might not represent the physical states. With oscillatory
(complex roots) numerators and denominators, this may
not be overly important. However, rigid-body portions of
the model often have real roots. For these there is often an
advantage to accessing the individual physical states and
in having these states map to discrete time models. To
do this, we suggest the Bilinear State Space form (BLSS),
which opens up the biquad in the case of real and distinct
poles and zeros. The familiar CT and DT state equations
are:

ẋ = FCx+GCu, y = HCx+DCu and (66)

x(k + 1) = Fx(k) +Gu(k), y = Hx(k) +Du(k), (67)

respectively. The continuous and discrete matrices have
the same structure, but the interpretation of the inter-
nal {ai1, ai2, b̃i0, b̃i1, and b̃i2} coefficients change in go-
ing from continuous to discrete time. The DT matrices,
{F,G,H, andD} are given by:

F =

[

−ai+1,1 bi,0(b̃i1 − ai1)
0 −ai,1

]

, (68)

H =

[

bi+1,0(b̃i+1,1 − ai+1,1) bi+1,0bi,0(b̃i,1 − ai,1)

0 bi,0(b̃i,1 − ai,1)

]

, (69)

G =

[

bi,0
0

]

, and D =

[

bi+1,0bi,0
bi,0

]

, where (70)

ui = yi−1 for i = 1, . . . , n. (71)

The CT matrices, {FC , GC , HC , andDC} are given by:

FC =

[

−ai+1,1 bi,0(b̃i1 − ai1)
0 −ai,1

]

(72)

HC =

[

bi+1,0(b̃i+1,1 − ai+1,1) bi+1,0bi,0(b̃i,1 − ai,1)

0 bi,0(b̃i,1 − ai,1)

]

(73)

GC =

[

bi,0
0

]

, and DC =

[

bi+1,0bi,0
bi,0

]

, where (74)

ui = yi−1 for i = 1, . . . , n. (75)

The general continuous time BLSS model is diagrammed
in Fig. 18 which simplifies to Fig.19 for the rigid body
models we have discussed. The general discrete time model
is diagrammed in Fig. 20. We will see that these forms are
extremely useful with adding a rigid body section to BSS
models, since we can access the states such as velocity and
position easily.

16. DISCRETIZATION CHOICES

With the MNF, and the BSS, discretization was easily
done via pole-zero mapping so long as the continuous
time numerator and denominator were of the same order
(Abramovitch (2015f,h,d,b)). The Bode plot comparisons
in (Abramovitch (2015b)) gave confidence that this cap-
tured the zero behavior. When we are dealing with a pole-
zero excess of 1 or 2 in a block – such as we have with
CT low pass filters and CT rigid body models, we need
to consider some choices for placing the CT “zeros at ∞”
(Franklin et al. (1998a)). We have essentially 4 choices:

• Map one or two CT zeros at s = −∞ to z = −∞.
While this takes sampling delay into account, it is the
least favored of these methods for any filter that will
be used in a feedback mechanism as the zeros at −∞
will pull a corresponding number of closed-loop poles
towards them and out of the unit circle.

• Map the CT zeros at s = −∞ to z = 0. These tend
to cancel pure delays and are conservative in that
they minimize the phase effect of the denominator.
This is what is done in typical PID discretization
(Abramovitch (2015j)) and the conservatism of the
zero at z = 0 helps stabilize the overall loop. The
caveat here is that in the PID usage, the backwards
rule is part of the construction of the controller
implementation, not trying to accurately model the
physical system. In the latter case, the backwards rule
equivalents are not the most accurate match to the
continuous0time filter model.

• Map the CT zeros at s = −∞ to z = −1. This
corresponds to the trapezoidal rule equivalent and is
the most accurate Bode plot magnitude match for the
continuous-time model.
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Fig. 17. State equations for continuous time BSS with scalar output scaling. Biquad 1 lacks direct feedthrough.
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Fig. 19. Continuous time rigid body BLSS model. Note
that rather than indexing the second stage as i + 1,
we stick with i but label the level of integration on
the signals.
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• Do some combination of the above choices.

While assigning one of the CT zeros at s = −∞ to z = −∞
is a traditional way of incorporating delay (Franklin et al.
(1998a)) and results in no direct feedthrough. Assigning
both DT zeros this way results in a discrete biquad that
looks like

Bi,FR(z) =
bi,2z

−2

1 + ai,1z−1 + ai,2z−2
, (76)

which is similar to a forward rectangular rule equivalent,
1

s
−→ Tz−1

1−z−1 . This will not have direct feedthrough and
thus will require a discrete time block structure similar
to the continuous time ones shown in Section 14. Recent
work suggests designing for a system with minimum delay
and then backing off bandwidth to accommodate the

phase due to measured delay (Butterworth et al. (2011);
Abramovitch (2015i),Abramovitch:23,AbramovitchA:23).

If we consider the conservative backwards rule construc-
tion, 1

s
−→ T

1−z−1 , we end up with

Bi,FR(z) =
bi,2z

−2

1 + ai,1z−1 + ai,2z−2
, (77)

where we see that the numerator delay from (76) has been
completely eliminated. The BSS block will have a standard
structure, just with b̃i,1 and b̃i,2 = 0. Finally, if we choose

the trapezoidal rule equivalent, 1

s
−→ T

2

1+z−1

1−z−1 , we end up
with

Bi,TR(z) = bi,0
1 + 2z−1 + z−2

1 + ai,1z−1 + ai,2z−2
, (78)

with two zeros at z = −1. Finally, we might try tweaking
the phase of the model by choosing one zero at z = 0 and
one at z = −1, in which case we would have

Bi,TBR(z) = bi,0
1 + z−1

1 + ai,1z−1 + ai,2z−2
. (79)

These are standard BSS blocks with direct feedthrough,
but with particular values for b̃i,1 and b̃i,2. If we want a
rigid body model with the BSS or a low pass filter that
works well with the BSS or MNF, it is best to avoid zeros
at −∞.

17. DISCRETE-TIME, RIGID-BODY MODELS

In Section 11 (Abramovitch (2015d)), we showed how
using a trapezoidal rule equivalent on a double integrator
preserved the feedthrough. With discrete equivalent forms
of the model in Fig. 15, we run into the issue that we
cannot readily access a reasonable velocity estimate from
these models. Looking at the ZOH equivalent (Franklin
et al. (1998a)) model in Fig. 21 or the trapezoidal rule
equivalent in Fig. 23, we can easily extract an acceler-
ation estimate and/or a position estimate, but velocity
would require some new combination of the states. In
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Fig. 22. Discrete double integrator BLSS model (ZOH
equivalent). In this drawing, we’ve chosen to make the
index, i, as with a biquad stage, but we are explicitly
labeling the different integration levels.

practical use of state-space models for motion control of
mechatronic systems, it seems highly illogical to go to the
trouble of generating a state-space model and not be able
to easily access velocity. Furthermore, the ZOH equivalent
is not applied to just the double integrator, but to the
entire plant model. This confounds our ability to match
discrete and analog states in any way. In the companion
tutorial (Abramovitch (2023)) we will discuss when the
extra numerical accuracy of the ZOH can be forgone in
favor of the ability to understand and debug our discrete-
time, state-space models.

A word about indexing here. While normally we would
want to index these blocks as we do with any of our biquad
blocks, say block i, all the subscripts can make the text
Byzantine at first glance. Instead, we use index 0 for the
first integrator, and 1 for the second integrator, realizing
that the readers will be able to add the appropriate offset
to the equations. For clarity, the drawings index the stages
all as i, but noting the integration level of each block.

The BLSS model of Fig. 19 exposes velocity. Discretizing
this model with a ZOH equivalent leads to the model of
Fig. 22, while a trapezoidal rule equivalent can be found
in Fig. 24.

We break up the ZOH equivalent as

DZOH(z) = K
T 2

2

(z + 1)

(z − 1)2

= KT

(

1

z − 1

)(

T

2

)(

z + 1

z − 1

)

.
(80)

The blocks end up with the equations of:

x0,k+1 = KTu0,k + x0,k and (81)

y0,k = x0,k, (82)

where u0 = u and y1 = y. With u1,k = y0,k we have:

x1,k+1 =
T

2
u1,k + x1,k = x1,k +

T

2
x0,k and (83)

y1,k = x1,k + x1,k+1 = 2x1,k +
T

2
x0,k. (84)

Together, these become:
[

x1,k+1

x0,k+1

]

=

[

1
T

2
0 1

]

[

x1,k

x0,k

]

+

[

0
KT

]

uk. (85)

The output is defined as:
[

y1,k
y0,k

]

=

[

2
T

2
0 2

]

[

x1,k

x0,k

]

+

[

0
0

]

uk. (86)

This is the textbook model for a double integrator
(Franklin et al. (1998a)), but now we can access the
velocity output, y0,k directly. Of course, for a true ZOH-
equivalent, the entire model would have been discretized
at once, rather than simply the double integrator.
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u (k)i yi(k)

xi(k)

xi(k)

Ki T /4
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Fig. 23. Discrete double integrator biquad model (trape-
zoidal rule equivalent).
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Fig. 24. Discrete double integrator BLSS model (trape-
zoidal rule equivalent). In this drawing, we’ve chosen
to make the index, i, as with a biquad stage, but we
are explicitly labeling the different integration levels.

This does not have direct feedthrough, unlike the trape-
zoidal rule model of (87). We break that up as follows:

DTR(z) = K
T 2

4

(z + 1)2

(z − 1)2

= K

(

T

2

)(

z + 1

z − 1

)(

T

2

)(

z + 1

z − 1

)

.
(87)

The blocks end up with the equations of:

x0,k+1 = K
T

2
u0,k + x0,k and (88)

y0,k = x0,k + x0,k+1 = 2x0,k +K
T

2
u0,k, (89)

where u0 = u and y1 = y. With u1,k = y0,k we have:

x1,k+1 =
T

2
u1,k + x1,k

= 2x1,k + Tx0,k +K
T 2

4
uk and

(90)

y1,k = x1,k + x1,k+1 = 2x1,k +K
T

2
u1,k

= 2x1,k + Tx0,k +K
T 2

4
uk.

(91)

Together, these become:

[

x1,k+1

x0,k+1

]

=

[

1 T
0 1

] [

x1,k

x0,k

]

+
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



K

(

T

2

)2

K

(

T

2

)









uk. (92)
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The output is defined as:

[

y1,k
y0,k

]

=

[

2 T
0 2

] [

x1,k
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]

+









K

(

T

2

)2

K

(

T

2

)









uk. (93)

With this implementation of the trapezoidal rule equiva-
lent, we can also access the velocity output, y0,k directly.
This has direct feedthrough, and is probably the closest
simple equivalent to to continuous time form from a fre-
quency response perspective.
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Fig. 25. Discrete double integrator BLSS model (back-
wards rectangular rule equivalent).

Note the key difference internally is that we have scaled
the integration of the intermediate state structure to more
closely match the continuous time form. This kind of
scaling was scrupulously avoided for high Q filters in
(Abramovitch (2015f,b)), but should present no problem
with the rigid body modes.

18. EXAMPLES
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Fig. 26. BSS with three biquads including a low pass
filter. The CT biquad plots include a composite of the
individual CT biquad Bode plots (blue) and a Bode
of the complete CT BSS structure (green). The DT
biquad plots also include a composite of individual
DT biquad Bode plots (magenta) and a Bode of
the complete DT BSS structure (cyan). The match
of the complete structures to the composites show
that the CT and DT BSS structures have properly
represented the series connection of the individual
biquads. The match between CT and DT show that
we have properly discretized the low pass filter in our
BSS. The phase match of the DT curves with the CT
curves is based on the zeros at z = −1 due to the use
of a Trapezoidal rule equivalent discretization.

Fig. 26 demonstrates the Bode plot of a BSS model with
a low pass filter (LPF) as part of a 3-biquad model.
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Fig. 27. BSS with three biquads including a low pass filter
in Biquad 1. This plot compares the Bode responses
of the individual CT and DT biquad sections. The
outputs of biquad 3 and biquad 2 show the magnitude
and phase flattening out at high frequency (due to
the matched number of poles and zeros). Once the
response of biquad 1 is added in, we see the low
pass rolloff of Figure 26. At each biquad output, the
match between continuous and discrete responses is
incredibly close, a unique and useful feature of this
structure.
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Fig. 28. BSS with three biquads including a low pass
filter. The CT biquad plots include a composite of the
individual CT biquad Bode plots (blue) and a Bode
of the complete CT BSS structure (green). The DT
biquad plots also include a composite of individual
DT biquad Bode plots (magenta) and a Bode of
the complete DT BSS structure (cyan). The match
of the complete structures to the composites show
that the CT and DT BSS structures have properly
represented the series connection of the individual
biquads. The match between CT and DT show that
we have properly discretized the low pass filter in our
BSS. The curl up of the phase back to 0 in the DT
curves is based on the zeros at z = 0 due to the use of a
backwards rectangular rule equivalent discretization.

Note the close match between the composite responses
(individual biquad frequency responses combined) versus
responses extracted directly from the full BSS structure.
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Fig. 29. BSS with three biquads including a low pass filter
in Biquad 1. This plot compares the Bode responses
of the individual CT and DT biquad sections. The
outputs of biquad 3 and biquad 2 show the magnitude
and phase flattening out at high frequency (due to
the matched number of poles and zeros). Once the
response of biquad 1 is added in, we see the low
pass rolloff of Figure 28. At each biquad output, the
match between continuous and discrete responses is
incredibly close, a unique and useful feature of this
structure.
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Fig. 30. Double integrator with square wave input. Im-
plemented using a ZOH equivalent biquad (top) and
BLSS (bottom).

The significance of this is that while the discrete time LPF
can be modeled with direct feedthrough, the continuous
time LPF cannot. Nevertheless, they produce responses
that match very well. Fig. 27 shows that the CT and
DT match is across all the biquad outputs, as previously
demonstrated without the LPF in (Abramovitch (2015b)).
Note the close phase match to the continuous-time re-
sponses provided by choosing z = −1 for the location
of the extra zeros, corresponding to the trapezoidal rule
equivalent. This contrasts with the phase curl back to 0◦

when the excess zeros are placed at z = 0, which correlates
with a backwards rectangular rule equivalent.

Fig. 30 shows at double integrator, discretized using a ZOH
equivalent, implemented as a biquad (top) and a BLSS
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Fig. 31. Double integrator with square wave input. Im-
plemented using a trapezoidal rule equivalent biquad
(top) and BLSS (bottom).

(bottom). The input-output behavior is consistent, but we
now have access to the internal intermediate state with the
BLSS. Fig.31, repeats the simulation using a Trapezoidal
rule equivalent. In both cases, the BLSS gives us access to
the output of the first stage, which is can be interpreted
as velocity. We see further, that using the trapezoidal rule
equivalent adjusts the scale of the internal state of the first
bilinear block to make the integrators balanced. The BLSS
block is a logical addition to state-space models needing
access to both position and velocity.

19. SUMMARY

This tutorial paper has introduced the reader to the BSS
and BLSS structures, the relationship between continuous-
time and discrete-time states, their numerical properties,
how to combine them, and how they might be useful
for implementing state-space methods reliably on lightly-
damped mechatronic structures. The use of the divide and
conquer discretization that results in so much connection
between continuous and discrete states is in contrast
with the “discretize entire model all at once” method
that is inherent in the zero-order hold (ZOH) equivalent.
This tradeoff will be discussed in a companion paper
(Abramovitch (2023)).
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