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Abstract: While digital implementation of control design is standard, the form of discrete
model used is far less settled. At one end is the zero-order hold (ZOH) equivalent, which can be
viewed as an “exact” model when the continuous-time (CT) system model is linear and time
invariant (LTI) and driven only by outputs from one or more digital-to-analog converters (DACs)
at a single sample rate. At the other end are ad-hoc methods that often discretize individual
subsystems or blocks, before combining them into a single overall discrete model. The issue with
the ZOH equivalent is that for all but the simplest models closed-form solutions become largely
intractable. ZOH equivalents are largely computed numerically for larger problems, but this
makes it hard to comprehend such basic features as the meanings of the internal states, or the
effects on the model as physical parameters or sample periods change. By contrast, discretizing
individual subblocks of the model – as is often done in practice – retains much of the continuous
model’s intuition, allowing for easier debugging of the discrete model.
We propose a “best-of-both-worlds” methodology in which we use the availability of excellent
numerical software such as Matlab and the knowledge that model differences imparted by
different discretization methods tend to shrink with the diminishing sample period. In the
proposed methodology, the “one-block-at-a-time” (OBLAAT) discretized model is evaluated at
different sample rates and each compared to a numerically computed ZOH equivalent of the
full system continuous-time model. An error metric of the intuition preserving discrete model
is then compared against the “exact” ZOH equivalent. The error metric is used to gauge when
the inaccuracy of the intuition-preserving discrete model is small enough that it can be chosen
for implementation.

Keywords: Mechatronic systems, state-space modeling, physical realization.

Material from this preprint was presented as a tutorial at MECC
2023.

1. MOTIVATION: WHY TALK ABOUT SAMPLING?

The biquad state-space (BSS) (Abramovitch (2015b,a))
and bilinear state-space (BLSS) (Abramovitch (2018))
allow one to create state-space (SS) models in which the
states to the discretized realization are tightly related
to the continuous-time (CT) states. The key enabler of
this is that the discretization is done one biquad or
bilinear section at a time. This flies in the face of the
most widely accepted pedagogy that discretization should
be done on the entire model taken together using a
hold, most typically a zero-order hold (ZOH) equivalent
(Franklin and Powell (1980); Åström and Wittenmark
(1990); Wikipedia (2023a)). For this discussion, we will
focus on the ZOH equivalent (Franklin and Powell (1980)),
although higher order holds, such as the first-order hold
(FOH) are sometimes used.

⋆ Daniel Y. Abramovitch is a system architect in the Mass Spec

Division at Agilent Technologies.
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Fig. 1. SISO feedforward/feedback control diagram with
emphasis on sampling conversion.

The ZOH equivalent is often associated as a consequence
of the sample and hold (SH) preceding the analog-to-
digital converter (ADC), but it is more properly associated
with the effects of the digital-to-analog converter (DAC)
holding the output constant for a full sample period
(Figure 1). This means that the controlled input to the
plant is held constant for a full sample period, which
provides information about the inter-sample behavior of
the plant.

The big advantage of the ZOH equivalent is that it is a
convolution integral of the stepwise-constant input with



the continuous-time plant model over the sample period.
As such it is exact if:

• The system model is linear and time-invariant (LTI).
• For single input (SI) systems, input to the system is
completely described by the output of the ZOH.

• For multi-input (MI) systems, the inputs to the
system are completely described by the outputs of
multiple ZOHs. In their simplest form, all of the ZOH
outputs have the same sample period, T , and the
samples occur at the same clock edges, but this is
not strictly necessary.

The ZOH equivalent combines this constant input with a
convolution integral to provide more information about
the plant behavior. As with any sample-data model of
smooth signals, the value of the extra information provided
by the exactness of the convolution integral (compared
to other discretization methods) decreases as the sample
period gets shorter. If we consider a numerical integral
of a smooth curve (Press et al. (2007)), we know that
the differences in results usually become negligible as the
sample period shrinks. Generally, the differences in model
error when raising the sample rate from 2 to 20 times the
highest dynamic frequency in the system is much greater
than when raising the sample rate from 20 to 200 times
that same frequency.

We also know that no physical system is ever fully LTI
and that noises and disturbances generally are not piped
through a DAC and a ZOH, so the ZOH equivalent cannot
be exact for any physical system. The questions this
paper seeks to address are: When does the mathematical
exactness of the ZOH equivalent of the full plant model
matter, and when are the differences between that and
some other discrete equivalent so small that we are better
served by using the block-by-block discretization of the
BSS and BLSS?

2. INTRODUCTION

We start by discussing the conceptual tradeoffs of different
schemes to discretize a continuous-time (CT), linear time-
invariant (LTI) model of a system when used in a feedback
control scheme. Hold equivalents in general, and the zero-
order hold (ZOH) equivalent in particular, are held as
the exact way to discretize such a model which is being
fed by an input which is held steady during each sample
period, T . The ZOH equivalent uses the knowledge of this
input that is constant over the sample period to com-
pute a convolution integral for the discrete representation.
This is fine for the typical textbook examples of a first-
order low-pass filter (LPF) or a double integrator, but be-
comes unwieldy and non-intuitive for more complex mod-
els (Franklin and Powell (1980); Åström and Wittenmark
(1990)). By contrast, a “one-block-at-a-time” (OBLAAT)
discretization breaks the CT model into a series of first
and second-order subblocks and then discretizes each block
individually using a method best suited to the parameters
of that block.

The clear advantage of computing the ZOH equivalent of
the entire CT model is that under certain assumptions,
it gives an “exact” answer. The disadvantages shown in
Part I were that closed-form or symbolic discretization of

anything more complex that the simple examples becomes
horrendously complex, throwing away any insight or in-
tuition we might have hoped to get from the closed-form
discretization. On the other hand, systems discretized with
an OBLAAT approach retained their connection to the CT
models and much of the intuition associated with that.
What was not clear was what price was paid in accuracy
for that intuition.

Section 8 will take an instance of this model and demon-
strate the dual discretization approach for representative
parameters. Section 9 will expand this problem to a double
integrator plus three biquads, something for which we
would never try to symbolically compute the ZOH equiv-
alent for the entire CT LTI model. Again, we will com-
pare the OPLAAT discretization methods with the entire
model ZOH equivalent. Finally, Section 10 will provide the
obligatory summary.

3. THE STRUCTURE OF THIS TUTORIAL

The rest of this paper will proceed as follows:

• We will review the ZOH and the methods by which
it is computed, as well as the implications of that
computation in Section 4.

• We will compute the ZOH equivalent analytically for
several models, including ones beyond the standard
examples to demonstrate the complexity that this
calculation adds to the role of physical parameters in
Section 5. We will compare these to analytical discrete
models computed in an OBLAAT fashion.

• We will summarize the lessons of this painful experi-
ence in Section 6.

• We propose a dual-discretization method (Section 7),
which discretizes the CT LTI model block by block
(OBLAAT) on one path, while numerically checking
the accuracy of this discretization against the same
CT LTI model discretized all at once with the ZOH
equivalent. We will try these on some mechatronic
system inspired models, and examine how high the
sample rate has to go relative to the fastest dynamics
of the system.

• Later, we will then take the models from the previous
sections with specific parameters, and compare their
input-output properties as we change the sample rate.
Using the ZOH equivalent of the full plant model as
the true measure, we will examine the size of the
errors induced by the other methods as the sample
period drops. The goal here is to be able to make ra-
tional judgments about when the input-output model
error is more than made up for by the improved abil-
ity to understand and debug the models discretized a
block at a time. Section 8 will take an instance of the
double integrator plus biquad model and demonstrate
the dual discretization approach for representative
parameters. Section 9 will expand this problem to a
double integrator plus three biquads, something for
which we would never try to symbolically compute the
ZOH equivalent for the entire CT LTI model. Again,
we will compare the OPLAAT discretization methods
with the entire model ZOH equivalent.

• Finally, Section 10 will provide the obligatory sum-
mary.
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This tutorial is essentially a combined preprint of a pair
of submissions to L-CSS and ACC 2024 (Abramovitch
(2023b,c)) that may end up as a single shortened paper
Abramovitch (2023a).

4. REVIEWING THE ZOH AND ITS ISSUES

The use of the ZOH equivalent dates back to the earli-
est days of digital control (Franklin and Powell (1980);
Ragazzini and Franklin (1958)). Without going into too
many details, it is well understood that computers were
larger and slower in those days meaning that the sample
rates were slower (relative to the dynamics of the con-
trolled system) than we might comfortably expect these
days. Many of the early applications were either focused
on spacecraft control (where the common models of most
often double integrators (Wikipedia (2016)), or chemical
process (where the common models were most often double
integrators Wikipedia (2016)), or chemical process control
(CPC) (where first-order plus time delay (FOPTD) were
most commonly used). For such low order models, one
can still manually compute the ZOH equivalent symboli-
cally and retain intuition about the resulting discrete-time
model.

In the classic digital control textbooks (especially the
ones that predate the widespread use of modern Mat-
lab (Mathworks (2023)) starting in 1985) (Franklin and
Powell (1980)), we are presented with two methods for
computing the ZOH equivalent: from the continuous-time
(CT) transfer function (TF) and from the continuous-
time state-space (SS) realization. Computing the ZOH
equivalent from the CT-TF model involves extracting the
step response for a single-period input, then computing
the inverse-Laplace transform of that response, from there
computing the Z-transform of the resulting time sequence.
To achieve this, it is usually necessary to break the Laplace
transform of the step-response into single and repeated
poles via a partial fraction expansion (Wikipedia (2023b);
Math Is Fun (2023); Lago and Benningfield (1979)). The
individual Z-transforms are often found in tables and then
the separate transforms are combined into one transfer
function.

The zero-order hold (ZOH) refers to an analog circuit
that holds an instantaneous sample constant for a sample
interval. Such circuits are grouped in with the analog to
digital converter (ADC) as the value needs to be held
constant for the conversion to happen reliably (most of
the time). It has a frequency response function of:

HZOH(s) =
1− e−sT

sT
. (1)

On the other end of the digital processor is a digital
to analog converter (DAC) which also holds its output
constant for a full sample period. The net effect of this
is that the physical model being driven by the DAC is
not seeing a continuously varying input but an input that
is stepped every T seconds. The ZOH equivalent then
is the step response of that system over a single sample
period. It is computed by applying a unit step at the
input of the analog model and removing it exactly one
sample period later (z−1). Thus, if our function f(t) has

a Laplace Transform of F (s) and is sampled at a rate
fS = 1/TS = 1/T and we define

z
△
= esT so that z−1 = e−sT , (2)

then the ZOH equivalent of F (s) is:

FZOH(z)
△
=

(

1− z−1
)

Z

{

F (s)

s

}

. (3)

On the right side of (3), the second factor represents
the step response of F (s), while the (1 − z−1) factor
indicates that the step is applied at t = 0 and removed
one sample period later. The fact that we start with a
Laplace transform of the system model means that we are
assuming it is LTI.

Taking the Z-transform of the step response of even the
simplest response of a first-order low pass filter (LPF) in
Section 5.1, requires a partial fraction expansion of model
into the individual polynomial roots. The key step of the
partial fraction expansion which can be painfully complex
for higher order transfer functions and – unless one uses a
symbolic math package such as Maple (MapleSoft (2023))
or Mathematica (Wolfram (2023))– tedious to compute
manually. (For this work, Maple was used, but even then
the simplification of the final full system ZOH equiva-
lent required a lot of manual algebra work.) Using the
continuous-time state space (CT-SS) form offers a different
path, and is probably more numerically stable if one wishes
to simply compute the ZOH equivalent for specific numer-
ical values. The explanation of the state-space version of
the ZOH equivalent that we will use comes from the first
edition of Franklin and Powell’s Digital Control (Franklin
and Powell (1980)) as that version predates the widespread
use of Matlab (or even the existence of modern Matlab
(Mathworks (2023)) and so gives a deeper explanation
than newer editions (Franklin et al. (1990, 1998)). Even
Åström andWittenmark’s Computer Control Systems, 2nd

Edition (Åström and Wittenmark (1990)) retain some of
the explanation of computational methods as well.

x(nT + T ) = eFTx(nT ) +

nT+T
∫

nT

eF (nT+T−τ)Gu(τ)dτ, (4)

where x is the state, T is the sample period, nT is the
current time step, {F,G} are the continuous-time state
and input matrices, and we are calculating the state one
step forward in time (at nT + T ). From these we want
to extract the discrete-time state and input matrices for
the ZOH equivalent, {FD, GD}. If we have a ZOH with no
delay, then u(τ) is constant over a sample period and we
can extract it from the integral, i.e.

u(τ) = u(nT ), for nT ≤ τ < nT + T. (5)

The integral gets simplified by a change of variables,

η = nT + T − τ, (6)

which simplifies the integral to:

x(nT + T ) = eFTx(nT ) +

T
∫

0

eFηdηGu(nT ), (7)
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It is worth noting that both the input and the input matrix
have been moved outside of the integral here. What we are
left with is an integral of the matrix exponential, and so

FD = eFT and GD =

T
∫

0

eFηdηG. (8)

From this point, it is all about how best to com-
pute/approximate the matrix exponential and its integral.
Franklin and Powell provide the following simple approx-
imation using a Taylor series of the matrix exponential:

FD = eFT = I + FT +
F 2T 2

2!
+

F 3T 3

3!
+ · · · (9)

To compute the discrete input matrix, they use the follow-
ing trick:

FD = I + FΨT (10)

where

Ψ = I +
FT

2!
+

F 2T 2

3!
+ · · · (11)

With this trick, they evaluate the integral for the input
matrix as:

GD =
∞
∑

k=0

F kT k+1

(k + 1)!
G =

∞
∑

k=0

F kT k

(k + 1)!
TG = ΨTG. (12)

They provide an alternate series for evaluating Ψ which
has better numerical properties:

Ψ = I +
FT

2!

(

I +
FT

3

(

· · ·
FT

N − 1

(

I +
FT

N

)

· · ·

))

,(13)

but this has almost certainly been superseded by more
modern methods. Our point here is to stay with the
symbolic methods as much as possible for comparison to
other discretization methods, so we will use (11) for Ψ and
(10) and (12) for FD and GD, respectively.

In both cases the complexity of the manual symbolic cal-
culation and the availability of excellent computer-aided
control system design (CACSD) tools favors numerical
methods. For each set of parameters, each sample rate, one
can simply apply the continuous-to-discrete (C2D) rou-
tine of choice and out pops the proper numerical discrete
transfer function or state-space realization. This works in
individual cases, but limits intuition about the behavior
of the discrete-time (DT) results. We may know where the
poles and zeros are for a given sample period, T , but tweat
that period, T and we need a new calculation. We have lost
insight to consider the systemic effects of different sample
rates. Furthermore, we have lost connection between the
physical intuition of the CT form and the numbers of the
DT form. Contrast this to the discrete structures of the
biquad state-space (BSS) and bilinear state-space (BLSS)
(Abramovitch (2015b,a, 2018, 2022)), where the discrete-
time first and second order sections can be tightly corre-
lated with their continuous-time parents, and the sample
period shows up in easily understood locations.

5. SYMBOLIC DISCRETIZATION ON SEVERAL
ICONIC MODELS

In this section, we will symbolically discretize several
iconic models, so that we can infer their behavior as

the sample period changes. We will use the full ZOH
equivalent, which should be exact, and the combined
equivalents of the BSS and BLSS. Here we will examine
the complexity of the resulting models. In Sections 8 and
9, we will compare a few of these numerically.

5.1 First-Order Low-Pass Filter

Consider the first-order low-pass filter (LPF) model:

F (s) =
a

s+ a
. (14)

We can compute the well-known ZOH equivalent Franklin
and Powell (1980):

F (s)

s
=

a

s(s+ a)
. (15)

Z

{

F (s)

s

}

=Z

{

1

s

}

−Z

{

1

s+ a

}

, (16)

=
∞
∑

k=0

z−k −
∞
∑

k=0

z−ke−akT , (17)

=
1

1− z−1
−

1

1− e−aT z−1
, (18)

=
(1− e−aT z−1)− (1− z−1)

(1− z−1)(1− e−aT z−1)
. (19)

Z

{

F (s)

s

}

=
z−1 − e−aT z−1

(1− z−1)(1− e−aT z−1)
(20)

=
z−1(1− e−aT )

(1− z−1)(1− e−aT z−1)
, so (21)

(

1− z−1
)

Z

{

F (s)

s

}

=
z−1(1− e−aT )

1− e−aT z−1
(22)

so finally,

FZOH(z) =
(1− e−aT )

z − e−aT
. (23)

If we were to choose pole-zero mapping, we would get a
similar result, depending upon what we chose to do with
the excess zero. If we choose to map the excess zero at
s = −∞ to an excess zero at z = −∞, and we normalize
the DC gain of the discrete filter to be 1, then we get an
identical result:

FPZ,1(z) =
1− e−aT

z − e−aT
. (24)

Things get more complicated if we choose to map the extra
zero differently, say to z = −1, which for a unity DC gain
filter, result in:

FPZ,2(z) =

(

1− e−aT

2

)(

z + 1

z − e−aT

)

. (25)

These may seem like esoteric discussions for such a simple
system, where intuition is still preserved, but we will see
that when the complexity of the system goes up even a
small amount, exactness and intuition become mutually
exclusive. This will become readily apparent in Section
5.4, where we combine a double integrator and this same
first-order LPF.
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5.2 Double Integrator

In this section, we return to the familiar double integrator
example, defined by

F (s) =
1

s2
. (26)

We compute the well-known ZOH equivalent as follows:

F (s)

s
=

1

s3
. (27)

Most books tell us to look up the Z-transform from a table,
from which we get that

Z

{

1

s3

}

=
T 2

2

z(z + 1)

(z − 1)3
. (28)

Finally, we get the well known result with

FZOH(z) = (1− z−1)
T 2

2

z(z + 1)

(z − 1)3
=

T 2

2

(z + 1)

(z − 1)2
. (29)

This is one of the classic examples of symbolically com-
puting the ZOH equivalent, but it is also one of the sim-
plest models to generate. The state-space version of this
computation can be found in multiple texts including a
programming description in (Franklin and Powell (1980)).
Due to space considerations, we will not repeat these here.
Again, this is a familiar result. We can compare this to
the discrete equivalent of the double integrator using the
BSS and the BLSS (Abramovitch (2015b,a, 2018)). If we
discretize the double integrator using a trapezoidal rule
(TR) equivalent, we get

FTR(z) =

(

T

2

)2 (
z + 1

z − 1

)2

. (30)

This has the intuitively satisfying result that the behavior
of each integrator is identical. This allows us to extract
both position and velocity from our double integrator
model using the BLSS. For this benefit, we have to think
more thoroughly about the effects of our discrete zeros.

5.3 First-Order Bilinear Filter

A first order bilinear filter model shows the first signs of
our coming complexity, although we are still able to extract
some physical intuition from the ZOH equivalent. For

F (s) =
s+ b1
s+ a1

. (31)

For the ZOH equivalent, we need:

F (s)

s
=

s+ b1
s(s+ a1)

. (32)

We can compute the partial fraction expansion of (32) as:

F (s)

s
=

b1
a1

s
+

1− b1
a1

s+ a1
, (33)

which has a Z-transform of:

F1(z) =

z(b1
a1

)

z − 1
+

z(1− b1
a1

)

z − e−a1T
. (34)

Multiply these terms (1− z−1) individually, resulting in:

FZOH(z) =
b1
a1

+
(z − 1)(1− b1

a1

)

z − e−a1T
. (35)

This can be combined over a single denominator and
“simplified” to achieve:

FZOH(z) =
z −

(

1− b1
a1

(

1− e−a1T
)

)

z − e−a1T
. (36)

What is insightful here is to compare this to the result we
get from a pole-zero mapping discrete equivalent:

FPZ(z) =
z − e−b1T

z − e−a1T
. (37)

We can do a Taylor series expansion of e−b1T and e−a1T :

e−b1T ≈ 1− b1T +
(b1T )

2

2!
−

(b1T )
3

3!
+ · · · and (38)

e−a1T ≈ 1− a1T +
(a1T )

2

2!
−

(a1T )
3

3!
+ · · · . (39)

Now,

1−
b1
a1

(

1− e−a1T
)

≈ 1−
b1
a1

(1− (1− a1T + · · ·)) (40)

≈ 1−
b1
a1

(

a1T −
(a1T )

2

2!
· · ·

)

(41)

≈ 1− b1T (42)

≈ e−b1T . (43)

This is a satisfying and intuitive result. As the sample
period, T , gets smaller, the difference between the ZOH
and mapped pole-zero equivalents disappears. We will
hold on to this notion as we move forward in the paper.
However, in order to achieve that intuition, we needed to
give up the one major advantage of the ZOH equivalent of
the full system: its exactness.

5.4 Double Integrator Plus First-Order LPF

Things get far more complicated when we combine our
first two canonical models, i.e. a double integrator and a
first-order low pass filter. Define

F (s) =
a1

s2(s+ a1)
=

a1
s3 + a1s2

. (44)

For the ZOH equivalent, we need:

F (s)

s
=

a1
s4 + a1s3

. (45)

We can compute the partial fraction expansion of (45) as:

F (s)

s
=

1

s3
−

1

a1s2
+

1

a21s
−

1

a21(s+ a1)
, (46)

which has a Z-transform of:
5



F1(z) =
T 2z(z + 1)

2(z − 1)3
−

Tz

a1(z − 1)2
+

z

a21(z − 1)

−
z

a21(z − e−a1T )
. (47)

Multiply these terms (1− z−1) individually, resulting in:

FZOH(z) =
T 2(z + 1)

2(z − 1)2
−

T

a1(z − 1)
+

1

a21

−
z − 1

a21(z − e−a1T )
. (48)

This can be combined over a single denominator and
“simplified” to achieve:

FZOH(z) =
bz0z

2 + bz1z + bz2
2a21(z − 1)2(z − e−a1T )

and (49)

bz0 = (a1T )2−2a1T+2(1−e−a1T ), (50)

bz1 = ((a1T )2−4)(1−e−a1T )+2a1T (1+e−a1T ), (51)

bz2 = −(a1T )2e−a1T
−2a1Te−a1T+2(1−e−a1T ). (52)

These results are far more complicated than their indi-
vidual components. While the denominator is intuitive,
the numerator has become an exact-but-inscrutable mess.
Compare this to the inexact, but far more understandable
discretization using a TR approximation or matched pole-
zero mapping. It is convenient to use a TR on the double
integrator factor, and pole zero mapping on the LPF. This
“divide-and-conquer” approach results in the intuitive dis-
crete equivalent of:

FTR,PZ,1(z) =

(

T

2

)2 (
z + 1

z − 1

)2 (
1− e−aT

z − e−aT

)

, (53)

if we use (24) or

FTR,PZ,2(z) =

(

T

2

)2 (
z + 1

z − 1

)2 (
z + 1

2

)(

1− e−aT

z − e−aT

)

(54)

if we use (25).

5.5 A Single Biquad

A single bi-quadratic (biquad) filter model can be defined
as:

F (s) =
(s+ b1)(s+ b2)

(s+ a1)(s+ a2)
=

s2 + (b1 + b2)s+ b1b2
s2 + (a1 + a2)s+ a1a2

. (55)

For the ZOH equivalent, we need:

F (s)

s
=

s2 + (b1 + b2)s+ b1b2
s3 + (a1 + a2)s2 + a1a2s

. (56)

We can compute the partial fraction expansion of (56) as:

F (s)

s
=

b1b2
a1a2s

+
a21 − a1b1 − a1b2 + b1b2
a1(a1 − a2)(s+ a1)

−
a22 − a2b1 − a2b2 + b1b2
a1(a1 − a2)(s+ a2)

, (57)

which has a Z-transform of:

F1(z) =
b1b2z

a1a2(z − 1)
+

(a21 − a1b1 − a1b2 + b1b2)z

a1(a1 − a2)(z − e−a1T )

−
(a22 − a2b1 − a2b2 + b1b2)z

a2(a1 − a2)(z − e−a2T )
. (58)

Multiply these terms (1− z−1) individually, resulting in:

FZOH(z) =
b1b2
a1a2

+
(a21 − a1b1 − a1b2 + b1b2)(z − 1)

a1(a1 − a2)(z − e−a1T )

−
(a22 − a2b1 − a2b2 + b1b2)(z − 1)

a1(a1 − a2)(z − e−a2T )
. (59)

This can be combined over a single denominator and
“simplified” to achieve:

FZOH(z) =
bz0z

2 + bz1z + bz2
a1a2(a1 − a2)(z − e−a1T )(z − e−a2T )

, (60)

where

bz0 = a1a2(a1 − a2), (61)

bz1 = (b1b2 − a1a2)(a1 − a2)

+(b1b2 + a1a2)(a2e
−a1T − a1e

−a2T )

+a1a2(b1 + b2)(e
−a2T − e−a1T ), (62)

bz2 = b1b2(a1 − a2) + a1a2(b1 + b2)(e
−a1T − e−a2T )

+(b1b2 − a1a2)(a1e
−a2T − a2e

−a1T ). (63)

If we look at the matched pole-zero equivalent, we get the
much more understandable:

FPZ(z) =
(z − e−b1T )(z − e−b2T )

(z − e−a1T )(z − e−a2T )
. (64)

It is possible that we could try to repeat the comparisons
from the end of Section 5.3 in this case, mapping the
differences between the ZOH equivalent of (60)–(63) and
the pole-zero mapping equivalent of (64) as we shorten the
sample period, T . However, this problem is literally much
more convoluted than the prior example.

5.6 Double Integrator plus a Single Biquad: Symbolically

In this section, we present the symbolic discretization
of a more representative mechatronic model: a double
integrator with a single biquad. This is a relatively simple
fourth-order model, but we will see that the symbolic
computation of the ZOH equivalent becomes unusable for
any insight. This should not surprise us too much, given
the rapid way in which the ZOH equivalents of simpler
models, a double integrator plus first-order low pass filter
(LPF) and a single biquad got complicated. This model
combines all the complexities of the prior examples. One
can argue that it is the first “difficult” problem in this
group. The symbolic ZOH equivalent of the entire CT
model will show a new level of both length and obscurity.
A double integrator plus a biquad can be defined as:

F (s) =
(s+ b1)(s+ b2)

s2(s+ a1)(s+ a2)
(65)

=
s2 + (b1 + b2)s+ b1b2

s4 + (a1 + a2)s3 + a1a2s2
. (66)
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For the ZOH equivalent, we need:

F (s)

s
=

s2 + (b1 + b2)s+ b1b2
s5 + (a1 + a2)s4 + a1a2s3

. (67)

We can compute the partial fraction expansion of (67) as:

F (s)

s
=

b1b2
a1a2s3

+
a1a2(b1 + b2)− b1b2(a1 + a2)

a21a
2
2s

2
+ (68)

a21a
2
2 − a1a2(a1 + a2)(b1 + b2) + b1b2(a

2
1 + a1a2 + a22)

a31a
3
2s

+
a21 − b1a1 − b2a1 + b1b2
a31(a1 − a2)(s+ a1)

−
a22 − b1a2 − b2a2 + b1b2
a32(a1 − a2)(s+ a2)

which has a Z-transform of:

F1(z) =
b1b2T

2z(z + 1)

2a1a2(z − 1)3
+

z

a1a2(z − 1)
+ (69)

(a1a2(b1 + b2)− b1b2)Tz(a1 + a2)

a21a
2
2(z − 1)2

+

−a1a2(a1 + a2)(b1 + b2) + b1b2(a
2
1 + a1a2 + a22))z

a31a
3
2(z − 1)

+
(a21 − b1a1 − b2a1 + b1b2)z

a31(a1 − a2)(z − e−a1T )

−
(a22 − b1a2 − b2a2 + b1b2)z

a32(a1 − a2)(z − e−a2T )
.

Multiply these terms by (1 − z−1) individually, resulting
in:

FZOH(z) =
b1b2T

2(z + 1)

2a1a2(z − 1)2
+ (70)

(a1a2(b1 + b2)− b1b2)T (a1 + a2)

a21a
2
2(z − 1)

+
1

a1a2
+

−a1a2(a1 + a2)(b1 + b2) + b1b2(a
2
1 + a1a2 + a22)

a31a
3
2

+
(a21 − b1a1 − b2a1 + b1b2)(z − 1)

a31(a1 − a2)(z − e−a1T )

−
(a22 − b1a2 − b2a2 + b1b2)(z − 1)

a32(a1 − a2)(z − e−a2T )
.

which can be combined over a single denominator and
“simplified” to achieve:

FZOH(z) =
bz0z

3 + bz1z
2 + bz2z + bz3

a31a
3
2(a1 − a2)(z − 1)2(z − e−a1T )(z − e−a2T )

,(71)

where

bz0 = bz0ae
−(a1+a2)T + bz0b2e

−a1T +

bz0c2e
−a2T + bz0d, (72)

bz1 = bz1a2e
−(a1+a2)T + bz1be

−a1T +

bz1ce
−a2T + bz1d, (73)

bz2 = bz2ae
−(a1+a2)T + bz2be

−a1T +

bz2ce
−a2T + bz2d2, (74)

bz3 = (a21(a2 + Tb1b2)− a22(a1 + Tb1b2))×

2a1a2e
−(a1+a2)T . (75)

The individual coefficient terms are so complicated as to
need their own stack of equations:

bz0a =−2Ta21a
2
2(a1 − a2)(b1 + b2) +

2(a31 − a32)b1b2 − 2a1a2(a
2
1 − a22)(b1 + b2)−

T 2a21a
2
2(a1 − a2)b1b2, (76)

bz0b = a1a2(a
2
1 − a22)(b1 + b2)−

(a31 − a32)b1b2 − a21a
2
2(a1 − a2), (77)

bz0c =+a1a2(a
2
1 − a22)(b1 + b2)−

(a31 − a32)b1b2 − a21a
2
2(a1 − a2), (78)

bz0d =−2Ta1a2(a
2
1 − a22)b1b2 +

T 2a21a
2
2(a1 − a2)b1b2 + 2a21a

2
2(a1 − a2)

2Ta21a
2
2(a1 − a2)(b1 + b2)−

2a1a2(a
2
1 − a22)(b1 + b2) + 2(a31 − a32)b1b2 (79)

bz1a = (a31 − a32)b1b2 + a21a
2
2(a1 − a2)

−a1a2(a
2
1 − a22)(b1 + b2), (80)

bz1b =−2a31a
2
2 + 2a31a2(b1 + b2)− 2a31b1b2 −

T 2a21a
2
2(a1 − a2)b1b2 +

2Ta1a2(a
2
1 − a22)b1b2 −

2Ta21a
2
2(a1 − a2)(b1 + b2) +

4a1a
3
2(b1 + b2)− 4a32b1b2 − 4a21a

3
2, (81)

bz1c = 2a21a
3
2 − 2a1a

3
2(b1 + b2) + 2a31b1b2 −

T 2a21a
2
2(a1 − a2)b1b2 +

2Ta1a2(a
2
1 − a22)b1b2 −

2Ta21a
2
2(a1 − a2)(b1 + b2)−

4a31a2(b1 + b2) + 4a31b1b2 + 4a31a
2
2, (82)

bz1d = 2Ta1a2(a
2
1 − a22)b1b2 + T 2a21a

2
2(a1 − a2)b1b2 +

4a1a2(a
2
1 − a22)(b1 + b2)

−2Ta21a
2
2(a1 − a2)(b1 + b2)

−4a21a
2
2(a1 − a2)− 4(a31 − a32)b1b2. (83)

bz2a = 2Ta21a
2
2(a1 − a2)(b1 + b2) +

4a1a2(a
2
1 − a22)(b1 + b2)−

4(a31 − a32)b1b2 + T 2a21a
2
2(a1 − a2)b1b2 −

4a21a
2
2(a1 − a2)− 2Ta1a2(a

2
1 − a22)b1b2, (84)

bz2b = 4a31(a
2
2 − a2(b1 + b2) + b1b2)−

T 2a21a
2
2(a1 − a2)b1b2 − 2Ta1a2(a

2
1 − a22) +

2Ta21a
2
2(a1 − a2)(b1 + b2)−

2a1a
3
2(b1 + b2) + 2a31b1b2 + 2a21a

3
2, (85)

bz2c =−4a32(a
2
1 − a1(b1 + b2) + b1b2)−

T 2a21a
2
2(a1 − a2)b1b2 − 2Ta1a2(a

2
1 − a22) +

2Ta21a
2
2(a1 − a2)(b1 + b2) +

2a31a2(b1 + b2)− 2a31b1b2 − 2a31a
2
2, (86)

bz2d = a21a
2
2(a1 − a2) + (a31 − a32)b1b2

−a1a2(a
2
1 − a22)(b1 + b2 (87)
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This is clearly a mess, in that it is extremely difficult to get
any intuition from these numerator terms. If we look at the
model discretized with a combination of trapezoidal rule
for the double integrator and matched pole-zero equivalent
for the biquad, we get the much more understandable:

FPZ,1(z) =
T 2

4

[

(z + 1)2(z − e−b1T )(z − e−b2T )

(z − 1)2(z − e−a1T )(z − e−a2T )

]

. (88)

If we wish to match the ZOH equivalent mapping one
of the CT zeros at s = −∞ to |z| = ∞, then we could
combine the ZOH equivalent of the double integrator with
pole-zero mapping on the biquad

FPZ,2(z) =
T 2

2

[

(z + 1)(z − e−b1T )(z − e−b2T )

(z − 1)2(z − e−a1T )(z − e−a2T )

]

. (89)

Some things become readily apparent:

• As expected the symbolic ZOH equivalent of the
complete continuous-time model is far too complex
for the purpose of drawing insight.

• The OBLAAT discretization still yields intuitive re-
sults.

• The OBLAAT discretization gives us options for how
to discretize each section in general, but the rigid
body (double integrator) section in particular.

The key question we must answer is how much accuracy
was sacrificed for this intuition. In Section 8, we will pick
an example structure and see how this inaccuracy relates
to the sample rate. We will map the differences between
the ZOH equivalent of (71)–(87) and the combined equiv-
alents of (88) –(89) as we shorten the sample period, T .

6. LESSONS FROM THIS PAINFUL EXERCISE

The point of this walk through algebraic pain and suffering
is to show how impractical it is to attempt symbolic dis-
cretization all but the simplest models. One might wonder
why we would worry about symbolic discretization. The
main reason is that this allows us to gain intuition on how
continuous-time parameters and the sample period, affect
the sample-data behavior. When we are forced to only eval-
uate discrete models numerically, we are bound to a given
instance of a model, rather than a class of parameterized
models. The comparison between exact discretization with
no understanding and inexact discretization which allows
intuition should be carefully considered, especially when
we are in a position to sample at a high enough rate to
shrink the difference between the input-output behaviors
of the two approaches.

While we know that for a plant input that is held steady
through the sample period, the ZOH equivalent is exact,
how much accuracy is lost using an OBLAAT approach?
At the same time, were we to use one of these discrete
equivalents in a model of a physical system we were trying
to control, which one would allow us to use the discrete
model to debug the internal behavior of the physical
system? These are the two questions at the heart of
this study. We will discuss a method that allows us to
do this in Section 7 below. In there we will start with
a symbolic example more complex than any in Section
5, the double integrator with a single biquad filter. In
principle, a rather simple fourth-order system should be

manageable, but we will see that the symbolic complexity
of that discretization makes it virtually impossible to gain
insight from changes in the continuous-time parameters
or the sample period. We will then move to higher order
systems for which a symbolic ZOH equivalent is all but
impossible (certainly inscrutable), while the OBLAAT
discretized models retain intuition. We will then compare
these discretizations numerically for what should be a
fairly representative version of the problem. By varying
the sample rate/sample period we should be able to tell
when our intuitive discretization matches our “exact”
discretization to a sufficient degree that we are confident
in using it.

7. A DUAL-DISCRETIZATION METHOD

How do we know if we can use OBLAAT discretization
or if we need to stick with the full ZOH equivalent? One
answer is to use our CACSD tools to evaluate both, and
then compare some error metric between the two. Modern
tools make this so easy to do numerically, that there is
little reason not to try. When the error is unacceptable,
we either use the ZOH equivalent or make an adjustment
to the system model (perhaps the sample rate). When the
error is acceptable, one can opt for the intuition preserving
methods with less worry. A step-by-step method might
include:

1) Starting with the open-loop, continuous-time
plant transfer function, transform that into a
cascade of biquads and bilinear sections (CT-
BSS/BLSS).

2) Insert the continuous-time model parameters
into the continuous-time model.

3) Discretize the BSS/BSS representation symbol-
ically one block at a time (OBLAAT) using the
favored discrete equivalent for each section.

4) Discretize the full CT model using a ZOH equiv-
alent.

5) Pick a representative set of sample periods, {Ti},
with the Nyquist frequency always above the
highest modeled dynamics.

6) For each Ti, evaluate the input-output responses
of the two discretization approaches and com-
pute an error metric.

7) Decide whether the OBLAAT discrete equivalent
is acceptable, if it can be made acceptable by
lowering T , or if the ZOH equivalent of the full
CT model is the only acceptable discretization.

Engineering intuition tells us that for any set of model
parameters, there will be a Ti small enough to make
the error between the understandable/debuggable and
the “true” model insignificant. If this sample period is
achievable with the sensors and computation at hand, we
are free to implement our DT model in a way that can be
related to our physical world measurements.

8. DOUBLE INTEGRATOR PLUS A SINGLE
BIQUAD

In this section, we take the most complex symbolic exam-
ple from Section 5.6 and compare the differences between
different sample rates. In principle, we should be able to
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Fig. 2. Multiple discretizations of a double integrator plus
biquad with parameters noted above.
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Fig. 3. Multiple discretizations of a double integrator plus
biquad with parameters noted above. Focusing on the
full system ZOH equivalent versus a discrete equiva-
lent composed of ZOH equivalent of the double inte-
grator and a matched pole-zero mapping equivalent
of the biquad.
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Fig. 4. The error magnitudes between the exact discretiza-
tion and the other methods for a double integrator
plus a single biquad.

note the differences between the ZOH equivalent of the full
system CT model and an OBLAAT discretization.

In particular we will choose several versions of this prob-
lem. For the OBLAAT discretization, we will discretize the

biquad using matched pole-zero mapping. For the rigid
body portion, the double integrator, we will try both a
ZOH equivalent and a TR equivalent. The key feature
of this is that we have options in our modeling. If we
wish the double integrator portion to more closely match
the behavior of the CT model, we can adopt the TR
discretization of that section. If we wish to match the
pole-zero excess of the full system ZOH equivalent, we
can adopt the ZOH equivalent on the double integrator
portion. We have choices. The plots will be compared to
the ZOH equivalent of the full CT model. The Bode plot of
the CT model will be in blue. The OBLAAT discretization
will be in magenta when the trapezoidal rule is used on the
rigid-body portion and in cyan when the ZOH equivalent
is used on the rigid body section. The ZOH equivalent of
the full CT model will be in red. We will also plot the error
between the “true” discrete model, the ZOH equivalent of
the full CT model and the other two discretizations. It
turns out that the magnitude of the errors are so small
that it seems most helpful to simply plot the magnitudes.

Figures 2 and 3 show a single biquad with the resonance
at 100 Hz and the anti-resonance at 120 Hz. Both have
damping ratios of ζ = 0.01. In this case the sample rate is
10 kHz, setting the Nyquist frequency at 5 kHz. In Figure
2 we see that all of the OBLAAT discretizations match
the complete model ZOH equivalent up to and around the
resonance in log magnitude but deviate some in phase. A
focus on Figure 3 focuses on the OBLAAT using the ZOH
equivalent for the rigid body, and now both magnitude
and phase match the full model ZOH equivalent out to the
Nyquist frequency to high precision. This is clearly seen in
the magnitude plots of the error in Figure 4. We can make
this a more severe test by pushing the resonance/anti-
resonance pair closer to the Nyquist frequency.
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Fig. 5. Multiple discretizations of a double integrator plus
biquad with parameters noted above.

This is shown in Figures 5 and 6, where the sample
frequency was dropped to 5 kHz, making the Nyquist
frequency 2.5 kHz. Furthermore, the resonance was moved
up to 1 kHz and the anti-resonance moved up to 1.2 kHz.
This seems like an extreme test of sample rate versus
accuracy, but once again we see that for these examples,
the differences in input-output behavior is not visible in
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Fig. 6. Multiple discretizations of a double integrator plus
biquad with parameters noted above. Focusing on the
full system ZOH equivalent versus a discrete equiva-
lent composed of ZOH equivalent of the double inte-
grator and a matched pole-zero mapping equivalent
of the biquad.
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Fig. 7. The error magnitudes between the exact discretiza-
tion and the other methods for a double integrator
plus a single biquad. Despite the Nyquist frequency
being barely twice that of the last feature, the errors
induced by the non-exact methods are minuscule.

the Bode plots. Once again, the magnitude of the errors
shown in Figure 7 are minuscule.

9. DOUBLE INTEGRATOR PLUS THREE BIQUADS

In this section, we move to a model that would be next
to impossible to discretize symbolically as was done in
Section 5. We have resonances at 100, 300, and 1000
Hz; and anti-resonances at 120, 360, and 1200 Hz. All
numerators and denominators have damping ratios of
0.01, and the sample frequency is set to 5 kHz. Again,
we compare different discretization methods compare the
differences between different sample rates. In principle, we
should be able to note the differences between the ZOH
equivalent of the full system continuous-time model and a
“one-block-at-a-time” discretization.

A double integrator plus three biquads can be defined as:

F (s) =

(

1

s2

)(

(s+ b11)(s+ b12)

(s+ a11)(s+ a12)

)

(90)
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Fig. 8. Multiple discretizations of a double integrator plus
biquad with parameters noted above.
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Fig. 9. Multiple discretizations of a double integrator plus
biquad with parameters noted above. Focusing on the
full system ZOH equivalent versus a discrete equiva-
lent composed of ZOH equivalent of the double inte-
grator and a matched pole-zero mapping equivalent
of the biquad.

·

(

(s+ b21)(s+ b22)

(s+ a21)(s+ a22)

)(

(s+ b31)(s+ b32)

(s+ a31)(s+ a32)

)

.

Using an OBLAAT discretization philosophy, we can dis-
cretize this symbolically as:

FTR(z) =
T 2(z + 1)2

4(z − 1)2

(

(z − e−b11T )(z − e−b12T )

(z − e−a11T )(z − e−a12T )

)

(91)

·
(z − e−b21T )(z − e−b22T )

(z − e−a21T )(z − e−a22T )

(z − e−b31T )(z − e−b32T )

(z − e−a31T )(z − e−a32T )
.

when using the trapezoidal rule or

FZOH(z) =
T 2(z + 1)

2(z − 1)2
(z − e−b11T )(z − e−b12T )

(z − e−a11T )(z − e−a12T )
(92)

·
(z − e−b21T )(z − e−b22T )

(z − e−a21T )(z − e−a22T )

(z − e−b31T )(z − e−b32T )

(z − e−a31T )(z − e−a32T )
,

when the ZOH is preferred for the on the double integrator.
While this discretization is not trivial, it certainly retains
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Fig. 10. The error magnitudes between the exact dis-
cretization and the other methods for a double in-
tegrator plus three biquads. Despite the Nyquist fre-
quency being barely twice that of the last feature, the
errors induced by the non-exact methods are minus-
cule.

physical intuition. We look to the plots to determine if
the accuracy loss was acceptable. As before, the plots of
Figure 8 shows that the main differences occur when we
select the trapezoidal rule instead of the ZOH equivalent
for the double integrator portion. This is made obvious
in Figure 9, when we focus on the ZOH equivalent of
the full CT model and the OBLAAT equivalent that uses
the ZOH equivalent of the double integrator. The error
plot of Figure 10 again shows the error magnitude to be
minuscule.

10. SUMMARY

This paper examined issues of discretization with the hope
that the reader could know when it is reasonable to go
against dogma and use a divide-and-conquer discretization
approach. The utility of the divide-and-conquer discretiza-
tion can be seen in how the biquad state-space (BSS)
and bilinear state-space (BLSS) can so tightly couple the
continuous and discrete-time states of a given system. This
view has been heavily influenced by an admonition from
Richard Hamming, one of the early pioneers of numerical
methods (Hamming (1962)): ”The purpose of computing
is insight, not numbers.”

Applying this philosophy to discretization of system mod-
els for feedback control, we must ask ourselves if we want
the most precise numbers for simulations that will never
touch a physical system or do we want a DT model that
gives us insight into how our computer-based control is
relating to the physical implementation of the system. We
contend that the latter is more useful when we are trying
to apply advanced control methodologies to all but the
simplest of physical systems. Even in the latter cases, there
is an argument to be made that the plant models (e.g. first
order plus time delay or double integrator) preserve their
physical intuition under discretization.

The point of all the symbolic manipulations of Section
5 was to show that as soon as we get away from the
simplest of iconic models, the ZOH equivalent becomes
inscrutable. The only way to get any understanding of
what is going on is to approximate some of the terms.
We hope that the irony of this is not lost on the reader:
the justification for using the ZOH equivalent was that in
many important cases it was “exact”. However, for all but
the simplest of cases that exactness came at the price of

any ability to understand what was happening internally
in the model. In the end, we had to approximate the
exact model to get any insights. It is our assertion that
we might as well start by giving up exactitude knowingly
so as to preserve understanding. The method described in
Section 7 provides us with a simple reality check based
on evaluating the input-output error between the two
numerical evaluations.

In evaluating several iconic models in Section 5, we were
able to get symbolic versions of the different discrete equiv-
alents and then could compare them with different sample
rates. Using the ZOH equivalent as the true value, we were
able to compare the magnitude and phase errors between
other methods and the ZOH equivalent of the full CT
model. While higher sample rates relative to the system
dynamics (see Moore’s Law (Wikipedia (2022)) reduce the
input-output differences between the ZOH equivalent and
OBLAAT discretization, our examples of Sections 8 and
9 showed that even with a Nyquist frequency at a mere
2.5 times the highest resonance, the error was minimal.
In these examples, that lost precision was almost always
below -100 dB in magnitude (5 orders of magnitude – see
Figures 4, 7, and 10). This seems acceptable to all but the
most extreme precision needs. We have demonstrated in
previous work (Abramovitch (2015b,a, 2018)) that if we
were willing to use this divide-and-conquer discretization
approach, structures such a the BSS and the BLSS could
preserve numerical accuracy and physical intuition. We
now see that the lost exactness of discretizing systems
in this way is often negligible. The dual-discretization
comparison of Section 7 allows us to run a simple reality
check. What is new here is an understanding of how little
accuracy we are gaining with the full ZOH equivalent,
while we are clearly loosing much of our ability to under-
stand and debug higher order digital models. We believe
that if the error is manageable, it might be logical to
use the discretization method that preserves intuition and
physicality. At the very least, it should be a conscious
design choice.
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Åström, K.J. and Wittenmark, B. (1990). Computer
Controlled Systems, Theory and Design. Prentice Hall,
Englewood Cliffs, N.J. 07632, second edition.

Franklin, G.F. and Powell, J.D. (1980). Digital Control
of Dynamic Systems. Addison-Wesley, Menlo Park,
California, first edition.

Franklin, G.F., Powell, J.D., and Workman, M.L. (1990).
Digital Control of Dynamic Systems. Addison-Wesley,
Menlo Park, CA, second edition.

Franklin, G.F., Powell, J.D., and Workman, M.L. (1998).
Digital Control of Dynamic Systems. Addison Wesley
Longman, Menlo Park, California, third edition.

Hamming, R. (1962). Numerical Methods for Scientists
and Engineers. McGraw-Hill, New York. ISBN 978-0-
486-65241-2.

Lago, G.V. and Benningfield, L.M. (1979). Circuit and
System Theory. Wiley, University of Michigan.

MapleSoft (2023). Maple. URL https://www.maplesoft.
com/products/Maple/. [On line; accessed September
12, 2023].

Math Is Fun (2023). Partial fractions. URL https://
www.mathsisfun.com/algebra/partial-fractions.
html. [On line; accessed September 12, 2023].

Mathworks (2023). Matlab. URL https://www.
mathworks.com/products/matlab.html. [On line; ac-
cessed September 12, 2023].

Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vet-
terling, W.T. (2007). Numerical Recipes 3rd Edition:
The Art of Scientific Computing. Cambridge University
Press, Cambridge, third edition.

Ragazzini, J.R. and Franklin, G.F. (1958). Sampled-Data
Control Systems. McGraw-Hill Book Company, New
York, N. Y.

Wikipedia (2016). Apollo guidance computer.
URL https://en.wikipedia.org/wiki/Apollo\
_Guidance\_Computer. [Online; accessed June 26,
2016].

Wikipedia (2022). Moore’s law. URL https://en.
wikipedia.org/wiki/Moore’s\_law. [On line; ac-
cessed September 21, 2022].

Wikipedia (2023a). Discretization. URL https://en.
wikipedia.org/wiki/Discretization. [On line; ac-
cessed September 12, 2023].

Wikipedia (2023b). Partial fraction decomposition.
URL https://en.wikipedia.org/wiki/Partial\
_fraction\_decomposition. [On line; accessed
September 12, 2023].

Wolfram (2023). Mathematica. URL https://
www.wolfram.com/mathematica/. [On line; accessed
September 12, 2023].

12


