
Practical Methods for Real World Control Systems

Physical
System

Digital
Computer

Actuators

Analog
Filters

Power
Amplifier

Digital to
Analog

Sensor

Measured
Outputs

Small
Electrical
Signals

Small
Electrical
Signals

Digital
Signals

Digital
Signals

Digital
Reference

Large
Electrical
Signals

Force/
Current/

Flow/
Etc.

Physical
Outputs

Analog
to Digital

Daniel Y. Abramovitch

System Architect, Agilent Technologies

E-mail: abramovitch@ieee.org

December 31, 2022; 9:46 PM

Disclaimer

This set of materials started as a companion to the Practical Methods for Real World
Control Systems Workshop. It has grown consistently in the five years that we have
been doing the workshops as I have found new things to explain and cleaned up some
of the older explanations. I would love it to be complete, but it will not be, at least in this
first cut attempt. It will be information rich, and I believe that most of it will be accurate
and useful. That being said, the reader should exercise engineering judgment in the
use of this material. No warranties expressed or implied here, just the best thinking I
can give you at this point, and a promise to try to fix any mistakes that I or others might
find.
In its present form, the book is far beyond being a companion to the workshop but it is
not ready for publication in a salable form. It is, though, time to put a zeroth edition out
so that I can get more feedback on the ideas and presentations here. The hope is that
by the time I get to the first edition, it will be something that is worth a few bucks.
In order to make things clear in this document, I will heavily rely on what can best be
called sketches. Basically, these are like sketches in notes, but done on the computer.
They allow me to convey concepts without physical constants, but are not meant to be
exact. Whenever possible, I will back these up with plots from examples and when I
see that the sketches vary too far from reality, I will try to make adjustments over time.
What I will guarantee you is that I will only present material that I have actually gone
through and understood thoroughly. Of course, this will limit the amount of material in
the book, but as I am long winded, I believe I can make up for it.
Finally, the language is informal since I find that I communicate ideas far more effec-
tively with a casual writing style. (I finally have something in common with Cervantés.)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
2

Winter 2022-2023
December 31, 2022

Copyright (©) 2018, 2019, 2020, 2021, 2022 by

Daniel Yves Abramovitch

Created: May 9, 2018

Last Updated: December 31, 2022

Edition: 0.5a

Permission to download an unaltered zeroth (0.x Editions) is for individual use is granted.

This material may not be altered, excerpted, reproduced in part, or offered for sale by anyone

without the express permission of the author, Daniel Yves Abramovitch. Contact via email:

abramovitch@ieee.org, abramovitch@alumni.stanford.edu.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
3

Winter 2022-2023
December 31, 2022

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
4

Winter 2022-2023
December 31, 2022

Contents

1 Forward 49

1.1 The Purpose of the Workshop . 50

1.2 The Purpose of this Book . 51

1.3 The Style of this Book . 54

1.4 Intended Audience for the Workshop and Book . 55

1.5 Prerequisites . 56

2 Introduction 59

2.1 Introduction to the Introduction . 59

2.2 Use the Digital, Luke . 66

2.3 Low-Order Models . 68

2.3.1 Integrator . 70

2.3.2 Integrator with Delay . 70

5

Table of Contents

2.3.3 First Order Low Pass with Delay . 72

2.3.4 Bilinear Filter . 72

2.3.5 Double Integrator . 74

2.3.6 Double Integrator with Delay . 75

2.3.7 Pure Delay . 76

2.3.8 Simple Resonance with No Zeros . 78

2.3.9 Simple Resonance with One Zero . 79

2.3.10 Resonance with Anti-Resonance (notch) . 79

2.3.11 Some General Ideas . 80

2.4 The Filtering Framework versus the Feedback Framework 80

2.5 Stuff Happens . 83

2.5.1 Sampling . 83

2.5.2 Delay . 87

2.5.3 Time Constants . 88

2.5.4 Nonlinearities . 90

2.5.5 Noise . 91

2.6 Skill Sets . 93

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
6

Winter 2022-2023
December 31, 2022

Table of Contents

2.7 Introduction Summary . 94

3 System Models and Characterizing Them with Measurements 97

3.1 In This Chapter . 97

3.2 Chapter Ethos . 99

3.3 System Models & Meas. Intro. 100

3.4 Brief Discussion of Domains . 106

3.5 Outline of the Rest of Chapter . 110

3.6 Brief Review of Discretization . 112

3.6.1 Discretization Via Numerical Integration Equivalents 114

3.6.2 Forward Rectangular Rule . 115

3.6.3 Backward Rectangular Rule (BR) Equivalent 116

3.6.4 Trapezoidal Rule (TR) Equivalent . 118

3.6.5 Numerical Integration Equivalent Summary . 119

3.6.6 Matched Pole-Zero Equivalent . 120

3.6.7 The Zero-Order Hold Equivalent . 122

3.6.8 Discretization Summary . 123

3.7 The Fate of Physical Parameters in Discretization . 124

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
7

Winter 2022-2023
December 31, 2022

Table of Contents

3.8 A Brief Look at Discrete-Time Time Domain Identification 127

3.8.1 Some Things to Note . 130

3.8.2 When Discrete-Time, Time-Domain ID Goes Bad 133

3.9 Step Response Measurements . 133

3.10 Signal Segmentation . 135

3.11 Extracting Step Response Parameters . 139

3.11.1 LTI Testing . 140

3.11.2 Gain . 141

3.11.3 Transport Delay or Startup Time . 141

3.11.4 Settle Time . 142

3.11.5 Overshoot . 142

3.11.6 Rise Time . 143

3.12 Extracting Model Parameters from Step Response Data 143

3.13 The Mythical First Order Section . 143

3.14 The Mythical Second Order Section . 145

3.14.1 Gain from Step Response . 146

3.14.2 Extracting Data from Ringing . 147

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
8

Winter 2022-2023
December 31, 2022

Table of Contents

3.14.3 Extracting Data from Overshoot . 147

3.14.4 Extracting Data from Settling Time . 149

3.15 Frequency Response Measurements . 149

3.15.1 Practical Limits on Frequency Response Methods 150

3.15.2 Clearing Up Some Frequency Response Terminology 151

3.15.3 A Note on Notation . 152

3.16 Frequency Response Options . 153

3.17 The Coherence Function . 156

3.18 Closed-Loop Measurements: Two vs. Three Wire . 157

3.19 Fourier Analysis . 162

3.19.1 Fourier Transforms . 163

3.19.2 Fourier Series . 164

3.20 FFT Based Analysis . 165

3.20.1 FFTs . 165

3.20.2 Power Spectral and Cross Spectral Densities 166

3.21 The Stepped-Sine Integral . 168

3.22 Stepped-Sine Stimulus and Integration for FPGAs . 173

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
9

Winter 2022-2023
December 31, 2022

Table of Contents

3.23 Software Pre and Post Processing . 174

3.24 FFT versus Stepped-Sine Tradeoffs . 175

3.25 The Case for Connected Measurements . 178

3.26 The Case for Built-In Stepped-Sine . 183

3.27 Simulation and Measurement Results . 185

3.28 Extracting a Parametric Mode . 186

3.29 Improved Curve Fitting for Mechatronic Systems . 189

3.30 The Effect of Delay on Curve Fits . 194

3.31 Chapter Summary . 196

4 Simple Controllers for Simple Models (or why so many controllers are PIDs 199

4.1 In This Chapter . 199

4.2 Chapter Ethos . 201

4.3 Chapter Introduction . 203

4.4 What is a PID and When is It Useful? . 207

4.4.1 Recalling the Final Value Theorem . 208

4.5 Lags, Leads, Lag-Leads, Double Leads, and the Like 211

4.6 PID Control: A Unified Framework . 212

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
10

Winter 2022-2023
December 31, 2022

Table of Contents

4.7 Derivative Filtering Versus Whole PID Filtering . 215

4.8 PID Regions . 218

4.9 Unfiltered Analog PID and Second Order Sections . 219

4.10 Discrete PID . 222

4.10.1 Backward Rectangular Discrete PID . 222

4.10.2 Notes on Backwards Rule Discrete PID . 223

4.11 Closed-Loop Responses . 224

4.11.1 Closed-Loop PID on an Integrator . 225

4.11.2 Closed Loop PID on a First Order Low Pass . 232

4.11.3 Closed Loop PID on a Double Integrator . 235

4.11.4 Closed Loop PID on a Simple Resonance . 239

4.12 General Thoughts on Closed-Loop Analysis for Second Order Models 245

4.13 Intuitive and Manual Tuning . 246

4.14 Relay Tuning of PID Controllers . 249

4.15 Loop Shaping . 249

4.16 Examples of PID Code . 251

4.17 Examples of PID Control . 254

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
11

Winter 2022-2023
December 31, 2022

Table of Contents

4.17.1 PID Controller Response Shapes . 254

4.17.2 Atomic Force Microscopes and PI Control . 256

4.17.3 Loop Shaping on an AFM Actuator Using PID 262

4.18 Integrators, Saturation, and Wind-Up . 263

4.19 Slow Applications and PWM . 266

4.20 PIDs as an Explanation . 267

4.21 Conclusions . 267

5 Practical Loop Design, Or Why Most Open Loops Should Be an Integrator 269

5.1 In This Chapter . 269

5.2 Phase-Locked Loops: So Much Feedback, Such Simple Analysis 271

5.3 Making PC an Integrator . 276

5.4 Bode’s Theorem on Sensitivity Function . 280

5.4.1 Sensitivity Functions . 281

5.4.2 Bode’s Integral Theorem . 281

5.4.3 Bode’s Integral Theorem for Discrete Time . 284

5.4.4 What does it mean? . 286

5.4.5 Effect of Sample Rate . 286

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
12

Winter 2022-2023
December 31, 2022

Table of Contents

5.5 Once More with the Dirt . 288

5.6 The Effects of Time Delay on Loop Shaping . 289

5.6.1 Time Delay and the Pad é Approximation . 291

5.7 IterativelyTuning the Integrator Response . 296

5.8 Loop Shaping on Systems with Multiple Resonances 296

5.8.1 Example: Loop Shaping on an AFM with Multiple Resonances 297

5.9 When All We Have is Step Response . 299

5.10 When All We Have is Operational Data . 299

5.11 Chapter Summary and Context . 300

6 Resonances, Anti-Resonances, Filtering, and Equalization 301

6.1 In This Chapter . 301

6.2 Chapter Ethos . 301

6.3 Basic Digital Filter Ideas . 303

6.4 Programming Our SISO Digital Filter . 306

6.4.1 Filter Programming Tips . 312

6.5 Generating Filter Coefficients . 313

6.6 Basic Filter Types & Understanding . 314

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
13

Winter 2022-2023
December 31, 2022

Table of Contents

6.6.1 First Order Digital Low Pass . 314

6.7 Averaging Filter . 319

6.7.1 Mini Summary . 322

6.8 Two Simple Methods to Remove Outliers . 322

6.9 Some Useful Filters . 324

6.9.1 Second Order Low Pass Filter . 326

6.9.2 Second Order High Pass Filter . 328

6.9.3 Biquad Low Pass Filter . 329

6.9.4 Biquad High Pass Filter . 330

6.9.5 Two Biquad Band Pass Filter . 331

6.9.6 Biquad Notch Filter . 332

6.9.7 Biquad Peak Filter . 332

6.10 Filter Summary . 333

6.11 The Multinotch . 334

6.12 Digital Filter Equations and Biquads . 336

6.13 Biquads . 336

6.14 Higher Order Filters as a Series of Biquads . 338

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
14

Winter 2022-2023
December 31, 2022

Table of Contents

6.15 An Improved Structure . 340

6.16 Multinotch Filter Coefficients . 342

6.17 Multinotch Examples . 344

6.18 Effects of a Relatively Small TS . 348

6.19 ∆ Coefficients . 349

6.19.1 Computing Scaling . 351

6.19.2 Implementing ∆ Coefficients . 351

6.20 ∆ Coefficient Examples . 353

6.21 ∆ Coefficients Versus δ Parameterization and Floating Point 357

6.22 Multinotch Summary . 357

6.23 Filters without Direct Feedthrough . 359

6.24 The δ Parameterization . 359

6.25 Filters for Loop Shaping: Do’s and Don’ts . 359

6.26 Chapter Summary and Context . 360

7 Signal Detection, Sensors, Sample Rates, and Noise (Oh My) 361

7.1 In This Chapter . 361

7.2 Motivation: Why Talk About Signals, Sensors, and Noise? 362

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
15

Winter 2022-2023
December 31, 2022

Table of Contents

7.3 Noise Filtering in Feedback Introduction . 366

7.4 An Introduction to PES Pareto . 369

7.5 Bode’s Theorem and Noise Shaping . 376

7.6 Noise Analysis and PSDs . 378

7.6.1 Useful PSDs from Measurements . 379

7.6.2 Power Spectral and Cross Spectral Densities 382

7.6.3 Quantization Noise: The Widrow Model and Others 385

7.6.4 Using PSDs in PES Pareto . 390

7.7 Using the HDD Example Guide Us . 391

7.8 Measurements for PES Pareto . 395

7.8.1 Measurements in Open and Closed Loop . 396

7.8.2 Measurements/Modeling of Power Amplifier Noise 399

7.8.3 Measurements/Modeling of Plant Disturbance 401

7.8.4 Measurements/Modeling of ADC and DAC Noise 403

7.8.5 Channeling Sherlock Holmes . 408

7.9 Noise Sources and Noise Strata . 411

7.10 Using Pareto Models for Extrapolation . 414

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
16

Winter 2022-2023
December 31, 2022

Table of Contents

7.11 PES Pareto Summary . 418

7.12 Minimizing Noise Before It Enters the Loop . 419

7.12.1 Thoughts About Anti-Alias Filters . 420

7.12.2 Analog Notches . 423

7.13 An Introduction to Demodulation for Use in Feedback Loops 424

7.14 Pulse Modulations . 426

7.15 Basic Modulation of Sine Waves . 429

7.16 Non-Coherent AM Demodulation . 429

7.17 Basic IQ Demodulation: Lock-In Amplifiers . 431

7.18 Basic Coherent Demodulation: Phase-Lock Methods 433

7.19 Precision Integration Lock-In . 443

7.19.1 Discrete Approximation of the Integral . 445

7.19.2 Coherent Demodulation for AFMs . 447

7.19.3 Practical Implementation of the Discrete Integration 453

7.19.4 Pre and Post Integration Filtering . 460

7.19.5 AFM Demodulation Examples . 465

7.19.6 Magnitude and Phase Calculations . 467

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
17

Winter 2022-2023
December 31, 2022

Table of Contents

7.19.7 Calculating Magnitude Using Table Lookup . 470

7.19.8 Calculating Phase Using Table Lookup . 472

7.19.9 Using a PLL to Simplify Magnitude and Phase Calculations 474

7.19.10Surface Stick Detection . 478

7.20 Magnitude and Phase Calculation Examples . 479

7.20.1 Summary of Coherent Demodulator for AFM 484

7.21 Example: Servo Signal Demodulation in Hard Disk Drives 485

7.22 Example: Optical Disk Precision Clocking: DVD+RW 497

7.23 Example: Laser Interferometry . 500

7.24 Demodulation Summary . 509

7.25 Chapter Summary . 509

8 Integrating in Feedforward Control 511

8.1 In This Chapter . 511

8.2 Chapter Introduction . 512

8.3 What Do We Mean When We Say “Feedforward Control”? 513

8.4 Basic Concepts in Feedforward Control . 516

8.5 Measurements for Feedforward-Feedback Control . 519

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
18

Winter 2022-2023
December 31, 2022

Table of Contents

8.6 A Practical Example of Using FCLI Based Feedforward with Feedback 520

8.7 Input Shaping Feedforward . 524

8.8 Repetitive Feedforward Control . 525

8.8.1 An Adaptive Feedforward Canceler . 527

8.8.2 Add-In Repetitive Controller Primer . 530

8.8.3 Repetitive Control Versus Adaptive Feedforward Correction 535

8.9 Feedforward from Auxiliary Sensors . 537

8.10 Feedforward Control Summary . 540

8.11 Change Log for Chapter 8 . 541

8.12 Chapter Summary and Context . 541

9 State Space: The Good, the Bad, and the Practical 543

9.1 In This Chapter . 543

9.2 Chapter Ethos . 544

9.3 State Space Control for High Schoolers . 549

9.4 A Note on Notation . 554

9.5 The Separation Principle . 556

9.6 Full-State Feedback and the Dual Problem . 556

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
19

Winter 2022-2023
December 31, 2022

Table of Contents

9.6.1 System versus Realization . 558

9.6.2 Full State Feedback with an LTI Model . 558

9.6.3 The Dual Problem: Observers . 559

9.6.4 Some Simple Controllability/Observability Examples 560

9.7 A Model Based Measurement Tutorial . 563

9.7.1 A More Generic Continuous Time Model . 565

9.7.2 Discrete-Time Version of Spring-Mass-Damper System 566

9.7.3 Linear, Time-Invariant, Discrete-Time Modeling of the Real World 568

9.7.4 Error Dynamics of Current Observers . 571

9.7.5 What the heck is different about a Kalman Filter? 573

9.7.6 Back to Our Simple Second-Order System . 575

9.7.7 What Makes Model Based Measurements Hard? 581

9.8 The Canonical Forms . 581

9.9 State Space for MIMO Systems . 582

9.10 What’s Up with Implementing State Space? . 582

9.11 The Transfer Function of a State Space Realization . 586

9.12 Adding an Integrator to State Space . 586

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
20

Winter 2022-2023
December 31, 2022

Table of Contents

9.13 Adding Feedforward to State Space . 586

9.14 State Space Midpoint Summary . 586

9.15 The Biquad State Space Structure . 589

9.16 The Biquad Decomposition of Digital Filters . 592

9.17 A Biquad State Space Form . 593

9.18 The Matrices, Reloaded . 596

9.19 Current Estimator and State Feedback . 597

9.20 Adding Rigid Body Dynamics: Double Integrator . 599

9.21 Discrete Time Examples . 601

9.22 Continuous Time Biquads . 605

9.23 The Analog Biquad State Space Form . 607

9.24 Discretization of the Analog BSS . 610

9.25 The Matrices, Reloaded, Part Deux . 611

9.26 Continuous Time Rigid Body Dynamics and Low Pass Filters 611

9.27 Handling the Lack of Direct Feedthrough . 613

9.28 Bilinear State-Space Form . 616

9.29 Discretization Choices . 617

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
21

Winter 2022-2023
December 31, 2022

Table of Contents

9.30 Discrete Time Rigid Body Models . 619

9.31 Rigid Body to BSS Examples . 622

9.32 Continuous Time Examples . 626

9.33 Biquad State Space Summary . 628

9.34 Chapter Summary and Context . 629

9.35 Change Log for Chapter 9 . 629

10 Real-Time Computing Issues for Control Systems 631

10.1 In This Chapter . 631

10.2 Motivation: Why Talk About Computation? . 632

10.3 Why is Discussing Computation for FB Hard? . 634

10.4 High-Level View of Computing for Feedback . 636

10.5 Time Delay and Sampling . 639

10.6 Understanding Phase Delay, Phase Noise, and Jitter 643

10.7 The Input Signal Chain: The Real World to Computation 645

10.7.1 Anti-Alias and Oversampling . 647

10.7.2 Analog to Digital Converters . 649

10.8 Quantization “Noise” . 651

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
22

Winter 2022-2023
December 31, 2022

Table of Contents

10.9 The Output Signal Chain: Computation to the Real World 652

10.9.1 Digital to Analog Converters . 654

10.10Pulse Width Modulation . 654

10.11The Plant’s “Computation” . 655

10.12The Computer Itself . 656

10.12.1The Three-Layer Model . 656

10.12.2Doing Time: Hard Real Time . 659

10.12.3Non Real Time: What we learn in CS classes 660

10.12.4When Non Real Time is so much faster than the real world 662

10.12.5The advanced tool approach . 663

10.12.6Issues with connecting the layers . 664

10.13Control Algorithm Programming . 667

10.13.1It’s a Filter . 668

10.13.2The Wire . 670

10.14Numerics, Parameterization, and Operations . 670

10.14.1Understanding Sampling and Discretization Methods 671

10.14.2PIDs . 672

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
23

Winter 2022-2023
December 31, 2022

Table of Contents

10.14.3Filter Structures and Latency . 674

10.14.4The Multinotch . 675

10.14.5The Biquad State-Space (BSS) . 676

10.14.6Rigid Body Modes and the Bilinear State-Space (BLSS) Structure 677

10.15Example Bandwidth Ranges, Applications, and Platforms 678

10.16Business Models and Bandwidth . 683

10.17Chapter Summary and Context . 685

11 Closing Thoughts 687

11.1 What Different Perspectives Want . 687

11.2 Real Control Design Work Cannot Be Separated from Implementation Details 690

11.3 “Rommel . . . I Read Your Book!” . 696

11.4 You Said You Were a Doctor of Philosophy . 702

Bibliography 707

Alphabetical Index 735

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
24

Winter 2022-2023
December 31, 2022

List of Figures

2.1 A generic control loop . 60

2.2 A more detailed, but still generic, digital control loop. 60

2.3 A view of test, analysis, and design for a real-time system 66

2.4 Spring-mass-damper system example . 68

2.5 Heat exchanger example . 69

2.6 An integrator implemented with an op-amp circuit. 70

2.7 A schematic Bode plot response of a single integrator model. 71

2.8 A schematic Bode plot response of a first order model. 73

2.9 Bilinear filter circuit . 74

2.10 An inverter circuit example . 74

2.11 The physical embodiment of a double integrator . 75

2.12 A schematic Bode plot response of a double integrator model 76

25

List of Figures

2.13 Examples of delay and their phase response . 77

2.14 Simple spring-mass-damper problem . 78

2.15 An analog biquad filter . 80

2.16 A filtering structure for looking at processes . 81

2.17 A feedback structure for physical processes . 82

2.18 A diagram of real-time sampling of a signal . 84

2.19 Discrete double integrator BLSS model (ZOH equivalent). 85

2.20 A digram of delays in computing control signals . 87

2.21 Different rates in an AFM system. 89

2.22 The origin story of PES Pareto. 92

3.1 A diagram of the different domains. 106

3.2 A diagram of real-time sampling of a signal. 113

3.3 Continuous and discrete complex planes. 113

3.4 The forward rectangular rule. 115

3.5 The backward rectangular rule. 117

3.6 The trapezoidal rule . 118

3.7 Discrete double integrator BLSS model (ZOH equivalent). 124

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
26

Winter 2022-2023
December 31, 2022

List of Figures

3.8 Diagram of time domain ID on moving average model. 127

3.9 Time domain identification on auto-regressive, moving average model. 129

3.10 Step response of first order, stable system. 134

3.11 Step response of second order, stable system. 134

3.12 Square wave used in first order step response measurement. 135

3.13 Square wave used in second order step response measurement. 136

3.14 Segmentation of a time measurement trace. 137

3.15 Zoomed in step response of two stable systems. 140

3.16 Basic “device under test (DUT)” view of FRF measurement. 153

3.17 More complex view of FRF measurement inside of closed-loop system with noise added in.158

3.18 Structure for discussing closed-loop measurements. 159

3.19 Lock-in amplifier . 169

3.20 Stepped-sine demodulation. 169

3.21 Sine waves and adjusting periods to tile in samples. 171

3.22 Comparison of stepped-sine and FFT based FRF measurements. 177

3.23 The pieces of an AFM X-Y measurement. 179

3.24 Connected meas. ties instruments and physical systems into CAD tools. 180

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
27

Winter 2022-2023
December 31, 2022

List of Figures

3.25 Closed-loop FRF measurements of X and Y stages with original controllers. 182

3.26 Extracted plant FRF measurements of X and Y stages. 182

3.27 Extracted open loop FRFs and projected FRFs of new open loop. 183

3.28 Measured closed-loop FRFs and updated projected closed-loop FRFs. 184

3.29 Original and improved closed-loop FRF measurements. 185

3.30 More complete measurement of system inside a digital control loop. 186

3.31 Bit accurate simulation of FPGA stepped-sine integral (1). 187

3.32 Bit accurate simulation of FPGA stepped-sine integral (2). 188

3.33 Built-in closed-loop stepped-sine measurement of nPoint NPXY30 x actuator. 189

3.34 nPoint NPXY30 x axis plant response extracted from measurement. 189

3.35 FRF of biquad filter with fn,n = 100Hz, Qn = 25, fn,d = 80 Hz, Qd = 12.5. 190

3.36 Complex curve fit applied to simple resonance/anti-resonance with FRF noise σ = 0.002.191

3.37 Complex curve fit applied to simple resonance/anti-resonance with FRF noise σ = 0.02. 192

3.38 Least squares fit assuming a biquad filter and using only log magnitude meas. data. . . 193

3.39 Adjusted least squares fit to the LM curve fit (checking for phase jumps). 194

4.1 A generic overview of an analog control loop. 204

4.2 A generic overview of digital control loop. 205

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
28

Winter 2022-2023
December 31, 2022

List of Figures

4.3 A generic block diagram feedback loop. 205

4.4 A parallel form topology of a simple analog & digital PID controller. 206

4.5 The regions of PID control for a second order, resonant plant. 218

4.6 Structural similarity between a continuous time PID and its discrete form. 223

4.7 Plot of open-loop integrator + PI control, without time delay. 226

4.8 Plot of open-loop integrator + PI control, with time delay. 228

4.9 Plot of open-loop integrator, with fixed time delay. 229

4.10 Plot of open-loop integrator, with varying time delay. 230

4.11 Plot of proportional control on double integrator simulation. 236

4.12 PLot of PD control on double integrator simulation. 237

4.13 Process reaction curve used by Ziegler and Nichols. 247

4.14 Measuring the parameters for the Ziegler-Nichols tuning rules. 249

4.15 Step response under different ZN tuning rules. 250

4.16 Mechatronic Control Loop Diagram. 250

4.17 Continuous and discrete PID controller response derived from notch filter model. 254

4.18 PID controller response derived from notch filter model. 255

4.19 An AFM Control Block Diagram. 256

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
29

Winter 2022-2023
December 31, 2022

List of Figures

4.20 Low frequency z axis controller for AFM produces representation of topography. 257

4.21 Generic AFM plants and possible PI and PII controllers. 258

4.22 Open and closed-loop responses of generic AFM plants under PI control. 259

4.23 Open and closed-loop responses of generic AFM plants under PII control. 260

4.24 Open and closed-loop responses of generic AFM plants under PID control. 261

4.25 Closed-loop FRF measurement of AFM lab system and derived responses. 262

4.26 Model fit to AFM lab system, new controller and open loop, and closed-loop responses. 263

4.27 Reset version of integrator anti-windup in a digital PID controller. 264

4.28 Back calculation version of integrator anti-windup in a digital PID controller. 265

4.29 Back calculation version of integrator anti-windup in a digital PID controller. 266

4.30 Clamping version of integrator anti-windup in a digital PID controller. 267

5.1 A simple analog PLL and its baseband model. 271

5.2 A practical digital control loop for a mechatronic system. 273

5.3 Block diagram of closed-loop system. 281

5.4 Sensitivity function. 282

5.5 Sensitivity function in discrete time. 282

5.6 Stein’s depiction of classical control. 283

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
30

Winter 2022-2023
December 31, 2022

List of Figures

5.7 Stein’s depiction of modern control. 283

5.8 Bode’s Theorem in Discrete Time . 285

5.9 Sensitivity function at nominal sample rate, ωN1. 286

5.10 Effects of doubling the sample rate (ωN2 = 2ωN1). The filtering option. 287

5.11 Effects of doubling the sample rate (ωN2 = 2ωN1). The higher bandwidth option. 287

5.12 Comparison of stepped-sine and FFT based FRF measurements. 289

5.13 Frequency response of pure time delay versus increasing Nyquist frequencies 290

5.14 First order Padé approximant for the delay of ∆ seconds 292

5.15 First order Padé approximant (DT) for the delay of ∆ seconds 293

5.16 Measurements of plant, compensator, OL, & CL responses for AFM example 297

6.1 Input and output timing in a digital control system. 304

6.2 An nth order polynomial filter in Direct Form II configuration. 305

6.3 A diagram of an ideal low pass filter response. 315

6.4 Three versions of a first order low pass filter with corner frequency at 10 Hz. 316

6.5 An N-sample averaging filter . 320

6.6 An analog finite integrator filter, also called integrate and dump. 321

6.7 Simple filter memory. 323

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
31

Winter 2022-2023
December 31, 2022

List of Figures

6.8 Schematic response of second order low pass filter. 326

6.9 Schematic response of a second order high pass filter. 328

6.10 Schematic response of a low pass filter implemented with a biquad. 329

6.11 Schematic response of a high pass filter implemented with a biquad. 330

6.12 Band pass filter using a low pass and a high pass biquad. 331

6.13 Schematic response of a notch filter implemented with a single biquad. 332

6.14 Schematic response of a peak filter implemented with a single biquad. 333

6.15 A practical digital control loop for a mechatronic system. 335

6.16 A digital biquad filter. 336

6.17 Series connection of multiple filters. 338

6.18 An expanded realization view of the serial biquad chain. 338

6.19 A two biquad cascade. 339

6.20 The updated biquad cascade, with factored out b0 terms. 341

6.21 Quantization effects for first example of Table 6.7. 346

6.22 Quantization effects for the second example of Table 6.7. 347

6.23 Notch with fn and fd at 100 Hz, Qn = 40, Qd = 4. 354

6.24 Notch with fn and fd at 100 Hz, Qn = 40, Qd = 4. 355

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
32

Winter 2022-2023
December 31, 2022

List of Figures

6.25 Lead with fn at 100 Hz and fd at 200 Hz, Qn = 1, Qd = 1. 355

6.26 Lead with fn at 100 Hz and fd at 200 Hz, Qn = 1, Qd = 1. 356

7.1 A classic linear feedback loop diagram with process and sensor noise. 363

7.2 Unbundling the C and P to reveal the components that generate the noise. 363

7.3 Stein’s dirt digging and PSDs of KittyHawk’s closed and open-loop PES PSD. 367

7.4 Gunter Stein’s dirt digging analogy, recreated from memory circa 1994. 369

7.5 HP KittyHawk 1.3” disk drive: PSD of PES, and PSD of PES filtered by 1
‖S ‖2 370

7.6 Frequency response of a KittyHawk II. 371

7.7 Block diagram of original KittyHawk measurement that led to PES Pareto 371

7.8 Closed-loop system with each block having its own additive output noise. 373

7.9 Sensitivity function drawing . 377

7.10 Drawing of sensitivity function in discrete time. 377

7.11 Diagram of overlap processing . 385

7.12 Diagram of quantization and Widrow model . 385

7.13 Generalized view of track following model in an HDD 392

7.14 Generalized view of track following model for executives 393

7.15 Generic feedforward-feedback loop with measurement points 397

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
33

Winter 2022-2023
December 31, 2022

List of Figures

7.16 Generating different conditions to measure power amplifier noise 399

7.17 Calibrating the current sense measurement against a highly accurate voltage probe . . 400

7.18 Measurement of Power Amplifier Noise on Lynx 2 Disk Drive 401

7.19 Measurement of the disturbance due to air flow on the drive head (windage) 402

7.20 Decomposition ADC noise with a removed tone . 404

7.21 Decomposition ADC noise with an open circuit . 405

7.22 Simulating ADC and DAC quantization by masking off bits at different signal points . . . 406

7.23 Measurement of ADC quantization by masking off bits at the error signal 407

7.24 Measurement of ADC noise in closed-loop . 408

7.25 Measurement of DAC quantization by masking off bits at the controller output signal . . 409

7.26 Measurement of DAC noise in closed-loop . 410

7.27 Decomposition of baseline noise sources in a hard disk 411

7.28 Unaccounted for PES PSD noise . 411

7.29 Unaccounted for PES PSD noise as an input . 412

7.30 Decomposition of baseline noise sources in a hard disk 412

7.31 Baseline PSN . 414

7.32 Effect of Changing Baseline PSN (5400 rpm) . 415

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
34

Winter 2022-2023
December 31, 2022

List of Figures

7.33 Windage Versus RPM . 416

7.34 PES Variance Due to Windage Versus RPM . 416

7.35 Effect of Changing Baseline PSN (7200 rpm) . 417

7.36 Frequency responses of various anti-alias filters . 420

7.37 Drawings of pulse modulation of the type used by neurons firing 426

7.38 Classic Pulse Width Modulation (PWM) . 427

7.39 Non-coherent demodulation of an AM signal . 430

7.40 Operation of a lock-in amplifier . 431

7.41 A general PLL block diagram . 433

7.42 A classical mixing (analog) phase-locked loop . 434

7.43 A practical version of the classic mixing phase-locked loop 435

7.44 Conceptual block diagram of PLL with sine detector . 436

7.45 Conceptual block diagram of linear PLL . 436

7.46 A quadrant 1-3 sector nonlinearity . 437

7.47 Classical mixing phase detector . 438

7.48 Over driven mixing phase detector . 438

7.49 Phase detection using an XOR gate . 439

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
35

Winter 2022-2023
December 31, 2022

List of Figures

7.50 Phase detection using a XOR gate (signals) . 439

7.51 Block diagram for a Bang-Bang phase detector . 440

7.52 Time domain response of Half-Rate Bang Bang PLL simulation 441

7.53 A Costas loop . 442

7.54 Phase modulation of radial position on HDDs . 442

7.55 Lock-in amplifier with precision integration . 443

7.56 Integrating the partial sample of a sampled sinusoid 445

7.57 Adjusting sine period to tile into sample intervals . 446

7.58 Schematic diagram of AFM control loop. 447

7.59 An AFM Control Block Diagram in dynamic mode. 448

7.60 Coherent demodulation for AFM . 449

7.61 Open-loop deflection of the AFM tip in dynamic (AC) mode. 451

7.62 Deflection of the AFM tip in dynamic (AC) mode under feedback control. 452

7.63 Circular addressing of filter memory . 458

7.64 Coherent demodulation for AFM. DC removal and post integration filtering included. . . 460

7.65 Different methods of removing DC value from return signal. 461

7.66 A digital biquad filter. 462

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
36

Winter 2022-2023
December 31, 2022

List of Figures

7.67 Matlab simulation demonstrating speed of convergence. 465

7.68 Output of ModelSim Simulation of FPGA based demodulator. 466

7.69 Floating point magnitude and phase extracted from the simulation in Figure 7.68. . . . 467

7.70 Output of ModelSim Simulation of FPGA based demodulator. 468

7.71 Floating point magnitude and phase extracted from the simulation in Figure 7.70. . . . 469

7.72 Comparison of table lookup and errors for
√

x, 0.0 ≤ x ≤ 2. 471

7.73 Comparison of table lookup and errors for 1
x , .5 ≤ x ≤ 2. 472

7.74 A digital mixing PLL including post mixing integration. 475

7.75 Input output properties of digital mixing phase detector 476

7.76 Coherent demodulation for AFM using a PLL . 477

7.77 Coherent AFM demod. for AFM using PLL, DC removal, & post integration filtering . . . 478

7.78 Output of ModelSim Simulation of FPGA based demodulator. 480

7.79 Output of ModelSim Simulation of FPGA based demodulator. 481

7.80 Output of ModelSim Simulation of FPGA based demodulator. 482

7.81 Output of ModelSim Simulation of FPGA based demodulator. 483

7.82 HDD: Dedicated vs. Sectored Servos . 486

7.83 The layout of an HDD track . 487

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
37

Winter 2022-2023
December 31, 2022

List of Figures

7.84 Modulated servo patterns on a hard disk drive & demodulation methods. 488

7.85 Measured Servo Burst on HP Lynx 2 HDD, Sampled at 120 MHz 489

7.86 Ideal servo burst with no noise . 490

7.87 Ideal servo burst with significant noise . 491

7.88 Coherent demodulation dramatically diminishes effects of noise 492

7.89 Thermal asperity acting on HDD servo burst . 493

7.90 Ideal servo burst with baseline shift added . 494

7.91 Intelligent coherent demodulation dramatically diminishes effects of baseline shift . . . 494

7.92 Ideal servo burst with baseline pop added . 495

7.93 Ideal servo burst with significant second harmonic added 495

7.94 Intelligent coherent demodulation dramatically diminishes effects of bad harmonics . . 496

7.95 Rewritable DVD with a Harmonic Locking PLL . 497

7.96 High frequency wobbles used in the DVD+RW optical disk format 498

7.97 DVD+RW, gapless edit, 4T-6T, time response . 498

7.98 DVD+RW, gapless edit, 4T-6T, phase error . 499

7.99 DVD+RW, gapless edit, 4T-6T, bit interval histograms 499

7.100 Basic Michelson interferometer . 500

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
38

Winter 2022-2023
December 31, 2022

List of Figures

7.101 Effects of interference on detector . 501

7.102 Some details on the beams of a Michelson interferometer 502

7.103 Two frequency (heterodyne) Michelson interferometer 505

7.104 Generating distance from AC frequency differences 506

7.105 Phase generation from interference pattern input . 506

7.106 Two-axis plane mirror interferometer configuration . 507

7.107 Wafer stage system measured with interferometer . 507

8.1 A generic feedforward/feedback loop configuration. 512

8.2 Plant only control. 513

8.3 Feedforward only control. 513

8.4 Basic feedback control often ignores the possibility of using feedforward. 514

8.5 More generic, but basic diagram of possible feedforward/feedback loop configurations. . 514

8.6 Basic diagram of possible feedforward/feedback loop configurations on steroids. 519

8.7 Combined feedback-feedforward control using the FCLI input. 520

8.8 Measurement and curve fit of closed-loop response of nPoint NPXY30 x stage. 520

8.9 FCLI implemented as as simple double lead filter. 521

8.10 Measured TCL, FCLI, and TFF,FB on nPoint NPXY100 stage. 522

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
39

Winter 2022-2023
December 31, 2022

List of Figures

8.11 Digital scope measurement of physical system shows the effect of feedforward. 523

8.12 Track eccentricity in hard disks and two types of optical disks. 525

8.13 Model structure for add-in RC which can only read & inject error signal 526

8.14 Add-in RC which reads at error, but injects beyond the FB controller. 526

8.15 Repetitive control using N unit delays in a positive feedback loop. 530

8.16 Alternate repetitive control using N unit delays in a positive feedback loop. 530

8.17 Discrete time repetitive controller added to a discrete time closed-loop system. 531

8.18 Discrete time repetitive controller added to continuous time closed-loop system. 532

8.19 Generating a model of the system for stability analysis. 533

8.20 Stability analysis version of the system. 533

8.21 Addition of a “q filter” to the repetitive controller. 534

8.22 Generalized repetitive controller. 534

8.23 Diagram of HDD with translational and rotational accelerations on the HDA 536

8.24 Disturbances entering a hard disk drive control loop 536

8.25 Disk drive servo loop showing auxiliary loops . 536

8.26 Using extra sensors to detect disturbances in a HDD control loop 537

8.27 Adaptive FF accel. comp. of rotary vibration on a KittyHawk drive 538

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
40

Winter 2022-2023
December 31, 2022

List of Figures

8.28 Adaptation simulation using noise driven aR and aT . 539

9.1 The block diagram of the double integrator. 549

9.2 The block diagram of the double integrator with velocity and position feedback. 549

9.3 Double integrator with spring and damper feedback. 551

9.4 Adding our own feedback to the spring-mass-damper system. 551

9.5 Our spring mass damper with ζd = 0 and fd = 8Hz . 552

9.6 Extending our system to one with a lot more springs, masses, & dampers. 552

9.7 A generalized view of model based filtering . 553

9.8 A simple controllability/observability example . 560

9.9 Another simple controllability/observability example . 562

9.10 System is a simple, resonance, driven by an input, with noise 575

9.11 Noise driving simple resonance . 576

9.12 Noise driving simple resonance, no access to input signal 577

9.13 Noise driving simple resonance, no access to input signal 578

9.14 Noise driving simple resonance, no access to input signal. Increase gain. 579

9.15 System is a simple, resonance, driven by an input, with noise 580

9.16 Input and output timing in a digital control system . 590

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
41

Winter 2022-2023
December 31, 2022

List of Figures

9.17 An nth order polynomial filter in Direct Form II configuration 591

9.18 Updated DT biquad cascade, with factored out bi,0 & output scaling of each block. . . . 592

9.19 Lab system: Aerotech air bearing linear stage: linear grating for pos. meas. 601

9.20 Conceptual block diagram of AeroTech stage meas. for FRF measurements. 602

9.21 Comparing SS forms to AeroTech stage freq. resp. (12 & 14 biquads) 604

9.22 Comparing SS forms to AeroTech stage freq. resp. (16 & 20 biquads) 604

9.23 An nth order CT, polynomial filter in Direct Form II . 605

9.24 Continuous biquad blocks in controller canonical form with states noted 606

9.25 Analog biquad cascade, with factored out bi,0 & output scaling of each block 608

9.26 Continuous time (CT) rigid body biquad . 612

9.27 Analog biquads without direct feedthrough . 613

9.28 State equations for continuous time biquad state space with scalar output scaling. . . . 615

9.29 Continuous time bilinear state space (CT-BLSS) form 616

9.30 Continuous time rigid body BLSS model . 616

9.31 Discrete time bilinear state space form (DT-BLSS) . 616

9.32 Discrete double integrator biquad model (ZOH equivalent) 619

9.33 Discrete double integrator BLSS model (ZOH equivalent) 619

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
42

Winter 2022-2023
December 31, 2022

List of Figures

9.34 Discrete double integrator biquad model (trapezoidal rule equivalent) 620

9.35 Discrete double integrator BLSS model (trapezoidal rule equivalent) 621

9.36 Discrete double integrator BLSS model (backwards rule equivalent) 622

9.37 BSS with three biquads including a low pass filter in biquad 1 623

9.38 BSS with three biquads including a low pass filter in biquad 1 624

9.39 Double integrator with square wave input: biquad vs. BLSS 625

9.40 Double integrator with square wave input: biquad vs. BLSS 625

9.41 Comparison of Bode plots from continuous and discrete BSS 626

9.42 Comparing analog and discrete BSS outputs . 627

10.1 A generic analog control loop. 632

10.2 A generic digital control loop. 633

10.3 Abstracted view of the main computational divisions in a feedback system. 636

10.4 A filtering structure for looking at processes . 638

10.5 A feedback structure for physical processes . 638

10.6 Bode plot of physical time delay versus sampling rate 640

10.7 First order Padé approximation of time delay on the s-plane 641

10.8 Padé approximation of time delay on the z-plane . 642

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
43

Winter 2022-2023
December 31, 2022

List of Figures

10.9 Phase delay and noise in sinusoid . 643

10.10 Phase delay and noise in square wave . 644

10.11 Jitter usually defined relative to sample period . 645

10.12 Jitter, added onto computational time, may make us miss samples 646

10.13 An abstracted view of the input signal chain for feedback 646

10.14 Frequency responses of various anti-alias filters . 648

10.15 Options in analog-to-digital conversions (ADC) . 650

10.16 Diagrams of sample timing . 651

10.17 Diagram of quantization and Widrow model . 651

10.18 An abstracted view of the output signal chain . 652

10.19 An abstracted view of the output signal chain . 653

10.20 Options in digital-to-analog conversions (DAC) . 654

10.21 Classic PWM . 655

10.22 The Banshee Multivariable Workstation (BMW) . 656

10.23 An abstracted view of the three-layer computational model 658

10.24 The hard-real-time layer of computation . 659

10.25 Adding the top layer of computing to the hard-real-time 661

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
44

Winter 2022-2023
December 31, 2022

List of Figures

10.26 Two views of a “heavy-top” layer that does most of the work 662

10.27 The near-real-time (mezzanine) layer connects the two 665

10.28 Conditional integration/integrator clamping . 673

10.29 Input and output timing in a digital control system . 675

10.30 nth order polynomial filter in Direct Form II configuration 676

10.31 The updated biquad cascade, with factored out b0 terms 677

10.32 Discrete biquad cascade, with factored out bi,0 & scaling output of each block 678

10.33 Analog biquad cascade, with factored out bi,0 & scaling output of each block 679

10.34 BSS with three biquads including a low-pass filter in biquad 1 680

10.35 Continuous time bilinear state-space (CT-BLSS) form 681

10.36 Discrete time bilinear state-space form (DT-BLSS) . 681

10.37 Double integrator with square wave input . 682

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
45

Winter 2022-2023
December 31, 2022

List of Figures

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
46

Winter 2022-2023
December 31, 2022

List of Tables

3.1 Summary of Discrete Integration Rules . 119

3.2 Physical coefficients used to specify a biquad section. 121

4.1 A summary of the four basic forms of analog PID control. 214

4.2 Ziegler-Nichols tuning rules . 248

4.3 Basic PID Code Snippet in C++ . 253

6.1 Brute Force FIR Filter Code Snippet in C++ . 308

6.2 More Efficient FIR Filter Code Snippet in C++ . 309

6.3 IIR Filter Code Snippet in C++ . 311

6.4 Some useful filters. 324

6.5 Parameters that define a second order filter. 325

6.6 Physical coefficients used to specify a biquad section. 343

47

List of Tables

6.7 Filter parameters for both examples. 344

6.8 Filter poles and zeros under quantization at different sample frequencies. 348

6.9 Filter poles and zeros under quantization at different sample frequencies. 349

6.10 Filter parameters for both examples . 353

7.1 Phase penalty of representative anti-alias filters . 421

7.2 Computed steady state noise values extracted from integrator simulations. 465

7.3 Computed steady state noise values extracted from integrator simulations. 479

9.1 Resonant frequencies and bits to represent . 587

9.2 Resonant frequencies and bits to represent digital coefficients. 588

9.3 Model parameters from curve fit of Aerotech freq. resp. data 603

10.1 Phase penalty of representative anti-alias filters . 649

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
48

Winter 2022-2023
December 31, 2022

Chapter 1

Forward

This book was thrown together quickly in the spring of 2018 as a companion to the first run of the
Practical Methods for Real World Control Systems workshop held before the 2018 American Control
Conference (ACC) in Milwaukee, WI, USA. It took as its starting point, material I had produced for talks
at other conferences, largely ACC 2016 in Boston, ACC 2015 in Chicago, and the Multi- Conference
on Systems and Control (MSC) 2015 in Sydney, Australia. It was the invitation by Reza Mohamani
(now at UT Dallas) that sent me on the path of trying to tie together the advanced methods I was
starting to fully develop and understand with the seemingly simple methods that are so often used
in practical control applications. As General Chair of ACC 2016 in Boston, I championed a structure
which left Friday afternoon (the last half of the last day) open for tutorials on applications. The idea
was that reduced registration costs for applications specific material would be popular with local prac-
ticing engineers. Well, the sessions were quite popular, but mostly with folks already attending the
conference. Two of the tutorials that I produced (one on PID tuning with Sean Andersson and one on
measurements for control system design) became the basis for the above workshop’s first two hours,
and for Chapters 3 and 4

Throwing these papers together created a base of material, starting with discussions of simple models
and measurements and then branching into PID controller design. From there it was a run to connect
that material with the filtering work of 2015 and practical state space representations. Plus, there was
an opportunity to Spackle in work on noise measurement (the PES Pareto area) as well as things
that I’d learned about feedforward from my interactions with Lucy Pao of the University of Colorado at
Boulder and some of her former students, particularly Jeff Butterworth. I have also benefited greatly
from my interactions with Sean Andersson and his students at Boston University. Sean has provided

49

Forward

a great sanity check on the practicality of my work: if I see it in his lab, I must have done something
partway right.

As one might guess, slapping a bunch of old documents together leaves a lot to be desired, in matters
of overlapping materials, different notation, and generally providing a consistent theme and feel to the
work. By the summer of 2018, it had started to look semi-organized, and I believe there were a lot of
areas of unique treatment of material, but it was still a hot, sticky mess.

This update attempts to fill in a lot of areas where I left myself notes in red letters. Along the way,
I sent some copies out to some of my friends. Among the most thorough has been Russ Rhinehart
of Oklahoma State, who has given me great insights into the assumptions I am making, coming from
the mechatronic world. Russ comes from the world of chemical process control, and because of his
helpful comments, I am trying to make sure that that perspective shows up in the book.

That being said, 2019 had a lot more material, is better organized, and has helpful book-like features,
such as a table of contents, a list of figures, a list of tables, and an index. Let’s just say it’s still a
work in progress. In 2020, I was able to clean up some of the discussions on systems, modeling, and
measurements, but also to vastly expand the chapter dealing with noise analysis (via PES Pareto)
and with the understanding and use of demodulation methods with respect to servo signals.

1.1 The Purpose of the Workshop

The proverbial “gap” between control theory and practice has been discussed since the 1960s, but it
shows no signs of being any smaller today than it was back then. Despite this, the growing ubiquity
of powerful and inexpensive computation platforms, of sensors, actuators and small devices, the
“Internet of Things”, of automated vehicles and quadcopter drones, means that there is an exploding
application of control in the world. Any material that allows controls researchers to more readily apply
their work and/or allows practitioners to improve their devices through best practices consistent with
well understood theory, should be a good contribution to both the controls community and the users
of control. This workshop is intended as a small but useful step in that direction.

The goal, the purpose of the workshop and the book can best be summarized as to provide

essential context about algorithms – basic or advanced. This context helps us know which

algorithms may or may not be useful in a class of problems and what adjustments, if any,

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
50

Winter 2022-2023
December 31, 2022

Forward

need to be made to fit that algorithm to the problem.

1.2 The Purpose of this Book

This book was originally intended to be a companion document to the workshop: something that
the workshop participant can take home with them and refer back to to go into more depth on the
workshop material. However, there is more in the book than can ever be described in a one day
workshop. Thus, the second purpose of this book is to be a handbook for bridging the gap between
control theory and control practice. As the years have passed since the first workshop at ACC 2018
in Milwaukee, WI, USA, the book has grown and taken on a life of its own. Chapters are no longer
collections of old tutorials or slides with a lot more words. They are calling to stand on their own. Over
time, I have found new ways of describing things more cleanly and the material has tightened up. This
would often have a sequence where I am struggling on explaining some stuff, then I start to unify a
few ideas and it suddenly seems simple to me. Not sure of myself, I fire off an email to my workshop
partners, Sean Andersson at Boston University and Craig Buhr at Mathworks. Once they haven’t said
anything too bad about my intelligence, I work it into a few slides and slip it into this tome.

I don’t expect to replace any of the many classic books on control theory or digital control. They go
into the math in much greater detail than I can here without triggering reader depression (or my own).
Instead, this book takes up where those books often leave off: I discuss the mechanics of making
good measurements, but I also discuss which measurements can be made in a practical way on a
given system. I discuss PID controllers, but I also discuss the different forms that they take in different
engineers’ hands, and how to translate between those representations. I discuss filter shapes that I
might use, but I also give sample code on how to implement the filter subroutine. The idea is to be a
guide on how to get from the physical system into the control theory math and back again (hopefully
with an improved controller for the physical system). The idea is to be able to see what limits the
behavior of real systems so that I don’t end up with optimal solutions that never see the light of day.

The idea is to be access the wonderful world of control theory in a way that is practical for under-
standing and improving real-world systems. The final value theorem (FVT) shows up in Chapter 4
to motivate integral control. Simple Bode plots for different types of systems can explain why PID
controllers show up in different forms for different applications.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
51

Winter 2022-2023
December 31, 2022

Forward

I shape two chapters with Bode’s integral theorem, or rather Gunter Stein’s brilliant explanation of the
importance of Bode’s integral theorem [1], both to show us the limits of loop shaping in Chapter 6 and
in to lead us into a method of analyzing noise effects on the loop in a much more coherent way (PES
Pareto [2]) in Chapter 7.

PES Pareto and sensitivity to both noise and time delay/latency lead us into a discussion of removing
the noise from sensor signals, both those that operate in the baseband and those that are modulated
onto a carrier. Modulated sensor signals lead us o a discussion of demodulation, both non-coherent
and coherent, for servo systems. This is a topic usually reserved for communication theory texts, but
they lack our sensitivity to time delay and that changes everything.

Chapter 8 tries to bring feedforward control into the discussion. This is generally made harder by the
fact that feedforward control can mean a half dozen different things, depending upon who is talking
about it. What is cool is that if you take a step back, almost all of these methods share something in
common: the latency with which correction is applied is far less than when feedback is applied on the
same problem.

There is a chapter on state-space methods (Chapter 9) that seems to grow every time I read it. The
first have tries to give context for what is in many control theory texts, as well as adding in many topics
that seem to not make the cut: the transfer functions of state-space controllers, adding in integration
as a state space analog to the integrator in a PID, and adding in reference signals. From there, I
poke a pin in many of the balloons holding potential applications of state-space controllers, returning
(repeatedly) to the need for a good model to use those “model-based” methods. The last half of the
chapter largely deals with my own inventions of state space, the biquad state-space (BSS) [3, 4] and
the bilinear state-space (BLSS) [5] structures. Not only do these have better numerical properties
than the standard canonical forms, but they largely preserve physical intuition, which is incredibly
helpful in trying to debug a real world system.

There is a chapter on computation (Chapter 10) for control systems. This is a difficult chapter to
write because the technology changes every time someone sneezes. What doesn’t change are the
principles that we use to pick a particular technology solution and so this chapter tries to focus on
that.

One of the repeated focal themes that transcribes most of the material here is the notion of hidden
assumptions buried in most problems. These are the assumptions that seem to be hidden in any
problem area and taken for granted by the people who have been working a five or more years in
that area (long enough to be viewed as seasoned). New entrants into an area, not knowing these

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
52

Winter 2022-2023
December 31, 2022

Forward

assumptions, can often feel like they are missing context. That being said, as James Burke points out
in The Day the Universe Changed[6], breakthroughs often come to any area when someone switches
career paths into that new area and – not knowing those hidden assumptions – goes in a different
direction. The point, which Burke’s examples from global technological history emphasize, is that
these assumptions often bound the problem. The case I try to make throughout the book is that we
need to state these assumptions out loud, so that we know the boundaries we are using, and so
that we can consider what happens if we modify them. Keeping those assumptions hidden is often
what limits moving a methodology between different application areas (both with their own hidden
assumptions). Where possible, e.g. say with why PID controllers are almost always discretized using
a backwards rectangular rule, I will point these out and give my best guess as to why they are there.

Another repeated focal theme in this book is that of the importance of the quality of the model of the
physical system we are trying to control. Let’s be honest: on a lot of “easy to control” systems, where
only nominal performance is needed, the model need not be that great. In fact, a huge percentage
of practical control systems can be viewed as having some sort of basic first or second-order model
without much parameter sensitivity. For those, matching anything other than the gross (approximate,
not disgusting) system behaviors. At the other end of the spectrum are systems that truly need a lot
of feedback and feedforward intervention, either to simply operate or to press the performance. In
these cases, the cases in which people most often claim the need for advanced control methods, the
quality of the model is critical to any application of those methods. Fundamentally, the model must do
what Stephen Hawking wrote about in A Brief History of Time[7]: it must explain what we have seen
with a small number of arbitrary constants and it must allow us to make predictions about what we
will measure. I will add that to be useful for our practical controls problems, the model must do these
things in the operational ranges that we care about. If we only care about basic performance, a good
model need only match basic performance. If we care about pushing the system behavior using our
control methods, then the model has to be accurate in these high performance regimes. What is often
the case is that folks try to apply advanced methods which work extremely well in simulation (where
the model matches itself) but fail on the real problem when the model match is poor. Thus, I will keep
coming back to modeling and to making enough high-quality measurements to make those models
valid.

None of these are complete, either in theory or in every use case, but the hope is that they give
context, a framework by which we can place everything in a more appropriate place. And as Trevor
Noah said on his last night hosting “The Daily Show”, “Context is everything.”

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
53

Winter 2022-2023
December 31, 2022

Forward

1.3 The Style of this Book

When my oldest son, Michael, was an undergraduate engineering student at UCSB (The University of
California at Santa Barbara), he became righteously angry with the costs of engineering texts. He and
his friends were paying US $150–$200 for engineering texts that they might use for only one quarter.
He was quick to point out, “It’s ridiculous, and most of them aren’t very good beyond the one class.
I know that my parents can afford to pay for mine, but a lot of my friends are the first ones in their
families to go to college. Some of them have a lot of student loans to be there and making them pay
that much for textbooks is absurd.” At the same time, I spoke with a friend who is co-author on one
of the most popular automatic control texts there is, and asked him how much the latest edition costs
and how much of that he gets. I was guessing US $150, but he corrected me higher. Then I asked
what his royalties were and he and his co-authors split about US $15. Well, how much did it cost to
manufacture a book? US $8. This is the, “Are you f***ing kidding me?!?” moment. The students are
paying a huge amount but the money is not going to the producers of the content. I get that there are
editors and typesetters to be paid, but it cannot account for a ten times markup. I swore to Michael
then that this would never be that kind of a book. However it gets published in the end, the electronic
version will be less that buying lunch at most coffee shops and the print version will cost the extra
amount needed to turn a PDF into something physical.

There are pluses and minuses to this choice. I won’t be working with paid professional editors who
can legitimately clean up badly written and overly ponderous text that I will inevitably create. On the
other hand, I don’t have to worry about someone telling me to make a figure fewer colors to minimize
printing costs, or to not repeat a figure in three different places. Oh, and why would I repeat a figure in
three different places? Well, maybe because I don’t want the poor reader to have to go flipping back
and forth between where the figure was originally defined and where it is being referenced again 200
pages later. I won’t have folks pushing the books at conferences, but then again, students and other
buyers won’t be paying for sales folks to fly to exotic conference locations and set up book booths, so
that some professor adopts the book and forces 30 students a quarter to pay US $200 each. This is
what I will try to avoid if at all possible. I want this book to be accessible and inexpensive. I would
rather you finding it so useful and affordable that you check for the update every couple of years.

I also get to use the informal conversational style that folks who come to my presentations and work-
shops seem to like. I use contractions. I make jokes. I drop in pop culture references that date back to
before when the average reader was born. I call that culture. You can call it what you want if it makes
the book easier to digest. My my point is that when most of us watched Peter Jackson’s “Return of
the King”, only our bladders told us the movie was longer than 3 hours. When we watched JJ Abrams
“The Rise of Skywalker”, we noticed. At some point folks just broke down, whining “Okay, bring back

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
54

Winter 2022-2023
December 31, 2022

Forward

Jar-Jar. I don’t care anymore! Just let me out of here!” All of which is another way to say that I would
rather make something long and easy to read than compact and inscrutable.

The most important thing you can get out of this book is context: context for theory, context for appli-
cations. Understanding why successful engineers make certain choices in certain domains over and
over again frames the theory and allows us to have intuition about where we will hit limits. Knowing
that may allow us to build those physical limits into our models and then extend where we think we can
push the theory. There is a line I love from the movie, “A Bridge Too Far,”[8, 9] in which the general
asks one of his lead subordinates, “What is the best way to take a bridge?” Answer, “Both ends at
once.” To bridge this theory/practice gap, to take that bridge, coming from one side or the other is
likely to fail. We need to come at it from both ends at once.

1.4 Intended Audience for the Workshop and Book

I believe that this workshop will be of great interest to three types of audience members:

1) Academic researchers who are well versed in control theory but would like to learn more
about issues practicing control engineers often encounter as well as techniques and meth-
ods often used outside of standard textbook solutions to enhance their students’ experi-
ence in the classroom and laboratory.

2) Practicing engineers who work on physical control systems and products that use control
with an interest in connecting their work to “best practices” motivated by theory.

3) Students who may be interested in adding laboratory experiments to their research or
want to know how to make what they have learned applicable in industry. For each of
these groups – and those that are somewhere in the intersection of them – this workshop
will address the gap from both sides, so as to give the participant

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
55

Winter 2022-2023
December 31, 2022

Forward

1.5 Prerequisites

Every workshop, any technical book has to start with some assumption about what the audience
and/or reader knows. In this, I assume that the participant(s) have had at least an undergraduate
knowledge of feedback systems, of the digital sampling of data, and the basics of programming.
Furthermore, this book (and the workshop) are intended for folks with an honest interest in being able
to translate control theory into physical control systems. There are many fine books that introduce
control theory. This is not intended to be one of them, although I hope that in understanding the issues
involved in making the theory work, the reader will have a deeper understanding of the theory.

By undergraduate knowledge, I am generally talking about the first course in feedback control, in
which the basic concepts of dynamic response, feedback, and stability are taught. Almost always,
this includes ideas of Routh-Hurwitz stability and root loci. For electrical and mechanical engineers,
this also includes a few weeks spent on frequency response methods. For chemical engineers, these
methods are taught less frequently and used sparingly, in large part due to the slower time constants.
In this book I will rely quite a bit on frequency response methods, although I have put a lot of effort into
showing when these methods don’t make sense. Still, for large classes of problems, having a strongly
coupled understanding of the signal domain and the frequency domain is important. Undergraduate
classes in control usually get to the proportional plus integral plus derivative (or proportional-integral-
derivative i.e. PID) controller. While it is the bane of graduate students in control, it is remarkably
effective and versatile for almost any control problem that can be reasonably modeled as having first
or second order physical system model (a.k.a. plant). However, instead of presenting these as a
separate topic – as done in many control books – or as a be all and end all – as in other control
books, this work will attempt to classify the PID in its proper place: as the starting point controller for
the low frequency, rigid body or spring-mass-damper behavior of the physical system. We will also
spend more than the usual time on the discretization of PID controllers and what one can expect when
applying part or all of a PID to different simple systems.

Depending upon the class, state space might be introduced at the end. It is rarely tied in well with
the transfer function methods (some will argue this), and the students are often left with the “what
just happened” look on their faces. I don’t go into state space until the end, but throughout the
book, I am trying to build up methods for getting better models from physical systems. After all, state
space methods are model based methods, and model based methods require . . . a good model. (The
difficulty of this last statement cannot be overemphasized, and yet it is often ignored in most first year
controls classes.)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
56

Winter 2022-2023
December 31, 2022

Forward

Sampling is another matter. While much of advanced control theory takes place in continuous time,
the modern implementation of most control systems is in discrete time. That is, there are plenty of
analog/continuous time components, but the implementation of the bulk of the control law (the decision
making and most of the math) is done in a digital computer. Because of this, it is critical to have some
understanding of sampled data systems. I won’t expect a lot of derivations of different discretization
methods, but it is important to understand the trade-offs of different discrete-time representations.
This material will be most easily understood by a reader that has taken a class in digital control, but
the approach here will be quite different from the standard textbook treatment in several ways:

• I stay away from a “set it and forget it” view of discretization. I think that we need to go back and
forth to get make sure we understand the discrete models in the compute domain and how our
sampled system interacts with the physical world. This is often overlooked.

• I will provide pseudo-code for some of the major block types. I think it is important to pay
attention to the programming aspect of digital systems.

• I will try to explore the computational pictures of not only fast mechatronic systems but slow
process systems. It is no exaggeration to say that many folks working at one end of the sampling
spectrum act as if the other end does not exist. Instead, I will try to use these differences to
show us common frameworks and how differences get exposed, so that we are ready when
Moore’s law moves something that was once only possible in analog circuitry into the domain of
“slow” processors.

Still, some experience in digital filtering, digital control, or simply programming embedded systems
helps to motivate the reader towards the turns in the text. It makes understanding my obsession
with digital representations more understandable. A reader can get a lot out of the first few chapters
without having taken a digital controls class, but most of the discussions of implementation assume
that the control law is being executed by a digital computer.

Finally, the implementation of control laws, of filtering, and of any other type of decision making on
a digital computer requires some (usually a lot of) programming. I believe that a control engineer
cannot really tune their algorithms unless they are the ones involved in the implementation, and that
means programming and debugging, making measurements in the lab, checking code and comparing
physical measurements to what was predicted in their simulations. To paraphrase something that was
once said about Willie Mays, the only person who truly knows what measurements need to be made
is the person who needs them for their control algorithm. There is a lot of confusion about what
engineers need to know for this, and I will try to explain some of the salient points.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
57

Winter 2022-2023
December 31, 2022

Forward

In the end, I hope that this allows more control engineers to try to implement the stuff they simulate
in Matlab and its relatives. I hope that practicing engineers working on control problems find enough
useful material in here to allow them to better understand common structures across the systems that
they see. Maybe they will see that some of the advanced methods can be useful, if the devilish details
of implementation are taken care of.

One more thing about the style of this book. I will never be mistaken for Calvin Coolidge (a famously
Laconic American President) nor do I have a fetish for Occam’s Razor (or at least the interpretation
that says the shortest explanation is the best). I am much more a fan of Einstein’s notion that things
should be made as simple as possible and no simpler. To that end, if I believe that repeating the same
idea, diagram, justification in multiple places if it means that the reader doesn’t have to flip back and
forth between chapters, I will. To paraphrase Dolly Parton’s classic, “It costs a lot of money to look
this cheap,” I may take a lot of pages to make something simple. There are no constraints from some
brick and mortar publisher, so I will feel free to be informal, use color, and use repetition and a lot of
graphics. I’m more likely to follow the old preacher sermon method of “Tell them what you’re gonna tell
them, tell them, and tell them what you told them,” than the KISS method (keep it simple, stupid). In
fact, I’ve never thought that the KISS method was appropriate for many technical situations. Instead,
I prefer the KICK method (keep it clear, knucklehead) . Some things are just complicated, but we can
work hard to make the explanations clear. It doesn’t bother me and shouldn’t bother you if that makes
the PDF 20% longer, so long as it makes the understanding 30% easier.

Finally, after all these years, I have learned that I truly am an engineer down to my soul and what
this means is that there is always something that can be improved. This book is a work in progress,
and I expect that no matter how (or how often) it gets published, it will always be getting tweaked and
optimized, just to make it a little bit better. Your comments and suggestions are always welcome. Your
rants, maybe a little bit less. (I believe that’s what Twitter is for.) Thank you for taking the time to read
this. I hope it’s helpful.

Danny Abramovitch, December 20, 2022

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
58

Winter 2022-2023
December 31, 2022

Chapter 2

Introduction

While Chapter 1 gave you, the reader, the style, purpose, and context of this book, this chapter is
intended as a technical introduction and overview of the material. As stated in Chapter 1 (and later
in this chapter), this book is absolutely not intended as a replacement for all the fine “introduction
to control theory” texts out there. It is intended as a missing supplement, a companion book, a
provider of context to the material in these other books. This book – like the workshop that birthed
it – is intended to help engineers who want to apply control theory in the real world bridge the gap
between theory and practice. With any luck, we can help control engineers answer the two most likely
questions that occur in trying to implement real systems:

• “Why didn’t that work?” and

• “What can I adjust to give it a chance of working?”

2.1 Introduction to the Introduction

“Practical Methods for Control” refers to the stuff one has to do when one wants to do controls in the
real world. It is the crossing of the proverbial gap between theory and practice to get theory that can
be used in practice and practical systems that are far more empowered by analysis and design. The
difference between idealized analysis and the grubby details of implementation can be visualized in

59

Technical Introduction

ye ur
S
-

C P

Figure 2.1:A generic control loop.

Physical
System

Digital
Computer

Actuators

Signal
Conditioning

Analog
Filters

Power
Amplifier

Digital to
Analog

Sensor

Measured
Outputs

Small
Electrical
Signals

Small
Electrical
Signals

Small
Electrical
Signals

Small
Electrical
Signals

Digital
Signals

Inside the computer:
plenty of chances to
do fancy stuff, but
cannot erase any
quantization
or delay inserted by
analog portions.

The analog circuitry:
analog filters here are
mostly notch and low pass
filters, including
anti-alias filters.

The stuff that moves:
to make your computer
run this stuff, you have
to go through the other
stuff.

Digital
Signals

Digital
Reference

Large
Electrical
Signals

Force/
Current/

Flow/
Etc.

Physical
Outputs

Analog
to Digital

Analog
Filters

Figure 2.2:A more detailed, but still generic, digital control loop.

comparing Figures 2.1 and 2.2. Figure 2.1 is the type of diagram we would associate with analysis,
but to implement a control system, we need to consider all the components in Figure 2.2. The main
difference, conceptually, is that there are a lot more pieces between the physical system and the
controller implemented in the digital computer. Typically, to get from Figure 2.2 to Figure 2.1, a lot of
those pieces get either swept into P or C. For example, C might include the Digital Computer, and the
converters. The power electronics, actuators, and sensors may very well be wrapped up in P. The
analog filters might go in either direction, depending upon the design style.

That being said, while compressing all those blocks into P and C might help with analysis, that involves
an assumption that this simplification doesn’t significantly affect the response. If that were always the
case, we would not need to worry about practical methods. Another way to look at the two sides of
the great divide is to consider them as a form of responsive reading.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
60

Winter 2022-2023
December 31, 2022

Technical Introduction

One side is the academic/theoretical (AT) side, where one starts with analytical models, CAD
tools (e.g. MATLAB), and no end of advanced algorithms. Here, all the cool kids use advanced
control (e.g. state space), use online identification and learning algorithms, use optimization methods
on sophisticated models that may or may not represent reality.

On the other side is the implementation/industrial (II) world, where experience often is considered
more important than analysis, where models – if they show up – are first or second order (plus
some crap to be eliminated separately) where the kinds of controllers used are “Both kinds: PID and
three-term.” This world is inhabited by practicing control engineers, often many years past that one-
semester college class on automatic control. Sometimes, students stumble in, attempting to apply
what they have spent the previous term deriving. Mostly though, it is about getting something to work
well enough and not to hinder the rest of the system.

Our goal here is not to close this proverbial, 60-year gap, but to use some “simple tricks and nonsense”
[10] to get a few rope bridges across it. Let’s throw out a few ideas. As we will sometimes have to do,
getting the general idea will involve some broad generalizations and simplifications. So, follow along
with Brother Danny. The following list is best read as a call/response type reading that one might hear
in a religious service or rock concert. It helps if one’s voice changes with each color.

• In academic/theoretical (AT) problems, we start with a model.

• In implementation/industrial (II) problems, getting to a reasonable model is 85–95% of the
control design.

• In academic/theoretical (AT) problems, we often analyze in continuous time (CT).

• In implementation/industrial (II) problems, we almost always implement using a digital computer.
It may – and usually does – connect to the real world via analog circuitry, but the control law,
parameters, decision making, and intelligence are almost all implemented digitally these days.

• In AT problems, the models are “mostly” linear time-invariant (LTI), but can be quite large. If
there is a dominant nonlinearity in the problem, then dealing with this is usually the main focus
of the work.

• In II problems, the models – if the are written down – are first or second order. When the physical
system presents higher order properties, a lot of effort is made to beat down, segment, divide
up, etc. the problem into second order chunks.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
61

Winter 2022-2023
December 31, 2022

Technical Introduction

There are exceptions, mostly in the high-end “fighter-plane” or large refinery problems. These
problems usually have the characteristic that multiple engineers are needed to tune/adjust a
single instance of the design.

• In AT problems, the filtering of extra dynamics is often folded into the control design.

• In II problems, filter blocks are added along the analog/digital path in a piecemeal way to remove
imperfections in the signal path close to where they occur, thereby isolating them from the rest
of the system.

• In AT problems, a more complex algorithm that produces a slightly better response on some
metric leads to a publication. #Winning

• In II problems, the goal is to make a reliably working system, a device that operates, a product
that sells. Adding ten times the complexity for a 2% increase in some metric is not something
that will make it to market.

• In AT problems, the nonlinearities are often added in at the end to make the problem “more
real”.

• In II problems, the nonlinearities usually frame and limit the scope of the control design.

• People working on AT problems would love to get their advanced algorithms into hardware on
physical systems, but it’s hard to make that stuff work.

• People working on II problems would love to add advanced algorithms to their physical systems,
but it’s hard to make that stuff work.

As with any modeling, we have to generalize in order to extract common threads. Many of these
should seem obvious once stated, but they are often quite hidden until someone writes them down or
says them out loud. I will try to write them down here as much as I can. We will follow up this set of
broad, oversimplified, massively generalized assumptions with a few premises:

• State space filtering and control are model based filtering and control, and model based control
and filtering require (wait for it . . .) a good model.

• Extracting models from measurements is imperfect and depends strongly on the device/system
being measured.

– Certain physical systems admit only certain types of measurements.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
62

Winter 2022-2023
December 31, 2022

Technical Introduction

– Each measurement class only gives a certain amount of information about a system and
no one measurement gives a complete picture.

• Virtually all the quantities measured from a physical system start out as analog quantities. This
means that the signal conversion is important.

• Even the internal digital signals inside the controller are usually digital facsimiles of analog
quantities.

• All the measurements are eventually digital, in that they result in sampled data that gets fed
into a computer. For this book, when we say computer with no modifications, we mean digital
computers – what anyone born after 1970 likely thinks of exclusively as computers. There are
lots of other forms of computing: analog, hybrid, biological, quantum, etc., but we will spec-
ify them if we talk about them. Analog computing, while a great concept and useful from a
circuitry implementation perspective, is no longer mainstream. The rest have not yet become
mainstream. Most of the time in this book, “computer” means digital computer, a device base
on approximating real numbers and differential equations in binary logic.

• Most physical systems are engineered to present a low order model – at least in their basic, low
frequency behavior.

Therefore, in trying to understand practical control methods:

• We will pick some representative low order models that demonstrate what we see in the physical
world (Section 2.3).

• We will talk about what kinds of measurements we can make to determine the parameters of
these models.

• More importantly, we will talk about how to write code (or what type of code needs to be written)
to make the most of these measurements.

• We will discuss why for any first or second order model, a well tuned digital PID (proportional-
integral-derivative controller) and some filters have all the needed degrees of freedom to imple-
ment excellent (not optimal) control.

– We will give a common framework for PID controllers.

– We will discuss the different ways to design PID controllers based upon what model mea-
surements are available.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
63

Winter 2022-2023
December 31, 2022

Technical Introduction

– We will discuss the hows and whys of PID discretization.

– We will talk about what to expect from a closed-loop PID response when applied to one of
our canonical physical models.

• We will then move beyond the simple models to discuss the hows and whys of compensating
extra dynamics. In particular, much is made of filter design with little thought to how to implement
compensating filters. Someone has to go there. It might as well be us.

• A key factor in being able to intelligently design control systems is the ability to rapidly iterate
between measurements, modeling, design, and implementation. We will discuss the types of
data connections needed between these devices, and give examples of how this can be done.

– The lack of data connectivity in labs is one of the key limitations in applying more advanced
methods to practical problems. It make it hard to connect measurements to models, makes
designs hard to connect to real-time controllers.

– The issue is that getting this connectivity is a slow, tedious pain-in-the-butt (technical term)
during which time “real results” are not being produced. Because of this, the “infrastruc-
ture building” step is often shunned or at least minimized both in academia and industry.
However, while you may be able to get from (a) to (b) over a dirt road, you cannot go fast
or move much. To move truckloads of data or even sports car loads at high speed, you
need that highway. Taking the time to build the infrastructure gives engineers the ability to
iterate rapidly, which is one of the things we do best.

• We cannot understand, create, or modify computer control implementations without knowing
something about computers, and how to get data in and out of them, so we will discuss com-
putational models and different methods of getting control implemented on digital computers.
While there are discussions of this throughout the book, Chapter 10 focuses on this.

It makes no sense to discuss modern control systems without some discussion of the effect of sam-
pling on physical system models. In particular, the obfuscation of physical parameters created in any
sampling scheme should make us reconsider most identification methods for use in practical systems.

In Section 2.3, we will present a set of low order models that can be considered representative of the
types of practical systems that get controlled with simple controllers, such as PIDs. These models are
helpful because in initially looking here, we are able to frame the discussion of model identification
from measurements, the subject of Chapter 3. In particular, we can see what parameters can be
extracted from step responses, and how practical use of step response must be coupled with an
assumption of one of these model types [11].

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
64

Winter 2022-2023
December 31, 2022

Technical Introduction

Having simple, linear models can help us get a “best we can do” idea for our control systems. In our
discussions of practical identification, we will see how the best information we can get out of step
responses depends on assuming one of these ideal models. In Section 4.11 of our chapter on simple
controllers and PIDs, we will see what we can say by assuming one of these models and picking one
of the PID forms [12].

Of course, knowing the ideal response would be great except that “stuff happens”, and that stuff
makes things worse that the “best we can do”. We will start an ongoing discussion of these in Section
2.5. This stuff limits our use of simple models and forces us to think about a lot of other issues.

Because discretization has such a strong effect on almost all our control systems, we will then give
a useful introduction in Section 2.5.1. Of course, topics of discretization will pop up gain in almost
every chapter. Instead of discussing discretization in one place and then assuming everything stays
in one domain or the other (continuous or discrete), this book will pop back and forth between the two
representations of the same model, trying to give insight into which issues are inherent in the problem
and which show up simply when we discretize. We also are not content to stay with a “one size fits
all” discretization method and will pick and choose the ones that seem best for a particular problem
or part of a problem.

Again, this book was not intended to replace a first course in feedback control or one of the many
fine books on control theory [13, 14] and digital control [15, 16]. we will assume here that the readers
(a.k.a. you) have already taken a course in feedback control and maybe even in digital control. We
(a.k.a. I) assume that the readers (once again, you) are familiar with stability, of poles, zeros, and
gains (“Oh, my!”), of Bode plots, of gain and phase margins, of discretization, Laplace, Fourier, and Z
transforms, of sampling, and of time delay. A good place to add more controls textbook references.

In any event, there are many books to explain these, some of them quite readable. We (a.k.a. I) are
not going to waste your time trying to replace these. Instead, this book is about the things that limit
the implementation of real control systems; about things that must be dealt with if we want to see
theory come to life. To get there, a large part of what we have to do is put all those theoretical topics
in better context with each other and with implementation methods and constraints.

Time and again, when all the control levers have been applied, the limiting factors are latency (a.k.a.
time delay) and noise. We also need to realize that while we like to deal with linear models, most
systems have some amount of nonlinearity. There are nonlinearities that limit the range of a variable,
nonlinearities that distort a signal, nonlinearities that are repeatable, and nonlinearities that drift over
time. We need to understand the limits imposed by nonlinearities, bot understand the operating

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
65

Winter 2022-2023
December 31, 2022

Technical Introduction

ranges of our linear model based designs. When there is a distortion, can we reliably and repeatably
undo that numerically?

Even for linear time-invariant (LTI) systems, we come back to latency and noise. We need to under-
stand the sources and impacts of each of these. We need to see where we can limit the noise at
its source, where we can minimize the latency through our implementation of circuits or computer
programs. At the same time, we need to understand how these factors limit what we can do with
the control loop. The latter might be about loop dynamics, but he former involves understanding the
system components. Time and again, we will see the need for component knowledge. We may not
need to be experts everywhere, but we should be conversant everywhere so that we can work with
component experts to get what we need.

2.2 Use the Digital, Luke

Measurement/
Instrumentation

Real-Time
Controller

CAD Level

Measurement Data
Real-T

im
e Data

Meas/Config Parameters

Input/Ref/Stimulus

Stimulus/Inputs

Measured Outputs Measured Outputs

Stim
ulus/In

puts

Contro
l/M

ode Para
meters

Path
/R

ef/S
tim

ulus

Meta D
ata Meta Data

Physical
System

UI:
Graphic
Text
Scripting

Analysis
Modeling
Coding
Simulation

Figure 2.3: A view of test, analysis, and design for a real-time system.

One of the ideas that gets little discussion in a lot of controls texts are all the things beyond the
implementation of a control law that one gets out of digital control methods[17]. Digital methods

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
66

Winter 2022-2023
December 31, 2022

Technical Introduction

give us more than a chance to do control implementation in embedded software; they allow us to do
things that do not lend themselves easily to circuits and continuous-time analysis. Sanity checking
results, switching modes depending upon the inputs from auxiliary sensors, updating parameters,
and applying repetitive control methods or iterative learning control are all things that really can only
be done in the digital world. This has been understood since the success of the Apollo Program
[18]. However, the teaching digital control often focuses on how close we can get to analog behavior.
Thus, the bureaucracy of the data handling needed to do these things needs to be accepted as part of
enabling the vastly superior performance – not due to an improved implementation of an approximated
differential equation, but due to the ability to switch between multiple methods depending upon what
the measurements are saying. In our opinion, this gets far too little discussion in standard controls
texts.

We will try to correct for some of this in Chapter 10 where we deal with real-time computation for
control, but we can get a preview by taking a look at Figure 2.3. Figure 2.3 presents a conceptual
schematic of a development environment for control design. At the bottom we have a physical sys-
tem. At the top we have our “CAD (Computer Aided Design) Level”. The physical system is reality,
and the top layer represents where we do our thinking and have the bulk of our analysis and design
tools. The question then is what goes between them to connect them? Well, since we are talking
about implementing control systems, there must be some sort of real-time controller. We will assume
for most of the work described in this book that the real-time controller is digital computer based, but
historically this was not the case. The other often-ignored component is the measurement engine/in-
strumentation. The diagram shows the type of data that gets shared between these two intermediate
stages and the physical system on one side, and the intermediate stages and the top level. This
data is almost always in digital form these days, and that implies that we need to be able to convert
between the different data formats, sample rates, measurement lengths, etc. This is a at its core a
bookkeeping problem. It is boring and tedious to get right. And it is absolutely necessary and often
ignored.

The increasing universality of digital implementations of control have also exposed another issue:
a needed change in how measurements for control design are accomplished. Measurements for
control design are an often yet another under-discussed subject, despite their strong effect on any
reasonable effort to identify the plant model from actual signals. After all, we can measure anywhere
within a Simulink environment, but the same is clearly not true in the physical world.

Looking back to Figure 2.3, we see that we push parameters, stimuli, and mode changing information
down towards our real-time layer (the controller and the instrumentation), while gathering the data and
meta-data they gather from the physical system. In the days before computers, the mechanism to do
this was the human operator, perhaps with the aid of some analog measurement devices. Still, it was

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
67

Winter 2022-2023
December 31, 2022

Technical Introduction

up to the human to combine the various sources of data, do the analysis, and implement the design,
then once again measure the resulting system. The digitization of these layers have provided the
potential to automate much of this, to make the data exchange and conversion much more automated.
However, someone has to write the code to make those transfers and conversions nearly automatic.
The connectivity allows for rapid iteration between measurement, analysis, design, implementation,
and more measurement. I think this is woefully neglected by most controls researchers.

2.3 Low Order Models

In this section, we present a handful of low order models that describe basic behaviors we see in
practical control systems. These models will be used both in extracting parameters from measure-
ments and in understanding the closed-loop behavior of various PID forms (P, PI, PD, and PID) on
these models. Moreover, these models are quite representative of ones seen in practice, and so
we can use them to get insights into what can and cannot be extracted from different measurement
types to quantify our systems. How do we get from first principles (science) to models that help us
do better control designs? What parts of our models can we verify from actual measurements? How
do we work knowledge of current working loops into modeling for improved performance of the same
system?

f x

k

b

m

Figure 2.4: Spring-mass-damper system represents the typical second order mechatronics system.

It turns out that a lot of the simple, practical control problems that are solved using a PID or lead/lag
controller can be classified as one of a handful of first or second order models. Of course, a closer
look often reveals a lot of extra dynamics, but a vast number of problems end up being modeled this
way. For this reason, a lot of practical control designs can be considered to be using one of these or
a combination of them.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
68

Winter 2022-2023
December 31, 2022

Technical Introduction

Temp
Sensor

Temp
Controller

Process
Fluid InSteam In

Steam Out
Process
Fluid Out

Figure 2.5:The heat exchanger is a classic first order system with delay.

In particular, we can consider the following simple systems. They can be considered as the “rigid
body mode” or baseband portion of more complex systems. When possible, we will discuss where
these models arise. We will also show a typical Bode plot and note the key characteristics of that plot
for each model

Note that we are giving physical models in continuous time although most controllers that we will
discuss and most measurements that we will make are done with computers in discrete time. For
our purposes, the continuous time is far closer to the physical system and therefore gives cleaner
understanding. We will spend some time on how to reconcile the continuous time models with discrete
time measurements.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
69

Winter 2022-2023
December 31, 2022

Technical Introduction

2.3.1 Integrator

-

+

vi

R

C

vo

Figure 2.6:An op-amp circuit that implements an integrator.

Figure 2.6 shows a simple analog circuit that implements an integrator function. The integrator re-
sponse is given by:

X(s)
F(s)

= H(s) =
K
s
. (2.1)

A note about circuits for my analog designer friends: Yes, I realize that nobody would build circuits
the way they are diagrammed here. The idea is to present the fundamental circuit so that we can
extract the Laplace transform model and get some back of the envelope analysis going.

An integrator may well be the easiest physical system to control [19]. In fact, many controller designs
first try to make the open loop look like an integrator before closing the loop on that integrator. From a
PID perspective, any of the combinations, P, PI, PD, and PID, can control this loop with (theoretically)
no upper limit on gain. Furthermore, when the open loop response looks like an integrator, then the
open loop has infinite gain margin and 90◦ phase margin.

2.3.2 Integrator with Delay

If the transport delay in the system is a significant portion of the response, then we modify Equation
2.1 to include this time delay factor.

X(s)
F(s)

= H(s) =
K
s

e−sTD (2.2)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
70

Winter 2022-2023
December 31, 2022

Technical Introduction

M
a

g
n

it
u

d
e

 (
d

B
)

-20 dB/decade slope

Time delay adds negative phase

With no time delay, phase is at -90
o

0 dB

100 Hz 1 kHz 10 kHz

log Frequency

P
h

a
s

e
 (

d
e

g
)

0

-180

-90

100 Hz 1 kHz 10 kHz

Figure 2.7: A schematic Bode plot response of a single integrator model. It is characterized by a
phase that is flat at −90◦ and a magnitude that drops off at −20 dB/decade. It is stable. The addition
of delay has no effect on the magnitude response but adds “negative phase” that gets more negative
as the frequency gets higher.

If one generates a Bode plot of Equation 2.2, then the magnitude response is identical to that of
Equation 2.1, but the phase response is significantly different. In time this corresponds to a system
with impulse response of

h(t) = K1(t − TD) for t − TD ≥ 0
0 otherwise

(2.3)

Including delay always makes things worse in a system model, because eventually the growing nega-
tive phase takes away all the phase margin. Thus, while all PID variants can control this model, there
is an upper limit on the gain for any of them.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
71

Winter 2022-2023
December 31, 2022

Technical Introduction

2.3.3 First Order Low Pass with Delay

Pure integrators are nice constructs in theory, but hard to find in the physical world. Often they are
leaky, which means that rather than the stead response to a step, their impulse response is

h(t) = Kae−a(t−TD) for t − TD ≥ 0
0 otherwise

(2.4)

which has the transfer function of
X(s)
F(s)

=
Ka

s + a
e−sTD . (2.5)

This equation in one form or another is typically used to model problems such as flow problems or heat
exchangers [20, 21, 22], diagrammed in Figure 2.5. As such it is a fundamental system in chemical
process control. Many systems, especially in heat flow, biology, and chemical process control, are
adequately described by this model. As with the integrator with delay, all the PID variants can control
this model, but there is an upper bound on the gain determined by the variant used, the delay, and
the pole of the filter.

2.3.4 Bilinear Filter

When there is differentiation as well as integration, then there are dynamics in the numerator of the
transfer function, as seen in Equation 2.6:

X(s)
F(s)

= K

(

a1c

b1c

) (

s + b1c

s + a1c

)

(2.6)

This is the form that analog lead circuits, used to stabilize systems by providing band limited differen-
tiation. It is also the form that an analog lag filter takes. The key difference is that for a lead, b1c < a1c

and for a lag b1c > a1c.

An simple, generic op-amp circuit is shown in Figure 2.9. If we do standard op amp circuit analysis,
we have a single current going from Vo to ground and from ground to Vi so that

i =
Vo

Zo
= −Vi

Zi
, or (2.7)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
72

Winter 2022-2023
December 31, 2022

Technical Introduction

M
a

g
n

it
u

d
e

 (
d

B
)

-20 dB/decade slope

0 dB

100 Hz 1 kHz 10 kHz

log Frequency

P
h

a
s

e
 (

d
e

g
)

0

-180

-90

100 Hz 1 kHz 10 kHz

Time delay always adds negative phase

With no time delay, phase goes from 0 to -90
o o

Figure 2.8: A schematic Bode plot response of a first order model. It is characterized by a phase that
goes from 0◦ down to −90◦ and a magnitude that is flat and then drops off at −20 dB/decade. It is
stable. The addition of delay has no effect on the magnitude response but adds “negative phase” that
gets more negative as the frequency gets higher.

Vo

Vi
= −Zo

Zi
. (2.8)

We have

Zo =

R2
sC2

R2 +
1

sC2

=

1
C2

s + 1
R2C2

. (2.9)

Likewise

Zi =

R1
sC1

R1 +
1

sC1

=

1
C1

s + 1
R1C1

, (2.10)

so that

Zo

Zi
=

1
C2

s+ 1
R2C2

1
C1

s+ 1
R1C1

=

(

C2

C1

)

s + 1
R1C1

s + 1
R2C2

 . (2.11)

Finally,

Vo

Vi
= −

(

C2

C1

)

s + 1
R1C1

s + 1
R2C2

 . (2.12)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
73

Winter 2022-2023
December 31, 2022

Technical Introduction

R2

C2

-

+

vi

R1 vo

C1

Figure 2.9:A generic simple circuit diagram of a bilinear filter.

Comparing Equations 2.6 and 2.12, we see that b1c =
1

R1C1
and a1c =

1
R2C2

, so we can get a lead if
R1C1 < R2C2 and a lag if R1C1 > R2C2. We also have

K

(

a1c

b1c

)

= −
(

C2

C1

)

(2.13)

although making this exact would depend upon finding the right resistors and capacitors. The simple
diagram of Figure 2.9 is not a very good circuit from an analog design point of view, but it does make
for an easy to understand analysis. The other thing is that this simple circuit is inverting, so we would
likely follow it with an inverting voltage follower circuit to buffer the signal and change the sign (Figure
2.10) or use a different configuration going into the non-inverting input of the op-amp.

-

+

vi

R

R

vo

Figure 2.10:A generic simple circuit diagram of an inverter.

2.3.5 Double Integrator

Another model that shows up in countless idealized control problems is the double integrator (Figure
2.11), so named because it is described by the solution to the differential equation,

ẍ(t) = 0+ K f for t ≥ 0
0 otherwise

(2.14)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
74

Winter 2022-2023
December 31, 2022

Technical Introduction

f
x

m

No friction

f a v x1
m
_ 1

S
_ 1

S
_

Figure 2.11: A pure mass on a frictionless plane is one physical system that results in a double
integrator model.

where f is the input to the system. This has the transfer function of

X(s)
F(s)

=
K
s2
, (2.15)

and is seen in most physics problems as a mass on a frictionless plane. If x(t) is displacement, then
we get back Newton’s f = ma where ẍ = a and K = 1/m.

This model is the starting point for many simple electro-mechanical systems. In fact, some papers
and texts really never get to the point of adding extra dynamics because they are hard to deal with.
However, they do represent the behavior of a 3-axis stabilized satellite (where each axis behaves as
a double integrator), since there is no friction in space or wind to deal with. However, this model does
not describe the more flexible spacecraft parts (such as the robot arms used on the NASA’s space
shuttle or on the International Space Station).

We will see that even from such a simple model we can predict when each of the forms of PID will
work. P and PI will not suffice, but PID can and PD may be the best of all.

2.3.6 Double Integrator with Delay

If we model the transport delay along with the double integrator, we get:

X(s)
F(s)

=
K
s2

e−sTD (2.16)

Everything gets worse and more limited with delay, so while our PD controller may work for whatever

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
75

Winter 2022-2023
December 31, 2022

Technical Introduction

M
a

g
n

it
u

d
e

 (
d

B
)

-40 dB/decade slope

0 dB

100 Hz 1 kHz 10 kHz

log Frequency

P
h

a
s

e
 (

d
e

g
)

0

-180

100 Hz 1 kHz 10 kHz

Figure 2.12:A schematic Bode plot response of a double integrator model. It is characterized by a
phase that is flat at −180◦ and a magnitude that drops off at −40 dB/decade. It is not stable in the
sense of bounded output to a bounded input, but it is relatively easy to control.

gain we wish in the double integrator case, the addition of delay will cause us to have to limit the gain
based on the negative phase that the delay provides.

2.3.7 Pure Delay

We can also have a model that is a pure time delay, that is, the output reproduces the input but
delayed TD seconds. The transfer function for this is:

X(s)
F(s)

= Ke−sTD , (2.17)

and it has a gain of K for all frequencies, but an ever decreasing phase. Signals passing through lines
without attenuation, or simply data passing through a computer system exhibits this kind of behavior.
Two examples of such signals are shown on the left of Figure 2.13. On the right is sketched the
resulting Bode plot for the pure delay with gain K.

Delay is a weird thing, like that relative in the penitentiary. Everyone knows it’s there, but discussing it

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
76

Winter 2022-2023
December 31, 2022

Technical Introduction

Time

Input

Response

ResponseInput

Time

M
a

g
n

it
u

d
e

 (
d

B
)

20 log K

0 dB

f0 10f00.1f0

f0 10f00.1f0

log Frequency

P
h

a
s

e
 (

d
e

g
)

0

-180

-90

Figure 2.13:On the left, simple examples of pure time delay in a system. The output reproduces the
input, with perhaps some scaling, but no other distortion. On the right is a sketch of the Bode plot this
produces: flat gain (20logK) and phase going from 0 to increasingly negative with high frequency.

is complex (no pun intended). It is easy to consider on a Bode plot, but not so much on a root locus.
Furthermore, if the delay is not an integer number of sample periods, life gets a lot more complicated
for filter and state space analyses.

However, unlike that incarcerated relative, time delay is certain to show up again. Now, it may not
matter: the relative amount of time delay might be so small compared to the system dynamics that
it has no practical effect. Still, it is worth having the tools to understand time delay and put it in the
context of its affect on the system response.

As shown in Figure 2.17, delay has no affect on the response magnitude, but generates phase lag.
The phase lag is proportional to the time delay and the frequency of the signal. It looks curved in
Figure 2.17 only because the frequency axis is logarithmic. Eventually, time delay will put a limit on
bandwidth. Fractional sample time delay will mess up our ability to make reasonable measurements
for modeling.

However, what might be the most difficult part of understanding time delay is that for many classes
of systems, it just doesn’t matter. For example thermal, pressure, and systems have such slow
dynamics that virtually any real-time computing system is far faster than the dynamics and any delay
in the dynamics. In this case people often get confused about which delay is being discussed, which
delay dominates.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
77

Winter 2022-2023
December 31, 2022

Technical Introduction

2.3.8 Simple Resonance with No Zeros

f

x

k

b

m

f a v x
S

-

1
m
_ 1

S
_

b

k

1
S
_

Figure 2.14:Simple spring-mass-damper problem. On the left is a schematic diagram and on the right
is the resulting system block diagram. The schematic diagram can also be obtained by augmenting a
double integrator with feedback from both the position and velocity term, resulting in a second order,
stable system. If the ratio between the velocity feedback term and the spring feedback term is small
enough, we get the complex roots of a resonant system.

The spring-mass-damper system of Figure 2.4 provides an easy to visualize model for a lot of simple
electromechanical systems as well as for a lot of analog circuits. The block diagram of such a physical
system is derived from adding position feedback (k, corresponding to the spring term) and velocity
feedback (b, corresponding to the damping term) to the diagram of Figure 2.11 to get Figure 2.14.
The transfer function is:

X(s)
F(s)

=

1
m

s2 + b
m s + k

m

, (2.18)

which can be put into resonance terms:

X(s)
F(s)

= K
ω2

d

s2 + 2ζdωd s + ω2
d

, (2.19)

by setting ω2
d =

k
m , 2ζdωd =

b
m , and Kω2

d =
1
m .

This is a fundamental structure [14] that shows up in physics tests, filter models, etc. In Figure 2.14,
we see that it can be represented by a direct force acting on a mass, connected to an immovable wall.
This is known as a spring-mass-damper system.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
78

Winter 2022-2023
December 31, 2022

Technical Introduction

2.3.9 Simple Resonance with One Zero

X(s)
F(s)

= K
s + b1,c

s2 + 2ζdωd s + ω2
d

(2.20)

We will see that even from such a simple model we can predict when each of the forms of PID will
work, P and PI if the overall gain is low enough, PD if the gain is high enough, and PID if we have an
accurate model.

The presence of a zero simplifies the control problem in some ways because the differentiation adds
phase lead and eventually limits the system’s negative phase. In the model above, the high frequency
phase is −90◦. However, we should keep in mind that every physical system is eventually low pass.
That is, eventually, all physical systems have a frequency response that attenuates at high frequency.
(This helps keep the universe from blowing up, since signals continuing to have amplitude at infinite
frequency probably causes problems.) That means eventually, everything has lots of negative phase.
However, this is far beyond the limits of where the model above might be applied.

2.3.10 Resonance with Anti-Resonance (notch)

We do not usually see this system in isolation since most physical systems exhibit some sort of low
pass behavior when we get to high enough frequencies, and some sort of rigid body behavior at the
lowest frequencies. Mechatronics engineers are used to seeing these responses out beyond those
rigid body behaviors.

X(s)
F(s)

= K

(
ω2

d

ω2
n

) (

s2 + 2ζnωns + ω2
n

s2 + 2ζdωd s + ω2
d

)

, (2.21)

This model also shows up as a system component. For example, analog conditioning circuits often
have notches (anti-resonances in the numerator of (2.21)) to eliminate problem frequencies. Flexible
mechanical systems may have many, many resonance, anti-resonance pairs in them, which would
end up as a series of models like Equation 2.21.

Figure 2.15 shows the biquad as the ith member of a chain of biquads in which ai1 = 2ζidωid, ai2 = ω
2
id,

b̃i1 = 2ζinωin, b̃i2 = ω
2
in, and bi0 = K

ω2
id

ω2
in

.

The modeling of such systems in state space using chains of analog (or digital) biquad filters has
been described by the author in [4] and [3].

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
79

Winter 2022-2023
December 31, 2022

Technical Introduction

S S

S S

-

ui

ai1

xi

yi

bi0

ai2

bi1

~

yi

~

bi2

~

1
s

1
s xi

xi

Figure 2.15:A block diagram of an analog biquad filter, which can implement Equation 2.21.

2.3.11 Some General Ideas

Why does this matter? At a zeroth order level, it is simply that systems which are essentially domi-
nated by these models show up time and again in practical work. An engineer is looking at a problem
and realizes, “Oh, this guy again!” Some of that is a self-fulfilling prophecy. Other engineers will
design out/in features so that eventually the bulk of what the feedback controller is is one of these
models.

1) Because each of these base models has properties that determine what kind of control
can be easily and practically be designed and implemented for it.

2) Because we can take a simple parameterization of the most general PID model and apply
it to these, we can see the effects of different tuning schemes.

2.4 The Filtering Framework versus the Feedback Framework

This section presents a discussion of filtering contexts versus feedback contexts. It is a recent addition
[23], but once I got through finding a simple explanation, I found that it showed up again and again
and explained many of the technical mis-communications to which I had been privy over the years. I
will introduce it here, but it will show up again and again in this book. Understanding the difference
between these two contexts is important for modeling and identification (Chapter 3), in how we apply

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
80

Winter 2022-2023
December 31, 2022

Technical Introduction

v

dy

ymeas yfilty
S Filter

Physical
System

Measurement
Noise

Process
Noise

Plant Output
Disturbance

Signals
to

Measure

Improved
Signals

Plant Input
Disturbance

Unknown
Inputs

Unknown
Input

Generator

du

w

S

a.k.a. plant or
device under test
or channel or ...

a.k.a. signal
processing or DSP
or signal detection

or ...

Figure 2.16:A filtering structure for looking at processes.

filters (Chapter 6), how we deal with input noise (Chapter 7), and how we think about computation
for feedback control systems (Chapter 10). Even how one implements an estimator/observer (e.g. a
Kalman Filter) changes dramatically with the change in these contexts (Chapter 9).

Filtering and feedback are akin to cousins that both fight and get along. Despite many similar fea-
tures, there are core differences in the way the two frameworks approach similar looking problems.
Understanding those differences helps us apply them towards business decisions.

A filtering framework/perspective is depicted in Figure 2.16. Somewhere beyond our direct access is
a physical process generating an input. Perhaps this unknown input is passing through some physical
process or channel that shapes it (and for which we may have some form of a model). That unknown
input can be corrupted by noise and disturbances (what we would call process noise and plant input
disturbances). While both noise and disturbances are forms of uncertainty, we define noise as driven
by a random process which we cannot predict (but we can characterize). We consider disturbances a
form of uncertainty that has some predictable, repetitive, or structural component in it, so that with the
right algorithm and/or extra sensors it would be measurable. The key point of the filtering framework
is that we do not have access to any of these signals as they flow into a physical system, process,
or communication channel only the measured outputs. Those outputs are corrupted by uncertainty
(what we in the controls community would call measurement noise and plant output disturbance). It
is on this latter type of signal that the filtering framework applies.

The lack of access to the original physical signal (the reason why we need to do filtering in the first
place) places fundamental limits on the modeling that can be done to generate a filter. Learning
systems, such as an adaptive filter or supervised machine learning (ML), would require “ground truth”
(known as the desired signal in adaptive signal processing [24]) to train the model or digital filter.
Without this ML is limited to unsupervised methods, which are far more limited.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
81

Winter 2022-2023
December 31, 2022

Technical Introduction

v

ye ur

w

du dy

SS S
-

Controller
(Filter)

Measured
System
Output

Measurement
Noise

System Output
Disturbance

Process
Noise

Plant Input
Disturbance

Reference System
Output

ymeasPhysical
System

a.k.a. plant or
device under test

or channel or
process or ...

a.k.a. adjustments or
decisions

or correction ...

Meas.
Filter

Input
Filter

Figure 2.17: A feedback structure for physical processes.

The feedback framework, of Figure 2.17, considers access to the physical system input (at least some
of them) as fundamental – else we cannot do feedback. The feedback framework allows us to affect
the inputs to the physical process and so is in some ways far more relevant for decision making in
business processes. After all, in business we would want to improve the process behavior by our
adjustments. We still do filtering, but this can be in one or more locations including the feedback path
(to filter measurement data), the input path (to filter the input commands or references) and in the
controller itself (which is often implemented as yet another filter).

The filtering framework beckons as a simpler metaphor because it appears to have fewer perils. As
we cannot affect the physical process, we do not take into account time delay or input disturbances. In
fact, we must assume that the process is stable and relatively well behaved on its own, or there would
be nothing to filter. We cannot get input-output behavior models from input-output measurements
since we cannot generate inputs.

The filtering framework blinds us to the danger posed by latency, how a good correction done too late
is a bad correction. It lacks the notion that measurement noise travels straight through to any corrected
system output – a fundamental takeaway from that first controls class. Thus, without the feedback
framework, decision makers would lack some fundamental intuition of how strongly measurement
uncertainty limits their decision making.

The feedback framework tells us that we can use what we have measured to correct the process but
a broader understanding would tell us that there are inputs to the process that we do not or cannot
affect and outputs of the process that we do not or cannot measure. In this framework we would then
be able to ask if more sensing and/or actuation is helpful in improving the behavior of the original
process. On the other side, we could ask ourselves if there are outputs that – if ignored – can cause
“Dark Data” problems [25]. Similarly, are there parts of the process that are far more easily adjusted

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
82

Winter 2022-2023
December 31, 2022

Technical Introduction

and improved by adding another input to the system?

Even these intuitive arguments tell us that feedback is a far more complete framework than the filtering
one. To be certain, as with physical systems, there are many processes that are so well behaved that
only cleaned up observation and analysis a.k.a. filtered measurements are needed. To keep this
interesting, we are focusing on those that could benefit from feedback.

2.5 Stuff Happens

We will see in later sections how the closed-loop responses of these low order models under the con-
trol of various forms of PID controllers (P, PI, PD, PID) and be predicted. However, if linear continuous-
time analysis of simple models and simple controllers were sufficient to build great controllers in the
real world, there would be no need for a book or a workshop on practical methods. We would simply
apply the right theory, do some optimization, and real-world devices would work. Instead, we know
that in the real world, “stuff” happens. Sampling, delay, and noise. (“Oh my!”) This section will point
out how those turn this workshop into a two-day affair, crammed into one day. they are the reason
this tome keeps needing new sections and new explanations. Without that stuff, good theory would
be enough to generate good practical control systems.

2.5.1 Sampling

As mentioned in Section 2.1, we will assume that the control law will be implemented in a digital
computer (or a computer for anyone born after 1980). By digital computer we may be discussing
anything from a field-programmable gate array (FPGA) chip connected to the physical system with
analog-to-digital converters (ADCs) and digital-to-analog converters (DACs) , to MicroControllers, to
digital signal processor (DSP) chips, to full processors, to Linux and Microsoft Windows systems.
What we are excluding is the implementation of control laws via analog circuitry or analog computers
(the “other” computers). While there are some clear sampling advantages to analog implementation,
and these still exist at very high frequencies – where it is hard to sample fast enough and actually
do control calculations between the samples – these are increasingly the domain of a small niche.
An understanding of analog circuit design is extremely helpful in understanding the interface circuit
that connect sensors to the ADCs and DACs to driver electronics and actuators. (Chapter 7 begins a

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
83

Winter 2022-2023
December 31, 2022

Technical Introduction

discussion of some relevant analog circuits. Chapter 10 on computation discusses these in terms of
signal chains into and out of the computer.

Figure 2.18:A diagram of real-time sampling of a signal. The ideal signal (cyan) has sharp transitions,
but passage through the physical system often has a low-pass filter (LPF) nature to it resulting in
a rounded curve (blue). The sampled signal (red) typically (but not always) is produced at regular
sample intervals and with a certain level of quantization in the conversion. One can say that the real
goal of a sampling system is to recover or infer the behavior of the ideal signal, but this simple diagram
points out that even the physical filtering must be taken into account in any attempt to do so.

Realizing that most modern implementations are on digital computers, how do we discuss thinking in
analog while implementing in digital? When is “sampling fast” enough and what insights can we gain
from paying attention to how we discretize things?

The fact that controllers will be digital means that we should want a very physical, intuitive under-
standing of how sampling affects our perception of the physical signal (Figure 2.18), and how it limits
what we can do with the controller. In particular, sampling adds delay to the system, delay results
in negative phase, and negative phase reduces phase margin. Thus, the simple act of sampling the
data limits our top end bandwidth before anything else can.

The second thing we must understand about sampling is that no one discretization model fully cap-
tures our ability to control a system digitally. The workhorse of most discretization in control is the
zero-order hold (ZOH) equivalent [15], but even the most cursory look at this method reveals that all
physical intuition about any system more complex than a double integrator is lost using this method.
We will discuss how using other discretization methods may preserve physicality with a small (and
often negligible) loss of mathematical exactness in the model.

A simple example of what is wrong with our understanding of discretization is seen in discretizing
the double integrator of Section 2.3.5 and Figure 2.11. In the continuous time drawing on the right,
we can easily pick off the velocity term, which makes using both position and velocity measurements
available for feedback. Let’s remember that for a second order system, access to position and velocity
for feedback is full state feedback, and this is the 800 pound gorilla of control theory – it puts the poles

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
84

Winter 2022-2023
December 31, 2022

Technical Introduction

S S

-

u (k)i yi(k)
Ki T/2T 0 1

1 1-1 -1

S S

-
xi(k)xi(k) z

-1
z

-1

y (k)i

= x (k)i

~

Figure 2.19: Discrete double integrator BLSS model (ZOH equivalent). In this drawing, we’ve chosen
to make the index, i, as with a biquad stage, but we are explicitly labeling the different integration
levels.

anywhere it wants. The situation gets much worse as soon as we discretize. If we use the standard
Zero-Order Hold equivalent model and use a bilinear state space (BLSS) form (see Section 9.28) [5]
shown in Figure 2.19, we can access the position, but the intermediate result does not do a good job
of representing velocity, since the integrators are not interchangeable. It seems highly illogical to go
to the trouble of generating a state-space realization on the basis that state-space gives us access
to all the states and somehow lose access to velocity in one of the simplest state-space realizations
available [5].

Consider the earlier example of the second order resonance, of Equations 2.18 and 2.19:

X(s)
F(s)

=

1
m

s2 + b
m s + k

m

=
Kω2

d

s2 + 2ζdωd s + ω2
d

, (2.22)

or to the more general analog biquad model:

ẍ = −a1ẋ − a2x + u (2.23)

y = b0ẍ + b1ẋ + b2, (2.24)

with the transfer function description:
(

s2 + a1s + a2

)

= U(s)

Y(s) =
(

b0s2 + b1s + b2

)

,
(2.25)

yielding
Y(s)
U(s)

=
b0s2 + b1s + b2

s2 + a1s + a2
. (2.26)

A discrete transfer function version of (2.26)

Y(z)
U(z)

=
b0,Dz2 + b1,Dz + b2,D

z2 + a1,Dz + a2,D
=

b0,D + b1,Dz−1 + b2,Dz−2

1+ a1,Dz−1 + a2,Dz−2
. (2.27)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
85

Winter 2022-2023
December 31, 2022

Technical Introduction

The question is what the meaning of the new coefficients in relation to the old ones, and this is entirely
related to both the original parameters and the discretization method. Exact discretization methods
obscure the coefficient meaning and couple states in a very non-intuitive way. Some other approx-
imations, in which the original transfer function is broken into a cascade of second order sections
(biquads) can preserve much physical intuition.

There are lots of discretization methods and even when one does the “exact” math, one doesn’t get
a satisfying answer. In fact, the exact math can give an answer that is so convoluted as to obscure
any hope of physical intuition and this is bad. The Trapezoidal Rule, also known as Tustin’s Rule
or a bilinear equivalent[15], substitutes discrete time operators (based on the Z transform) for the
continuous time operator (based on the Laplace transform). Using the Trapezoidal Rule, we make the
substitution:

s←− 2
T

(

z − 1
z + 1

)

(2.28)

and if we substitute for s in (2.26) to get to (2.27) then we end up with the following mappings:

∆ = 1+ a1
T
2 + a2

T 2

4

b0,D = 1
∆

(

b0 + b1
T
2 + b2

T 2

4

)

a0,D = 1

b1,D = 2
∆

(

b2
T 2

4 − b0

)

a1,D = 2
∆

(

a2
T 2

4 − 1
)

b2,D = 1
∆

(

b0 − b1
T
2 + b2

T 2

4

)

a2,D = 1
∆

(

1− a1
T
2 + a2

T 2

4

)

(2.29)

For the simple spring-mass-damper system of (2.22), we end up with

∆ = 1+ b
m

T
2 +

k
m

T 2

4

b0,D = 1
∆

(
1
m

T 2

4

)

a0,D = 1

b1,D = 2
∆

(
2
m

T 2

4

)

a1,D = 2
∆

(
k
m

T 2

4 − 1
)

b2,D = 1
∆

(
1
m

T 2

4

)

a2,D = 1
∆

(

1− b
m

T
2 +

k
m

T 2

4

)

(2.30)

The point of the discussion is: if it looks complicated, it’s supposed to be. The physical parameters
get lost in the shuffle a lot and we need to fight to keep them in terms that are meaningful in our
discrete time model. The b, k, and m parameters are spread all over Equation 2.30. This also spells
bad news for trying to extract physical parameters from time domain ID with discrete time models.
The accuracy to which we need to identify the coefficients in Equation 2.27 in order to back out the
physical coefficients using Equation 2.29 is tremendous. The problems get worse when the system
order gets higher.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
86

Winter 2022-2023
December 31, 2022

Technical Introduction

What I’ve come to realize is that breaking the problem down into blocks and discretizing the blocks
makes a lot of sense in the sense that each block has it’s own discretization error, but it also preserves
the physical meaning of the original block (if you do it right, which still isn’t trivial).

2.5.2 Delay

The discussion of sampling brings into focus a discussion of time delay, and an understanding of time
delay should be part of any control system implementation. After all, time delay manifests itself as a
pure negative phase in the frequency domain. That is for a delay, TD, the Fourier transform pair [26]
is:

f (t − TD) ⊃ F(s)e− j2π f TD , (2.31)

which means once again that even if everything else is done perfectly, the time delay will eventually
drive the open-loop phase below −180◦ at some frequency, f = flim.

TSH
TADC

TDAC TTRANSTCOMP

TS

TLATENCY

Figure 2.20: A diagram of delays in computing a control signal for a sampled data system.

We will talk about time delay much more extensively in Section 5.6 of our chapter on loop shaping
and in Section 10.5 of our chapter on computation.

While we think about time delay from sampling, where typically one assumes an average delay of:

TD ≈
TS

2
, (2.32)

and TS = 1/ fS is the sample period, there are many other components of delay in the system. One
can consider the delay from the time that a signal is sampled until a control signal responding to that
signal is produced, as diagrammed in Figure 2.20. Even if the sampling delay was 0 there would be
physical transport delays in a system, the time it takes for fluid to flow from an actuator value to the
flow sensor, the time that it takes for the effects of a heating coil to be sensed at a thermocouple that

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
87

Winter 2022-2023
December 31, 2022

Technical Introduction

is displaced from the heater, the time for ions to travel from the source of a mass spectrometer to the
detector, or the time for packets to be transmitted across a network, just to name a few.

As humans, we like to simplify, and this often means that we focus on one dominant delay. For
fast mechatronic systems such as atomic force microscopes (AFMs, [27]), the computational delay
diagrammed in Figure 2.20. For chemical process control [20, 28], the physical delays swamp the
computational delays allowing for a slower sample rate (longer TS) and therefore making the relative
effect of TLAT ENCY in the diagram.

2.5.3 Time Constants

Both discussions of sampling and delay bring up the discussion of time constants. Generally, the term
time constant is associated with the solution to a first order, linear differential equation,

ṫ = at =
1
τ

t, (2.33)

where τ is called the time constant and is the time for an initial condition to decay to e−1 of it initial
condition value, V(t) = V0e−1. In common usage though, it is generally considered the amount of time
it takes for some response to really start rolling off. In this context, time constants can be thought of
a how much time it takes for a signal to get through a system, or alternately, how quickly or slowly
a system can respond to sudden changes in input. Time constants then can tell us how relatively
important our delay is. After all, if the constants of the system are super slow relative to the sampling
delay, then the sampling delay can be ignored. (This is also known as “sampling fast”, but really should
be fast relative to the time constants in question.) Likewise, transport delay only matters relative to
the time constants of the system in question.

One of the reasons that control engineers working in chemical process control (CPC) can use tech-
niques like model predictive control (MPC) [29] is that their system time constants are incredibly slow,
when compared to high speed electronics or mechatronics. In particular, almost any real-time pro-
cessing system is so much faster than the slow system time constants that a lot of complex algorithms
can be run in between samples. In fast systems, such as atomic force microscopes (AFMs) [27] or
phase-locked loops (PLLs) [30] (used in communication, clocking, and synchronization), current com-
putation technology is not fast enough to allow that.

We often don’t consider what is obvious in retrospect: that a lot of our frequencies come from the
movements of the system. Consider the movements of an AFM [31], generated by a raster scan to

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
88

Winter 2022-2023
December 31, 2022

Technical Introduction

Y
 d

ir
e

c
ti

o
n

X direction

Rate Definition

sample rate frequency of data sampling

scan rate frequency of 1 line scan in each direction

frame rate scan rate/lines per frame

pixel rate scan rate · pixels per line

samples per pixel sample rate/pixel rate

scan speed scan line width (µm/line) · scan rate (lines/s)

Figure 2.21: A raster scan generates the initial movements in an AFM. The blue line represents the scan,
which is generally faster in one direction – commonly denoted as the X axis. The checkerboard pattern
underneath schematically shows pixels that might be formedfrom such a scan pattern. Each direction of
scanning along the X axis is used to form a separate image. Foreach scan, the sampling of data along
the Y axis will be considerably slower than the sampling of data along the X axis. Typically, some sort of
decimation or averaging is done to reduce the X data samples to the pixel rate in the X direction.

create an image. Figure 2.21 shows the X-Y scanning of a sample area that is typical in generating
an image. On the right of the figure is a table that shows the different rates in the system. One of the
areas of potential confusion is that any one of the rates listed can be what any engineer – or more
frighteningly, any marketing person – calls the “rate”. If one makes certain assumptions about the
control design, including the phase margin, the scan size, the number of pixels, and the width of a
line, one can assess the desired closed-loop bandwidth and acceptable system latency. This then
allows us to back out the needed sample rate and electronics switching speed.

Try to find original calculations as they are instructive.

We will find that it is useful to paraphrase Sun Tzu [32] here, “Know your time constants, and know
your dynamics, and you can close 100 loops without disaster.”

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
89

Winter 2022-2023
December 31, 2022

Technical Introduction

2.5.4 Nonlinearities

All of these can create issues for making a system work, but as they say in late night commercials,
“Wait! There’s more!” This is because every real system has nonlinearities, and these nonlinearities
often make the quantization we see in the ADCs and DACs look like small potatoes. Often this
describes slew rate limits on flow, or simply a valve being able to only open to 100% and close to
0% flow (rather than towards +∞ or −∞). The thing about nonlinearities is that they break our linear
analysis tools and so the question is not about whether a system has nonlinearities or is nonlinear, but
really about how nonlinear a system actually is. Does this account for 90% of the response or 0.9%?
Is a system governed by different equations in one region of operation than in another? The ability to
detect these conditions and change the controller’s behavior is one of the great driving forces behind
using computer control. Of course, we still have to build that.

Nonlinearities take the form of limiting nonlinearities which limit the range of some variable (e.g.
saturation, signum (sign) function, sigmoid function) and distorting functions which alter the input-
output relationship (e.g. square root, square, signal harmonic, or quantization).

The saturation nonlinearity is one of the most common, showing up all along the signal chain, from
limits on valves to limits on voltages, to limits on the size of signals in fixed point computation. How
much of a signal’s nominal response exists in between the limits? What does the rest of the system
do once those limits are hit.

• In double integrator problems, the effects of saturation do not affect the reachability of any state
and therefore has little effect on closed-loop stability. However, it is the saturation that sets up
the time optimal, bang-bang control solution.

• For some systems, the effective gain reduction due to saturation can lead to instability. One of
the simplest systems that display this is the triple integrator where for small enough feedback
gain, the root locus reveals closed-loop poles in the right half plane. Thus, for a large enough
input signal, the gain reduction due to saturation results in instability., The details depend upon
the specific feedback compensator and on the system. In the case of an unstable system,
the saturation means that for certain large deviations, the system might not have enough input
range to get back to a zero state.

• Saturation also creates problems with integrators, which end up accumulating error signals.
When the system comes out of saturation, the accumulated error signal in the integrator may
be way out of proportion with the actual error in the system. This phenomenon is called wind-up

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
90

Winter 2022-2023
December 31, 2022

Technical Introduction

and is discussed in some depth in Section 4.18 of the chapter on simple controllers and PID
tuning.

• One of the most nefarious and hardest to debug locations for saturation is in notch/anti-notch
filters. A notch can be thought of working by creating a canceling signal that matches the input
signal at a particular frequency of interest. If that input signal is saturated coming into the notch,
the generated canceling signal will also be clipped, resulting in a notch that doesn’t really work.

• In fixed point math, not only can signals be clipped, but also filter coefficients. Returning to
our notch example, it turns out that for high Q filters, the limits on coefficients can take stable,
minimum-phase filters and make them unstable and/or non-minimum phase [33].

Lest we forget ADCs and DACs provide quantization nonlinearities in each digital control system.
While we are accustomed to our double precision floating point numbers, ADCs and DACs have fixed
quantization with the quantization level inversely related to the sample period and the chip cost. The
fastest ADCs are the 8-bit converters used in multi-Gigahertz scopes (cite some Keysight,Techtronix
scopes). The highest accuracy in products in broad distribution in the market as of this writing is
around 24 bits. Typical quantization levels in control applications are typically between 12 – 18 bits.

2.5.5 Noise

Finally, there is noise, which is a term used to describe anything from shot noise to biases due to
cables or friction. Noise can be easy to model (e.g additive white Gaussian noise) and not describe
what we are observing or may be perfectly descriptive and hard to handle analytically. As with all of
the above, it places a limit on what information we can cleanly extract from a system, either in our
attempts to model the system or to properly control it.

Less common is the understanding of the effects of noise through the feedback loop, or how to back
noise measurements out to their sources. In the legendary “Respect the Unstable” Bode Lecture of
1989 [1] Gunter Stein educated us to the idea that loops do not eliminate noise, they merely move
it around, as he brilliantly illustrated with a dirt digging problem, reconstructed from memory on the
right side of Figure 2.22.

If one uses that as a starting point and works backwards, one can establish what the “input noise” must
have looked like, as shown in Figure 2.22. This became the basis for the PES Pareto methodology of

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
91

Winter 2022-2023
December 31, 2022

Technical Introduction

lo
g

 |
S

|
(d

B
)

0

Classical Control

ω

lo
g

 |
S

|
(d

B
)

0

Modern Control

ω

HP Computer Chair
0 200 400 600 800 1000 1200 1400 1600

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

Freq (Hz)

M
a

g
 (

d
B

)

KittyHawk II PES: Measured () and Measured/||S||^2 ()Blue Green

1
‖S ‖2 × PSD of PES

PSD of PES

Figure 2.22: On the left, Gunter Stein’s dirt digging analogy, recreated from memory circa 1994. On the
right, KittyHawk 1.3” disk drive: PSD of PES, and PSD of PES filtered by 1

‖S ‖2 .

analyzing the effects of noise on a system [34, 35, 36, 37]. This divide and conquer analysis method
is one that pays many dividends because we go after the “right” noises that have the most affect on
the system. This is one of the main topics of Chapter 7.

Even then, when we are trying to make practical measurements, we must default to some idealiza-
tions. The Widrow model [38] of quantization, it assumes quantization error as uniform white noise on
the interval, [−q/2, q/2]. To analyze noise through a linear filter requires an assumption of additive,
Gaussian, white noise. We step away from analytical purity and mathematical exactitude to be able
to gain understanding. That is, in PES Pareto, we might start with the Widrow quantization model and
mumble a few incantations before setting the uniform variance of q2/12 = σ2 in an additive, white,
Gaussian noise (AWGN) distribution.

We will return to methods for analyzing and minimizing the effects of noise, because as will be re-
peated many times in this work, even in an LTI system, with perfect modeling and digital compensa-
tion, eventually noise and delay our our fundamental limiting factors.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
92

Winter 2022-2023
December 31, 2022

Technical Introduction

2.6 Skill Sets

Beyond a technical risk, there is an organizational risk posed by the necessity to involve multiple
designers with varied skill sets int he design. If one walks around a typical digital control loop of
Figure 2.2, one sees that each block brings with it a particular set of skill requirements.

Digital Computer: In order to do control, we will need to do digital control. Besides the obvious
needs to understand some digital control theory, we also need to program the computer to
implement the control law. This involves understanding of the physical system time constants
and the power of computation we have available. Can we run in a multi-tasking operating system
or do we need to be close to a pure processor or FPGA solution? In which language will we
program? What levels of abstraction do we need? What do we gain and what do we give up
when we let the advanced tool handle all these abstractions?

Physical System: A fictional engineer once made the epic statement to his commanding officer,
“I can’t defeat the laws of physics.” In fact no one and no algorithm can defeat the laws of
physics. It’s akin to a surfer claiming they can change the shape of a big wave with their board.
Instead, good algorithms ride physics of the problem. They read the fine print of the laws of
science. They understand the fracture points of the different problems. This is the key to difficult
problems and why one might approach “magic algorithms” which claim that you don’t need to
know anything about the system with a load of skepticism.

The first step to doing any control is to have some understanding of the physical system. That
requires domain expertise in the system to be controlled. It is a sad, but true case that physical
systems do not come with their own third order analytical models. Perhaps we can fix that
after the next Big Bang, but until then we are stuck trying to model physical systems from a
combination of first principles (science), measurements, and simulation. Even measurements
require some system knowledge to know what must be measured and what one can hope to
understand.

Sensor: The sensors need to interface with the physical system to return an analog of the physical
property being measured. As such, there is a lot of science tied to circuitry tied to machine
design.

Actuators: On the other side of sensors are the actuators that tie electrical signals into physical
action. Again, they involve a combination of machine design, science, and signal knowledge.

Analog Filters: Most conversion circuits require some sort of signal filtering to minimize noise en-
tering the loop. Before the signal can go into an ADC or go from a DAC to the physical system,

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
93

Winter 2022-2023
December 31, 2022

Technical Introduction

we want to clean up the edges, remove noise spikes, notch out harmonics, etc. These are done
with analog circuits and the art of analog design is almost a rarity these days. What are the
phase effects of different low-pass or anti-alias filters? Do power line harmonics need to be
removed? All of these require some knowledge of analog design.

ADCs and DACs: The choice of signal converters is rarely simply about picking the number of bits,
or we would simply pick the converters with the highest resolution. Instead, we must contend
with delays, both in the interface between converter and computer (parallel or a variety of serial
formats) as well as delays in the conversion method (SAR, pipelined, etc.).

Power Electronics: Before we can send a DAC signal to actuate a backhoe arm, we need some
power electronics to scale things up. Before that engine temperature can be tracked, it must
pass through a thermocouple. Signals in kilovolts need to be scaled down to that of the ADC,
typically under 5V these days. For the electrical grid to get smart, 3-phase measurements at
high voltage levels need to be made. All of these require a knowledge of power electronics,
which are often not taught in many collegiate Electrical Engineering curricula anymore.

Control Design: At the end, we come back to control design, but control design in the context of
these other factors. In the real world, optimality sucks [19]. That is, optimality, which can only
exist in the context of an abstract, usually simplified, mathematical model, cannot exist in a real
world system where all that stuff is happening. However, our idealized, simplified models can
be used to tell us the best we can do, even in the real world. Guided by understanding how
to apply our theory and optimization to real world systems, we can’t get to optimal control, but
we can get to excellent control. Or to be simplified to a bumper sticker, Optimality sucks . . . but
excellence rocks[19].

2.7 Introduction Summary

To quote Winston Churchill [39], “Now this is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.” This introduction is intended to motivate the dives in the
sections to come. The difference between an idealized system in analysis and a real working system
involves addressing these issues, extracting a workable system model in the face of sampling, time
delays, nonlinearities, and noise, then applying that model in a way that does not violate the limitations
imposed by those issues.

The rest of this book’s chapters will be organized as follows.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
94

Winter 2022-2023
December 31, 2022

Technical Introduction

• System Models and Characterizing Them with Measurements: We will first delve into
that fundamental need for applying advanced control methods to physical systems: how to
extract usable models from available measurements. For these, and particularly when only step
response methods are available, we will find that we need to assume something akin to one
of the models described in Section 2.3. Using ideas from Section 2.5.1, we will discuss the
difficulties and limitations of trying to use discrete-time, time domain identification on models for
which we want to extract physical understanding. (Chapter 3.)

• Simple Controllers for Simple Models (or why so many controllers are PIDs): A dual
to extracting a simple model is understanding what can be done with simple control schemes.
Thus, we will put PIDs into a unified framework [40] and then describe what we can tell about
these controller for our canonical simple models of Section 2.3.

• These two segments will provide some intuition into what we can expect from simple models
and controllers, and they will form a backdrop for the other aspects of practical systems. In
particular, they can be seen as the ideal that we are trying to get back to when other system
features interfere with our plans.

• Practical Loop Design, Or Why Most Open Loops Should Be an Integrator, and How

to Get There: We will discuss a relatively simple design objective, where it shows up without
much discussion in many engineering problems, and what we have to do to apply it in practical
problems. We will also discuss the ramifications of loop shaping, as explained in Gunter Stein’s
explanation of Bode’s Integral Theorem [1]. (Chapter 5.)

• Resonances, Anti-Resonances, Filtering, and Equalization: As Maarten Steinbuch writes on
the board in his control systems class, mechatronic systems are “-2 plus stuff.” (The word, ”stuff”
is a diplomatic substitution here, just as in the expression, ”Stuff happens.”) For flexible, mecha-
tronic systems, that stuff consists of one or more high Q resonances and anti-resonances. If
one wishes to not be limited by these, we must understand practical application of filters for
equalization. (Chapter 6.)

• Signal Detection, Sensors, Sample Rates, and Noise (Oh My): When everything else
is said and done, we can’t do feedback control without sensing the data and how quickly and
cleanly we can do this determines a lot of what any algorithm can do in a control system.
(Sensor noise goes right through.) Thus, it’s worth understanding sensors, sample rates, and
noise propagation through the system. Once we have understood how to relate measured noise
to an input, we will look at filtering and demodulation methods to minimize it before it enters the
loop. (Chapter 7.)

• Integrating in Feedforward Control: As the Cheshire Cat pointed out to Alice [41], it’s a lot
easier to get where we want to go if we actually know where we want to go. In control, that is

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
95

Winter 2022-2023
December 31, 2022

Technical Introduction

called feedforward. Sometimes this is not available to us, but how to we make use of it when it
is? (Chapter 8.)

• State Space: The Good, the Bad, and the Practical: State space control is model based
control and model based control requires a . . . model. If we’ve kept up to this point, we may very
well believe that the greatest limiting factor in using state space control on physical systems is
our ability (or not) to extract accurate models of the actual system and to understand the system
based limitations of the accuracy of those models. We will try to develop a mental checklist of
the things we need to get to so that we can do what the cool kids do. (Chapter 9.)

• Real-Time Computing Issues for Control Systems: Finally, while Silicon is cheap, finding the
right Silicon takes some investment. We can only scratch the surface here, but this section will
give the listener a start on understanding a three layer computation model for real-time systems
and how to make use of this in the chips we may chose to use for our control systems. (Chapter
10.)

• And we will have some Closing Thoughts, because every workshop/book/paper should have
something like that, and “conclusions” seemed like a bad name. This will be in Chapter 11. I
suppose it could have had something about putting the philosophy back into Ph.D.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
96

Winter 2022-2023
December 31, 2022

Chapter 3

System Models and Characterizing Them
with Measurements

3.1 In This Chapter

This chapter returns to the idea of modeling dynamic systems and how to accurately parameterize
these using measurements. We will primarily stick with models one might use for controller design
and/or for construction of a state-space model.

The literature tends to break down models from either “first principles” (a.k.a. science) or data centric.
We will argue that this is a false dichotomy. (Translation: I think it’s some BS.) A great explanation for
this view was stated by Stephen Hawking at the start of A Brief History of Time [7]:

I shall take the simple minded view that a theory is just a model of the universe, or a
restricted part of it, and a set of rules that relate quantities in the model to observations
that we make. It exists only in our minds and does not have any other reality (whatever
that might mean). A theory is a good theory if it satisfies two requirements. It must
accurately describe a large class of observations on the basis of a model that contains
only a few arbitrary elements, and it must make definite predictions about the results of
future observations.

97

Models & Measurements

The point of a theory is to describe measurements in a concise way and then let us use that

compressed representation to predict what we might measure later on.

We also need to understand what we can and cannot measure. Our inability to look at all signals at
infinite sample rate with infinite precision – it sucks to be us – means that we must discern models and
their parameters from measurements limited by what the system allows. Again, there is a disconnect
if we simply think we can make measurements outside the context of any model at all. James Burke
offered the view in The Day the Universe Changed [6]:

Science, therefore . . . is not objective and impartial, since every observation it makes
of nature is impregnated theory. Nature is so complex and so random that it can only be
approached with a systematic tool that presupposes certain facts about it. Without such
a pattern it would be impossible to find an answer to questions even as simple as ’What
am I looking at?’

Even with all these constraints, Moore’s law [42] allows us to do much more than we might think. The
thing is – as in all other chapters in this book – there is a disconnect between what the official theory
teaches us and what works in many control systems.

We will start with discussing the discrete-time linear model regression taught in many system identifi-
cation classes and describe which problems for which these methods might work well, and when they
might have very limited success.

We will then divert into problems for which step response methods can work well. Though there are
severe limits on how many parameters can be extracted using step response methods, we will see
that we can use them to gain some information from most systems.

Finally, we will branch into frequency response methods. While there are some restrictions on which
types of systems can be measured with these methods, they still provide a wealth of information about
those systems that allow us to extract parameters.

We want to keep in mind that extracting a model and its parameters from data is an exercise in
data compression. If successful we are able to represent a huge amount of data in a relatively small
number of parameters. Like all data compression problems, model regression takes a large amount of
data to reliably extract a model and its parameters – assuming one exists at all. In each of the methods

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
98

Winter 2022-2023
December 31, 2022

Models & Measurements

above, there is a dance between measurements and models. Which models apply to which systems,
which measurements are useful for which models, and which models allow for which measurements.
It is important to keep in mind that measurements without model lack any context from which to draw
insight. There are simply a set of phenomenological descriptions. At the same time, models without
measurements are pure conjecture, and as such disconnected from reality. Once again, our goal is
to meet somewhere in the middle.

3.2 Chapter Ethos

“Measurements, filtering, and noise, oh my!” For any physical control system, measurements are
made to characterize noise in the system, to characterize the physical system, and/or to characterize
the system’s performance. Likewise, all physical systems have behaviors that cannot be fully ac-
counted for by a tractable model. These are often called unmodeled dynamics when the they follow
some pattern and noise when they do not. Because all measurements are affected by noise and
unmodeled dynamics, we need to consider this when we make measurements to characterize the
systems we are trying to control.

In this chapter, we will talk about system modeling and how to extract models of our physical systems
from measurements that we can make on them. We cannot even start this without discussing dis-
cretization and discrete models of physical systems. This is not the standard textbook approach of,
“We start with a continuous-time transfer function in s and end up with a discrete-time one in z. They
both have coefficients.” In our case, for many of our physical systems, the journey of the physical
parameters into those discrete transfer functions or state-space realizations actually matters.

Once we have discouraged everyone properly, we will ask what measurements can be made to iden-
tify discrete-time models, and how those might be mapped back to physical parameters. From there,
we will take a different tack; found often in industry, but not often unified. We will return to our simple
second order models models and ask what parameters can be extracted from step response mea-
surements. One of the mental changes in this is that we will be extracting physical parameters of
continuous-time models from discrete-time measurements. Finally, we will turn our attention to some-
thing that is far more common in mechatronic control systems than in chemical process control or
biological control systems: frequency response methods.

Several issues are worth highlighting from a top level view. The first of these are the fundamental

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
99

Winter 2022-2023
December 31, 2022

Models & Measurements

questions of what constitutes a good model and how good does that model have to be to meet our
needs? (While we are at it, do we really understand what we want and what we need from our
system?) There are models that describe nature in great detail but cannot give us much insight,
much view into the fundamental structure of things. There are models that are supremely accurate at
capturing the behavior of a physical system, but are useless for generating a control or filter design.
For our purposes, we are looking for models that both capture the essential behavior of our physical
system and allow us to do something with that information. Preferably, this involves an improved
control design. Still, one might ask how closely this model has to match the system behavior to be
useful in a feedback design. When do we need to capture 99.9% of the behavior, and when is 95%,
90%, 80%, or even 60% of the physical system behavior sufficient?

Honestly, the general answer to this question is more philosophy than hard science. However, there
does seem to be an inverse relationship between how cleanly and rapidly one can measure signals
and apply feedback for linear time-invariant (LTI) systems): and how close the model has to be. Two
factors show up again and again (at least the sharpness of the resonances and other dynamic features
(but mostly resonances) and the relative speed of the controller to the highest-frequency significant
dynamic feature of the physical system. For digital controllers (and most practical controllers) this ties
directly to the sample rate and the latency of the controller.

3.3 System Models and Measurements: Introduction

In 2008, Karl Åström invited me to give a talk to his advanced controls class at the University of
California at Santa Barbara (UCSB) where he spent many winters. I generated the talk that became
“A Tale of Three Actuators” [31]. At the end of the talk, one graduate student (GS below) seemed
pretty upset and asked, “So, you’re telling us that all this state-space stuff we’ve been learning all
these years is useless!?!” My internal monologue was going wild.

Me: (“Think, Danny! Think!”) I started with “Well, um, state-space methods are . . . model based
methods, right?”

GS: Gives a distrustful head nod, and mutters, “Yeah.”

Me: “And model-based methods need a good model, right?”

GS: Gives a distrustful head nod, and mutters, “Yeah.”

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
100

Winter 2022-2023
December 31, 2022

Models & Measurements

Me: (Now, if you are old enough to remember the movie, Animal House, this is essentially my version
of the moment when Bluto asks, ‘Was it over when the Germans bombed Pearl Harbor?’ and
Boon wonders ‘Germans?’ and Otter responds, ‘Forget it, he’s rolling.’ At this point, I’m rolling.)
“Well, to tell the truth, most of the models you all use . . . suck. You assume simple models
for analysis but in the real world I by the time I get to that simple model, I’m 85% of the way
home. Getting models from measurements of real-world systems, especially lightly damped
mechatronic systems, is really, really hard and so it happens a lot less in industry than it happens
in academia.”

It’s been over a decade since that conversation, and so I may not remember the details, but the
essence of it is captured in what is above. The graduate student was not wrong to be frustrated. I
recall the same frustration trying to apply all the things I thought I knew coming out of graduate school
to optical and magnetic disk drives [19]. What that student had done with his insightful question was
forced me to state in a relatively brief way, what was one of the main disconnects between academic
and practical applications in the field of control.

The painful truth is, most people optimize the crap out of lousy models.

Model-based methods require a good model. We can go from first principles, but at some point
we need to correlate those physical models with measurements. Ideally, this would be simple, but
unfortunately (or fortunately depending upon the employment situation) there are issues.

The first is that while we can apply any measurement we want to a simulation model, different physical
world systems allow only certain measurements. Furthermore, nonlinearities, quantization, noise,
time variation, data memory limits, all mean that no one measurement can give universal information
about a system.

The second issue is that for all intents and purposes, our measurements come from discrete-time
measurements of a physical system. Setting aside quantization, saturation, and time-delay, we are
either applying discrete measurements to identify a discrete-time model (and either doing direct con-
trol design from that identified model or converting that model to a continuous-time model) or using
the discrete-time measurements to approximate continuous signals and applying these to identify a
continuous-time model. The former is by far the most in vogue method taught in academia, but as
the examples from the Introduction (Chapter 2) show, the discrete-time model obscures the physi-
cal parameters of the system. Much of how identification and control design has been taught since

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
101

Winter 2022-2023
December 31, 2022

Models & Measurements

the 1960s has involved working with the discrete models and not worrying about the loss of physical
model parameters. My experience in the past 30 years has shown that for control of physical sys-
tems, one has the best shot of success if one understand the physical parameters. Not only are those
the places where models change, but also having “physicality” in our controller designs allows us to
debug our design in a far more intuitive way.

There is a huge literature of time domain identification of discrete-time models. Most involve some
sort of least squares or gradient method to match a moving-average (MA) (a.k.a. a finite impulse
response (FIR) filter) [24, 43] or auto-regressive, moving-average (ARMA) (a.k.a. an infinite impulse
response (IIR) filter) [44, 45, 46, 47, 48, 49] to input/output data of the physical system. Of course,
things get more sophisticated with attempts to model how the noise is shaped, but for the point I am
trying to get across here, the simple model will do.

Most of this involves some version of a model:

y(k) = θTφ = [b0, b1, b2, . . . , bN , a1, a2, . . . , aN]

uk

uk−1

uk−2

. . .

uk−N

−yk−1

−yk−2

. . .

−yk−N

, (3.1)

for the system and an attempt to estimate the unknown θ parameters. This would correspond to a
transfer function in z−1 of

Y(z)
U(z)

=
b0 + b1z−1 + b2z−2 + . . . + bNz−N

1+ a1z−1 + a2z−2 + . . . aNz−N
(3.2)

The key mental break between the academic/theoretical (AT) models and what is done in practice is
that identification of an unknown θ vector might be fine in theory, but is far less common in practice.
In practice, time and again, we see attempts to work with physical parameters. Some of the reason
behind this should become apparent in the section of this chapter on discretization 3.6: most of the
methods obscure the physical parameters so much that it is hard to localize actual physical parameter
uncertainty on a few coefficients of the discrete-time model.

Too be clear, there are plenty of examples of these methods working. If this were not the case, far
fewer books on adaptive methods would be published. It appears that if one looks closely at these
examples, they include:

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
102

Winter 2022-2023
December 31, 2022

Models & Measurements

• Adaptive filtering as popularized by the classic book, Adaptive Filtering, by Bernard Widrow
and Sam Stearns [24]. This book has been on my shelf since graduate school, when it was in
draft form. If one looks at the problems described here, they are filtering problems, where time
delay does not matter, and where the thing to be filtered is stable. Furthermore, all the problems
described there essentially have a low pass behavior, well described by a discrete transfer func-
tion. The methods in the book describe using an FIR) (transversal) filters to approximate these
discrete transfer functions and then using the least-mean-squares (LMS) adaptive algorithm to
search for the best fit. Now, this works in a lot of situations, and it helps that latency and stability
are not issues when one isn’t closing the loop. However, from a modeling perspective, it seems
that the fits work best (and with the shortest FIR models) when the system being modeled is
low order, and/or well damped, and certainly stable.

• Rigid body systems, such as spacecraft. In such systems, there are few flexible modes and we
are really looking at adapting to constants of a lot of forms of double integrators.

• Chemical process control systems, which are often modeled as first order, second order, or
first order plus time delay (FOPTD) These are alternately known as first order plus dead time
(FOPDT) .

• Ship steering problems. Need I point out that these systems are slow, the resonances are well
damped and at extremely low frequency relative to any sample rate, and so the modeling, while
possibly multi-input, multi-output (MIMO) does not involve lightly damped or unstable modes.

The common themes here are that any dynamics are well damped, that the sampling is far faster than
any dynamics (e.g. 20–1000 times the fastest dynamic), and that when one is dealing with higher
order systems, it seems to matter little which physical feature/parameter is the one that is unknown or
changing.

It is when the system exhibits more exciting dynamics, e.g. instabilities or simply features with very
low damping, that these methods seem to hit severe limits. We will see that in these cases, practicing
engineers have moved away from the methods above to step and frequency response methods. That
will be the focus of this chapter. At some later point in time, a later chapter will delve into making
adaptive methods practical.

Measurements made to characterize a system can be delineated by several choices depending upon
what is available in the physical system:

• Time domain versus frequency domain: This is a bit deceptive because measurements must

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
103

Winter 2022-2023
December 31, 2022

Models & Measurements

be made in the operational (or time) domain. However, some are only displayed after being
transformed into the frequency domain. This is true of both spectrum measurements (where
only the output data is measured and transformed) and network measurements (where the
input and output data are measured and transformed).

• Operational data versus special test data: Operational data measurements rely solely on data
that would be present during normal system operation. Some systems have this limitation,
while others allow for specially generated signals to be used that allow for more dynamics to be
identified. Examples of the latter include:

– impulsive inputs,

– step inputs, although these are more likely square waves with a half-period longer than the
essential dynamics of the system (Section 3.11),

– pseudo-random inputs,

– chirped sinusoidal inputs,

– stepped-sine inputs (also called swept-sine in industry), and

– multi-sine inputs.

• Signal extraction methods, especially with respect to frequency domain measurements: Are
broadband methods such as fast Fourier transforms (FFTs) used? What are the benefits and
downsides of coherent demodulation?

• Which of these are available often depends upon the type of system under test. Chirped sinu-
soids may be easy to apply to mechatronic systems, but may be completely impractical for a
characterizing a chemical process control (CPC) problem.

Likewise, a variety of instruments may be available to accomplish some very similar tasks, including:

• Digital Oscilloscopes: These were also called digital storage oscilloscopes (DSO) in the past
and are generally called digital scopes today. They can be viewed as an instrument to capture
time traces of sampled data. Over the years, the sample rates and storage capabilities of
these have expanded so much that they can do much of the processing once found in spectrum
analyzers, especially simple FFTs of the captured data. Note that the scaling of the digital scope
FFT is likely different from the scaling of say an FFT from Matlab or NumPy in Python.

• Spectrum Analyzers: These are instruments that capture time data and then compute a Fourier
transform type of calculation on it, to reveal the frequency domain content of the signal over

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
104

Winter 2022-2023
December 31, 2022

Models & Measurements

a specified frequency range. Old instruments accomplished this by slowly scanning a narrow-
band filter (often a Gaussian filter) across frequencies and capturing the filter output at that
frequency. Modern spectrum analyzers compute an FFT of the data, but this functionality is
also now part of modern digital oscilloscopes. What are currently produced under the title
spectrum analyzers now can analyze a lot of digital patterns.

• Network Analyzers: These are spectrum analyzers that can also inject test signals into the
device under test (DUT) . By injecting test data, the idea is to stimulate particular elements
of the system and so as to be able to analyze the input-output behavior of the system. The
resulting measurement can be captured in time, but classically these instruments are looking
to measure frequency response functions (FRFs) , often known as empirical transfer function
estimates (ETFEs) in the academic literature. Network analyzers were particularly popular for
analyzing analog circuits. Very specifically, they are used for generating S-parameter measure-
ments [50]. Modern network analyzers incorporate features to stimulate and measure complex
digital patterns.

• Dynamics Analyzers: These are low frequency network analyzers, specifically optimized to work
with electro-mechanical systems. As they evolved they were optimized to make measurements
that did not make sense in simple analog circuits. These have largely been replaced in the
marketplace by similar functionality ported into the real-time control systems. We will discuss
this in detail later in this chapter.

• The real-time system running the control loop. For all but the highest-speed control systems
(or the lowest end analog loop), these are always digital computer systems of some type or an-
other. Moore’s law [42] has meant that we can do more and more of the above instrumentation
functions on our real-time computing system.

Each of these has it’s own advantages and issues, including but not limited to the sample rates that
they can achieve, the number of bits in their ADCs (and if present DACs), the signal processing that is
available, the necessary test points to enable their functionality, the physical limitations of the device,
whether they make measurements on open or closed-loop systems, and whether the measurements
are supposed to reveal analog or digital parameters.

This tutorial will focus on two methods that can be readily applied in practice: step response mea-
surements (usually involving the real-time digital controller) and frequency response function mea-
surements (typically done using a Dynamic Signal Analyzer). We will lay out both the benefits and
limitations of these methods in practical applications.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
105

Winter 2022-2023
December 31, 2022

Models & Measurements

3.4 A Brief, Practical, and Incomplete Discussion of Domains

Physical System
Chemistry
Physics
Biology

Time
signals
to time
models
(hard,

non
unique)

Time
models
to time
signals
(easy)

Transform
measures

to
transform

models
(hard,

non
unique)

Transform
models

to
transform
measures

(easy)

Easy (unique for LTI)

Easy (unique for LTI)

Easy

Easy but rarer

Time Domain Measures

Digital Recording
Meta data

Analog Meas.

Digital Meas.

Time Domain
ODE Descriptions

Difference Eq./
Sampled Descriptions

c2d d2c

Transform Domain
– from transforms of time domain

models
– from “curve fit” of freq. domain

measures
– from “least squares” fit of time

domain data to transfer function
models

Transform Domain Measures
(Frequency Domain)

– from evaluating transform models on j axisω
– from frequency domain measurements of

physical systems
– from transforming time domain

measurements of physical systems

M
e
a
s
u

re
m

e
n

t
D

ri
v
e
n

M
e
a
s
u

re
m

e
n

t
D

ri
v
e
n

M
o

d
e
l
D

ri
v
e
n

M
o

d
e
l
D

ri
v
e
n

– inverse transforms

– Laplace Transform
– Fourier Transform
– Z transform
– Discrete Fourier Transform

– Discrete Fourier Transform
– Fast Fourier Transform
– Discrete Fourier Series

– Inverse FFT/DFT
– Sine/Cosine Generators

Figure 3.1:A diagram of the different domains.

This section and its cousins will likely be repeated throughout this book in various forms. Since I don’t
have a publisher setting page limits, I don’t have to send you flipping pages to find it again when you’re
in a different chapter. You can thank me later.

One of the things that becomes quasi-religious in the intensity of the discussions is the domain that
engineers choose to work in. The cheat sheet version of these discussions is that the best domain
is whatever domain the speaker likes to use. For the sake of argument, I’ll assert that they all have
different uses and in any given application, one may have more advantages. Still, what we really want
to understand is the back and forth between domains so that we know what part of the understanding
that we get from one domain can be applied to the other. Figure 3.1 is an attempt to put some of
these ideas into a single diagram.

We start with the signal domain. For most control problems, this would be the time domain, t, the
domain in which the signal variables move. However, as we get into spatial domains, the signals

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
106

Winter 2022-2023
December 31, 2022

Models & Measurements

are all spatial (e.g. x, y, and/or z). Furthermore, we usually have problems where the signals move
in some direction with respect to time, but we can also have wave type systems where the signals
are also moving with respect to one of the spatial variables. Mostly, for control, we are talking about
signals in the time domain, t, and in our digital control problems, there is sampling of t, usually but not
always at some fixed sample rate fS .

The next domain is the transform domain, and I want to speak generally here, but for control problems
we are usually talking about Laplace transforms (s), Fourier transforms (jω), or Z transforms (z, which
honestly doesn’t have a very creative name). Also note that while z is the transform variable in the
discrete domain, it is often used interchangeably with the unit advance and its inverse, z−1 is used
even more often with the unit delay. There is some formalism that since the Z Transform is only
unique for linear time-invariant (LTI) systems, the unit delay, q−1 is used sometimes when filter/model
parameters are changing so as to show independence from the Z Transform.

In any event, we get from the signal (time) domain into one of the transform domains via an integral
done over infinite time. This means that we cannot actually ever compute a compete transform from
measured data unless we have infinite time, and I’ve got other stuff to do. We get an approximation by
going out “far enough”, assuming that there is a far enough, which is a mathematical construct. Still,
the thought experiment of the transform calculation tells us something. As Professor Bernard Widrow
of Stanford explained many years ago, the integral essentially takes the function in time describing
the signal and multiplies it at each step by a single frequency value (e.g. jωi for Fourier Transforms)
and integrates that for all time. What we get out is the component of that signal that occurs at the
single frequency, jωi. If the functions are nice mathematically, then we can integrate for all time and
get a transform domain description of the signal, showing its magnitude and phase at any frequency
we choose to plug into the transformed result. If we have a function, f (t) and the Fourier transform is
given by:

F(jω) =
∫ ∞

−∞
f (t)e− jωtdt (3.3)

then for any value of ω we know what part of the signal is at that frequency. In the case of signal and
transform domains, we move between then with different integrals, but on either side, we expect there
to be some sort of analytical function.

The third domain is the frequency domain, which is often confused with the transform domain for some
very good reasons, but is actually different in usage. For example, many systems are transformed
using Laplace Transforms to give a transfer function, but this is still a formula. We often think of the
frequency domain as evaluating the Laplace variable (which spans the entire complex plane) simply
on the imaginary axis (s = jω), where this gives the signal at a never damped oscillation frequency.
In usage, though, we actually perform this evaluation, often generating a complex response for each

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
107

Winter 2022-2023
December 31, 2022

Models & Measurements

frequency on the imaginary axis (or each positive frequency) and we get insight from the shape of the
response. There is a whole sub-domain of control design that gets to this point and works here.

The point of all of this discussion is to point out that while these domains are not the same, they
should be more tightly coupled. This lack of coupling is apparent in discussions of transform domain
and frequency domain. These terms are often used interchangeably, but I won’t do this and neither
should the reader.

Transform methods and models usually start with an LTI system model which gets transformed into a
transform domain model. For example, for a continuous-time LTI system modeled by a set of differ-
ential equations, a Laplace transform puts the model into the transform domain, where the frequency
variable is s, a complex variable that can range over an entire complex plane. Causal signals (sig-
nals that move forward in time) but die off map to the left half of the s plane, while causal signals
that grow without bound are mapped to the right half of the s plane. (In contrast, acausal signals
move backwards in time.) Signals that go on forever at a fixed amplitude are mapped to the jω axis.
For LTI systems described by LTI differential equations, the Laplace transform results (ignoring ini-
tial conditions) in a transfer function relating the output behavior to the input behavior with the free
variable being s. From the complex plain and the transfer function, we can do designs based on the
placement of poles and zeros, using methods such as root locus. We can evaluate stability using the
Routh-Hurwitz criterion.

What are called frequency domain methods are brought about in these models by evaluating them
along a single line of the s plane, namely the imaginary (jω) axis . Typically, the set of frequencies
used have ω = 2π f ranging from 0 to +∞. The frequency response function then is not an analytic
function in the same way as a transfer function is, but instead is a vector of ordered pairs of numbers,
a real frequency and its corresponding complex response. In this domain, working from these plots,
we can synthesize the response of filter/controller components we might add to see how they affect
the curves. That is, we take a proposed filter parameterization and we evaluate it along the jω axis
to synthesize the frequency response function that this filter element would give and to combine it
with other system elements. From here, we can look at the overall open-loop response which gives
us great intuition through margins such as gain and phase margin. We can synthetically close the
loop and evaluate the projected closed-loop response, from which we can evaluate the closed-loop
bandwidth and peaking.

Going from a transfer function (TF) to a frequency response function (FRF) is computationally easy:
we simply evaluate the TF at all the values of jω that we wish to visualize. The resulting vector pairs
can be plotted in Nyquist Plots , Bode plots , or Nichols charts . I recall that the last of these was very

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
108

Winter 2022-2023
December 31, 2022

Models & Measurements

cool, but I haven’t done one in years. Mostly, the visualization is done in Bode plots, which are far
more intuitive than the other two, but have some limitations.

On the other hand, going from FRFs to TFs is incredibly hard. The computational level is in some ways
similar to the computer password generation problem, where the operation to generate a password is
easy, but the operation to decode a password is incredibly difficult. Going from FRFs to TFs, through
curve fits of rational functions of polynomials has a relatively simple version (which works until there
is any noise on the FRF) and a more difficult version (which I am trying to explain and expand upon in
this book). The reason why this matters – why this is such a breakpoint in the work of getting usable
models from measurements is that some of the most powerful methods of measuring complicated
system responses are the frequency domain measurements we will discuss later in this chapter. To
be certain, there is a lot to do to get clean measurements of these systems, but even when we have
done that, even when we have beautifully clean frequency response functions, we still need to turn
those into parametric models if we want access to our most powerful design algorithms. The difficulty
of this step is often why so many people pontificate about model based methods while rarely having
access to an accurate model of a physical system.

Looking once more at Figure 3.1, a few things are worth noting. All interactions with the physi-
cal system are via the time and/or transform measures. However, those measurements are in-
formed/shaped/limited by the models we assume.

All understanding of the physical system comes from our abstraction and modeling. However, to para-
phrase Stephen Hawking [7], these models are useless unless they describe what we can observe
and predict what we might observe in the future. For any real model to do that, it must be based on
measurements of/interactions with the physical system.

The reason for the use of different domains is that each gives some insight that is not as accessible
in one of the others. For example, the frequency domain allows us to visually examine the behavior of
transform domain models in a way that is amazingly helpful. The effects of poles and zeros, of delay,
of damping factors, all become very obvious. On the other hand, design for the frequency domain
takes place in the transform domain. Even when someone realizes they want a lead, or a notch, or
some other device to change a behavior in the frequency domain, they return to the transform domain,
generate a prototype component and evaluate this across the jω axis so as to be able to evaluate
its response. That is because the path from the transform domain to frequency domain is so much
easier than the reverse path that it is often more advantageous to iteratively design in the transform
domain and “measure” the projected improvement in the frequency domain.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
109

Winter 2022-2023
December 31, 2022

Models & Measurements

To get the most complete understanding, we really want to move between these measurements and
models for any physical system. Some directions are “easy” so those transitions are made often.
For example, going from the time domain to the transform domain involves a Laplace Transform (per-
haps tedious, but straightforward) while going from the transform domain to the transform measure
(frequency domain) involves evaluating the transform model at a set of frequencies along the jω
axis. Going from a time domain model to a time domain measure involves evaluating the model at
successive time steps, i.e. a simulation.

Other transitions are hard and hard to reliably automate. A transform measure, i.e. a frequency do-
main plot being transformed to a transform domain model requires a curve fit of the complex response
to a small set of parameters. A time measure (time response) needs to be fit to a time-domain model
using the same order of magnitude of calculations and uncertainties. While the presence of noise
creates some inaccuracies going from models to measures, the same level of noise in measures can
make convergence to a model almost impossible sometimes.

I have said in other parts of this book that engineers need to be able to iterate on designs, processes,
experiments, etc. yet in this area of going between physical measures and analytic models, we are
often deficient. To have reliable success, we must be able to iterate. To be able to iterate rapidly, we
must be able to automate, and make these transitions easy to the human designer in all directions.

Something that is easy for the human may still involve tons of measurements and calculations by
the computer, but if the computational steps are robust and reliable, and the calculations are short in
human time constants, then this is not an issue. For example, transition from continuous time rep-
resentation to discrete time representation involves using one or more imperfect methods. However
the calculation, as done by a computer (say using Matlab’s c2d function) is relatively easy for the
designer.

We need to make this a round trip. We need to close the loop if we want to cross the divide between
theory and practice.

3.5 An Outline of the Rest of the Chapter

The rest of this chapter will proceed as follows.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
110

Winter 2022-2023
December 31, 2022

Models & Measurements

• Section 3.6 will review some ideas of discretization of measurements and system models. Be-
cause of our focus on practical systems, and those are often better parameterized by physical
parameters, it is important to understand sampling and what it does to our models.

• Section 3.7 discusses what happens to physical parameters in discretization.

• Section 3.8 takes a brief look at discrete-time, time domain identification.

• Section 3.9 then moves on to step response measurements, their limitations, and how to get
the most out of them.

• Section 3.10 is about how to segment a time response measurement so that it can be averaged
for better results in step response methods. It borrows heavily from what is done in digital
oscilloscopes.

• Section 3.11 discusses what parameters we can extract from step response measurements.

• Section 3.12 compliments that by showing which model parameters we can extract from step
response methods.

• Section 3.13 discusses an idealized first order section, and what model parameters we can
extract from step response measurements.

• Section 3.14 repeats this with a second order section.

• Section 3.15 shifts gears and discusses frequency response measurements.

• Section 3.16 discusses what options we have for frequency response measurements.

• Section 3.18 discusses two different frequency-response measurement configurations, and the
tradeoffs between them.

• Section 3.19 goes into some detail on Fourier analysis.

• Section 3.20 explains some useful aspects of using Fast Fourier Transforms (FFTs) to analyze
system data.

• Section 3.21 provides some analysis of the stepped-sine integral.

• Section 3.22 discusses implementing stepped-sine on an Field Programmable Gate Array (FPGA).

• Section 3.23, discusses some of the software that follows that integration.

• As the stepped-sine seems to require much more effort than an FFT, Section 3.24 discusses
the tradeoffs between these two methods.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
111

Winter 2022-2023
December 31, 2022

Models & Measurements

• Section 3.25 deviates from the math some to explain the importance of connected measure-
ments.

• Similarly, Section 3.26 tries to make the case for building stepped-sine directly into digital con-
trollers.

• Section 3.27 shows some simulation and measured results from built-in stepped sine measure-
ments.

• Section 3.28 discusses the difficulty of extracting a parametric model from frequency response
function measurements.

• Section 3.29 explains some methods for improving that.

• Section 3.30 explains the nasty effects of not accounting for delay in curve fits.

3.6 A Brief, Practical, and Incomplete Review of Discretization

As mentioned in the workshop introduction, we will assume that the control law will be implemented
in a digital computer (or a computer for anyone born after 1980). By digital computer we may be
discussing anything from a Field Programmable Gate Array (FPGA) chip connected to the physical
system with Analog to Digital Converters (ADCs) and Digital to Analog Converters (DACs), to Mi-
croControllers, to Digital Signal Processing (DSP) chips, to full processors, to Linux and Windows
systems. What we are excluding is the implementation of control laws via analog circuitry or analog
computers (the “other” computers). While there are some clear sampling advantages to analog imple-
mentation, and these still exist at very high frequencies – where it is hard to sample fast enough and
actually do control calculations between the samples, these are increasingly the domain of a small
niche. An understanding of analog circuit design is extremely helpful in understanding the interface
circuit that connect sensors to the ADCs and DACs to driver electronics and actuators. We hope to
touch on this at the end of the workshop, or in a future, extended workshop.

Realizing that most modern implementations are on digital computers, how do we discuss thinking in
analog while implementing in digital? When is “sampling fast” enough and what insights can we gain
from paying attention to how we discretize things?

The fact that controllers will be digital means that we should want a very physical, intuitive under-
standing of how sampling affects our perception of the physical signal (Figure 3.2), and how it limits

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
112

Winter 2022-2023
December 31, 2022

Models & Measurements

Figure 3.2: A repeat of Figure2.18. A diagram of real-time sampling of a signal. The ideal signal (cyan)
has sharp transitions, but passage through the physical system often has a low-pass filter (LPF) nature to
it resulting in a rounded curve (blue). The sampled signal (red) typically (but not always) is produced
at regular sample intervals and with a certain level of quantization in the conversion. One can say that
the real goal of a sampling system is to recover or infer the behavior of theideal signal, but this simple
diagram points out that even the physical filtering must be taken into account in any attempt to do so.

what we can do with the controller. In particular, sampling adds delay to the system, delay results
in negative phase, and negative phase reduces phase margin. Thus, the simple act of sampling the
data limits our top end bandwidth before anything else can.

The second thing we must understand about sampling is that no one discretization model fully cap-
tures our ability to control a system digitally. The workhorse of most discretization in control is the
Zero Order Hold (ZOH) Equivalent [15], but even the most cursory look at this method reveals that all
physical intuition about any system more complex than a double integrator is lost using this method.
We will discuss how using other discretization methods may preserve physicality with a small (and
often negligible) loss of mathematical exactness in the model.

s Plane

Left Half Plane

Real World
(continuous)

Math

Computer World
(discrete)

Math

Z Plane

|z| = 1

z = 1

Re{s} = 0
Re{s} < 0

Re{s} > 0

z = -1

Unit Circle

e
at

α=e
aT

Figure 3.3: Continuous and discrete: the left half plane (s) versus the unit circle (z).

This brings up a somewhat important distinction. When most people are trained in their first control

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
113

Winter 2022-2023
December 31, 2022

Models & Measurements

design work, they are taught system modeling and control design in continuous time. This is both
mathematically easier and historically accurate, since analog control design and understanding pre-
ceded – and continues to lead – digital control design and understanding. The act of conversion of
signals, models, and understanding is something that has been going on since the 1950s [51]. Gen-
erally, though, there are two schools of thought: that in which the system and controller are modeled
in continuous time and the controller is discretized for implementation with caveats about too much
sample delay and the other in which the physical model is discretized and then all the controller design
is done in discrete time. As a rule of thumb, the latter has held sway since the groundbreaking work of
[51], in part because the mathematics are exact in discrete time. However, much of the physical intu-
ition is lost and this is why in practice, the former is almost certainly more common. The discretization
of PID controllers falls into the former category, and so it is good to get an understanding of simple
controller discretization methods and their effect on the controller behavior.

This section describes different methods of coming up with discrete versions of differential equations
and transfer functions. There are tradeoffs in how this is done, and it seems that the discussion
that I have always used from Franklin and Powell [15, 52] is worth having in a unified and coherent
discussion.

At best, discretization methods map the left half of the s plane into the unit circle of the z plane
as diagrammed in Figure 3.3. The interior of the unit circle can be thought of as the region where
geometric series (the discrete version of exponentials) decay. There is no way to map a half plane
into a small circle without some distortion, but different methods map the plane with different amounts
of distortion.

3.6.1 Discretization Via Numerical Integration Equivalents

One of the easiest and most common ways to map from the continuous to discrete domain is through
numerical integration, where a continuous function is approximated by some sum of discrete functions
for which the integral is knowable simply by evaluating the function at the sample points.

In the text that follows, consider a function, e(t). We wish to know the integral under that curve

u(t) =
∫ t f

t0

e(t)dt. (3.4)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
114

Winter 2022-2023
December 31, 2022

Models & Measurements

We approximate this by converting this into a sum,

u(t0 + kT) = u(t0) +
t=t0+kT∑

l=t0+T

g(e(lT), e((l − 1)T),T). (3.5)

In this case, the time axis has been broken into equal intervals of width, t.

Usually, we do two things to make this problem simpler: we reset the time axis so that t0 = 0 and
we choose a function, g which makes this sum easy to compute. All the rules that will be discussed
here are simply different ways of picking g. Each of these choices has consequences, but as a rule,
if t is small enough, any of them work. Also, for this discussion, we will only talk about functions, g,
that rely on the sample points immediately bracketing the interval. It is possible to use points outside
this interval, as is done in the stepped-sine (called swept sine in industry) calculation for the HP
3562A [53], but it’s not useful for our current discussion.

3.6.2 Forward Rectangular Rule

Z Plane

Unit Circle

e(t)

(k-1)T

kT

Figure 3.4: The forward rectangular rule (on the left) and how it maps thes plane to thez plane (right).

The simplest discretization rule is the forward rectangular rule, also known as Euler’s method, shown
in Figure 3.4. In this rule, the area under the integral of the curve is approximated by a rectangle.
That is,

g(e(kT), e((k − 1)T),T) = Te((k − 1)T). (3.6)

The idea is that if the steps are small enough, the error generated by these rectangles will be small

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
115

Winter 2022-2023
December 31, 2022

Models & Measurements

relative to the value of the integral. In the case of the forward rule, we have

u(k) = u(k − 1)+ Te(k − 1). (3.7)

In other words, the forward rule takes the value of e at time (k − 1)T and holds it steady until time kT .
This rectangle is used to estimate the area under the curve. The z-transform of Equation 3.7 is

U(z) = z−1U(z) + z−1T E(z), (3.8)

or
U(z)(1− z−1) = z−1T E(z). (3.9)

This means
U(z)
E(z)

=
z−1T

1− z−1
. (3.10)

The Forward Rectangular Rule approximates 1
s with z−1T

1−z−1 . That is

1
s
←− z−1T

1− z−1
, (3.11)

or equivalently,

s←− z − 1
T
. (3.12)

We can see that this has mapped any differential element, s, into the z plane by simply shifting it to
the right by 1 and scaling it by T . What this means is that the left half s plane maps into the z plane
in a way where stable portions of the s plane are outside the unit circle in the z plane (unstable). This
depends upon the original pole location in the s plane and the size of T . The smaller T is, the more
likely the pole will fall within the unit circle, ‖z‖ = 1.

3.6.3 Backward Rectangular Rule (BR) Equivalent

The next simplest discretization rule is the backward rectangular rule equivalent or simply the back-
wards rule (BR) equivalent , shown in Figure 3.5. As in the forward rule, the area under the integral
of the curve is approximated by a rectangle. However, in this rule, the value of the current position on
the curve is used rather than that of the previous position, i.e.

g(e(kT), e((k − 1)T),T) = Te(kT). (3.13)

u(k) = u(k − 1)+ Te(k). (3.14)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
116

Winter 2022-2023
December 31, 2022

Models & Measurements

Z Plane

Unit Circle

e(t)

(k-1)T

kT

Figure 3.5: The backward rectangular rule (on the left) and how it maps thes plane to thez plane (right).
Discretization using the backwards rectangular integration rule maps the left half plane into a small (con-
servative region of the unit circle. The the area wheres→ −∞maps to an area aroundz = 0.

In other words, the backward rule takes the value of e at time kT and holds it steady backwards
until time (k − 1)T . This rectangle is used to estimate the area under the curve. The z-transform of
Equation 3.14 is

U(z) = z−1U(z) + T E(z), (3.15)

or
U(z)(1− z−1) = T E(z). (3.16)

This means
U(z)
E(z)

=
T

1− z−1
. (3.17)

The backward rectangular rule approximates 1
s with T

1−z−1 . That is

1
s
←− T

1− z−1
, (3.18)

or equivalently,

s←− z − 1
Tz
. (3.19)

This small change makes a big difference. Looking from Equation 3.17 to Equation 3.10, we see that
Equation 3.10 has an extra sample delay of 1 time step. As Frankenstein’s monster would say if he
were a control engineer, “Delay bad!”

We can see from Equation 3.19 that this has mapped any differential element, s, into the z plane by
a bilinear transformation. This transformation is such that the left half s plane is mapped into a circle

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
117

Winter 2022-2023
December 31, 2022

Models & Measurements

centered at z = 1
2 with radius 1

2. Thus, the backward rule will not create instabilities in the z plane
when there were none in the s plane. In fact, some unstable regions of the s plane will be mapped
within the unit circle and be stable. However, the ideal is to map the left half s plane into the unit circle
on the z plane.

3.6.4 Trapezoidal Rule (TR) Equivalent

Z Plane

Unit Circle

e(t)

(k-1)T

kT

Figure 3.6: The trapezoidal rule (on the left) and how it mapsthe s plane to thez plane (right). Discretiza-
tion using the trapezoidal integration rule maps the left half plane into the entire unit circle. The the area
wheres→ −∞maps to an area aroundz = −1.

The next simplest discretization rule is the trapezoidal rule (TR) equivalent , shown in Figure 3.6.
Unlike the forward and backward rules, the area under the integral of the curve is approximated by a
trapezoid. A line is drawn between the current and previous position, i.e.

g(e(kT), e((k − 1)T),T) = T

[

e((k − 1)T) + e(kT)
2

]

(3.20)

u(k) = u(k − 1)+
T
2

[e(k − 1)+ e(k)] . (3.21)

In other words, the trapezoidal rule takes the average values of e at times (k − 1)T and kT . This is
equivalent to constructing a trapezoid in that space, or drawing a line between the two points. The
z-transform of Equation 3.21 is

U(z) = z−1U(z) +
T
2

(z−1E(z) + E(z)), (3.22)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
118

Winter 2022-2023
December 31, 2022

Models & Measurements

or

U(z)(1− z−1) =
T
2

E(z)(1+ z−1). (3.23)

This means
U(z)
E(z)

=

(T
2

) (1+ z−1

1− z−1

)

. (3.24)

The trapezoidal rule approximates 1
s with

(
T
2

) (
1+z−1

1−z−1

)

. That is

1
s
←−

(T
2

) (1+ z−1

1− z−1

)

, (3.25)

or equivalently,

s←−
(

2
T

) (

z − 1
z + 1

)

. (3.26)

Again, this small change makes a big difference. We have now made a first order approximation to
the curve. We can see from Equation 3.26 that this has mapped any differential element, s, into the
z plane by a bilinear transformation. This transformation is such that the left half s plane is mapped
entirely within the unit circle. This is not an ideal mapping, but it is possible to choose the frequency at
which the map will be an exact match. This is called prewarping. The important thing to realize about
this is that with this first order approximation, we can do a much more reasonable job of using our
sampling bandwidth to approximate the curve. Likewise, using the bilinear transformation for mapping
control designs from the s plane to the z plane should provide improved results.

3.6.5 Numerical Integration Equivalent Summary

Method s Approximation z Approximation

Forward Rectangular Rule s ≈ z − 1
T

z ≈ 1+ T s

Backward Rectangular Rule s ≈ z − 1
Tz

z ≈ 1
1− T s

Trapezoidal Rule s ≈
(

2
T

)

z − 1
z + 1

z ≈
1+ T

2 s

1− T
2 s

Table 3.1:Summary of Discrete Integration Rules

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
119

Winter 2022-2023
December 31, 2022

Models & Measurements

3.6.6 Matched Pole-Zero Equivalent

In the Matched Pole-Zero Equivalent, we essentially individually discretize each continuous time pole
and zero via α = eaTS . Consider the simple continuous time transfer function:

H(s) = Kc
(s + b0,c)(s + b1,c)
(s + a0,c)(s + a1,c)

(3.27)

which we would like to transform into the discrete transfer function

H(z) = Kd
(z − b0,d)(z − b1,d)
(z − a0,d)(z − a1,d)

. (3.28)

Each of the continuous time poles are mapped to discrete time poles via:

ai,d = eai,cTS , (3.29)

where once again, TS is our sample period. (Sometimes we use T , when it is clear from the context
and it simplifies the reading.) Similarly, all finite zeros are mapped via

bi,d = ebi,cTS . (3.30)

Generally, all zeros at s = ∞ are mapped to z = −1, which ends up being very similar to the trapezoidal
rule. However, this method also allows one of the infinite continuous-time zeros to be mapped to z = ∞
to account for time delay [15]. A zero at z = ∞ corresponds to an extra pole at z = 0, and the z−1

model for time delay is pretty standard. (Technically, it should be q−1 since z refers to the Z-transform,
but everyone uses z−1 and q−1 interchangeably.) It is my opinion that we should not add extra time
delay in our controller modeling, but we need to account for it in our plant modeling.

If the pole (or zero) is part of a complex pair, i.e. ai,c = −aR,i,c + jaI,i,c, then

ai,d = e−aR,i,cTS e jaI,i,cTS = e−σieθi , (3.31)

where −σi and θi represent the real and imaginary parts of the z-plane pole (or zero).

When the number of poles and zeros match, and they are all real and distinct, this is pretty straightfor-
ward. When they don’t, we have to make some adjustments. Nevertheless, this method differs from
the others in that we cannot work directly from a denominator polynomial or a numerator polynomial.
We have to find all the roots. When the roots form a complex pair, we can adjust by discretizing the
complex pair together as described in Section 6.16 for the Multinotch [54] and the Biquad State Space
(BSS) [3, 4]. Because of that, we will repeat the derivation of coefficients for a biquad section here,
even though it’s ahead of the original use later in Section 6.16.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
120

Winter 2022-2023
December 31, 2022

Models & Measurements

fN,i Center frequency of numerator (Hz)
ωN,i Center frequency of numerator (rad/s)
QN,i Quality factor of numerator
ζN,i =

1
QN,i

Damping factor of numerator

fD,i Center frequency of denominator (Hz)
ωD,i Center frequency of denominator (rad/s)
QD,i Quality factor of denominator
ζD,i =

1
QD,i

Damping factor of denominator

Table 3.2:Physical coefficients used to specify a biquad section. Note that some of thes e are
redundant, so that the choice of ζ versus Q or f versus ω is simply a user preference.

Consider another continuous time second order filter:

Bi(s) = Ki,c
s2 + bi,1,cs + bi,2,c

s2 + ai,1,cs + a2,c
= Kc

s2 + 2ζN,iωN,i + ω
2
N,i

s2 + 2ζD,iωD,i + ω
2
D,i

, (3.32)

with the resonance parameter explanations in Table 3.2. We want to transform this into a digital biquad

Bi(z) =
bi,0

(

1+ b̃i,1z−1 + b̃i,2z−2
)

1+ ai,1z−1 + ai,2z−2
. (3.33)

via matched pole-zero mapping. The particular choices for the names will become apparent if we get
to Section 6.11.

Because the resulting digital filter is a digital biquad, there are no excess poles or zeros. Furthermore,
using this form where we have factored the bi,0 gain out of each numerator means that all the biquads
will have a uniform structure. Taking our design from an analog response of a ratio of a second
order numerator and denominator, we can discretize the poles and zeros using matched pole-zero
mapping [15]. This allows us to parametrize each biquad section using very physical parameters,
as shown in Table 3.2. The factored out gain, bi,0, can be used as is, or can be altered so that, for
example, the DC gain of the biquad section will be 1.

Assuming a complex pair of poles (or zeros), mapping via z = esTS , and recombining the results yields
some straightforward formulas. For ai,2 and b̃i,2 we have

ai,2 = e−2ωD,iTS ζD,i (3.34)

b̃i,2 = e−2ωN,iTS ζN,i (3.35)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
121

Winter 2022-2023
December 31, 2022

Models & Measurements

Whether the poles (or zeros) are a complex pair depends upon
∣
∣
∣ζD,i

∣
∣
∣ (

∣
∣
∣ζN,i

∣
∣
∣). For

∣
∣
∣ζD,i

∣
∣
∣ < 1 we have a

complex pair of poles and so

ai,1 = −2e−ωD,iTS ζD,i cos
(

ωD,iTS

√

1− ζ2
D,i

)

. (3.36)

If
∣
∣
∣ζN,i

∣
∣
∣ < 1 we have a complex pair of zeros and so

b̃i,1 = −2e−ωN,iTS ζN,i cos
(

ωN,iTS

√

1− ζ2
N,i

)

. (3.37)

While these two cases represent cases when the desired filters have very sharp peaks or notches
(for example to equalize a response with very sharp notches or peaks), there are other possibilities.
For example setting

∣
∣
∣ζD,i

∣
∣
∣ = 1 (

∣
∣
∣ζN,i

∣
∣
∣ = 1) means that the poles (zeros) are real and equal, so ai,1 (b̃i,1)

are given by:
ai,1 = −2e−ωD,iTS ζD,i (3.38)

and
b̃i,1 = −2e−ωN,iTS ζN,i . (3.39)

Finally, if
∣
∣
∣ζD,i

∣
∣
∣ > 1 (

∣
∣
∣ζN,i

∣
∣
∣ > 1) means that the poles (zeros) are real and distinct, so ai,1 (b̃i,1) are given

by using the cosh relation:

ai,1 = −2e−ωD,iTS ζD,i cosh
(

ωD,iTS

√

ζ2
D,i − 1

)

(3.40)

and
b̃i,1 = −2e−ωN,iTS ζD,i cosh

(

ωN,iTS

√

ζ2
N,i − 1

)

. (3.41)

The entire conversion routine, which turns the physical parameters of Table 3.2 into discrete filter
coefficients can be implemented in a short MATLAB or Octave function.

When there is a pole-zero excess, then we must make smart decisions about where to place the extra
zeros. That being said, this methodology works extremely well in the Multinotch (Section 6.11) and
the Biquad State Space (Section 9.15) in part because they are structured around first and second
order blocks.

3.6.7 The Zero-Order Hold Equivalent

The zero-order hold (ZOH) equivalent has become the default standard for most control systems
discretization. It is often the gateway to the direct digital design methodology, in which the entire

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
122

Winter 2022-2023
December 31, 2022

Models & Measurements

physical system model is discretized at once, and then control design applied only in discrete time,
with nary a thought to that wiry old continuous time. One might ask why this method is so popular in
theoretical work. It seems that there are a few probable reasons:

• The match between the continuous and discrete responses is exact at the sample points. Gen-
erally one hopes that things are well behaved in between the sample points.

• The ZOH equivalent builds in a single sample delay into the system model to account for all that
sample and hold and other computer stuff. The single delay is for the entire model. This is in
contrast to applying something like the trapezoidal rule (TR) equivalent 3.6.4 which makes no
account for the sample and processing delay, or the backward rule (BR) equivalent 3.6.3 which
adds extra delay to each conversion. When discretizing an entire model this might not matter
much, but in practical systems, the individual blocks are often discretized individually and not
taking these delays into account can have severe penalties.

• The ZOH equivalent is a one-time thing, and although it is difficult to do by hand for anything
more than a second or third order system, it can be calculated numerically quite well in tools
such as MATLAB . Thus, it is the default.

The ZOH equivalent maps the continuous-time poles to the discrete-time poles via pD = epCTS . The
location of the discrete-time zeros is much more complicated.

3.6.8 Discretization Summary

In the past 30 years, as the analysis tools have gotten better (i.e. as MATLAB has become more
universal) discretization has become something most folks working in control take for granted. Just
use c2d and be done. However, we will see as we get further along that while this might work when
sample rates are high relative to the dynamics being shaped, in many practical situations we really
should have an intuitive understanding of the different sampling models on our system understanding
and on our controller implementation.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
123

Winter 2022-2023
December 31, 2022

Models & Measurements

3.7 The Fate of Physical Parameters in Discretization

The fact that controllers will be digital means that we should want a very physical, intuitive under-
standing of how sampling affects our perception of the physical signal (Figure 3.2), and how it limits
what we can do with the controller. In particular, sampling adds delay to the system, delay results
in negative phase, and negative phase reduces phase margin. Thus, the simple act of sampling the
data limits our top end bandwidth before anything else can.

The second thing we must understand about sampling is that no one discretization model fully cap-
tures our ability to control a system digitally. The workhorse of most discretization in control is the
Zero Order Hold (ZOH) Equivalent [15], but even the most cursory look at this method reveals that all
physical intuition about any system more complex than a double integrator is lost using this method.
We will discuss how using other discretization methods may preserve physicality with a small (and
often negligible) loss of mathematical exactness in the model.

S S

-

u (k)i yi(k)
Ki T/2T 0 1

1 1-1 -1

S S

-
xi(k)xi(k) z

-1
z

-1

y (k)i

= x (k)i

~

Figure 3.7: Discrete double integrator BLSS model (ZOH equivalent). In this drawing, we’ve chosen to
make the index, i, as with a biquad stage, but we are explicitly labeling the different integration levels.

A simple example of what is wrong with our understanding of discretization is in discretizing the double
integrator of Section 2.3.5 and Figure 2.11. In the continuous time drawing on the right, we can easily
pick off the velocity term, which makes using both position and velocity measurements available for
feedback. Let’s remember that for a second order system, access to position and velocity for feedback
is full state feedback, and this is the 800 pound gorilla of control theory – it puts the poles anywhere
it wants. The situation gets much worse as soon as we discretize. If we use the standard Zero-Order
Hold equivalent model and use a Bilinear State-Space form (BLSS) [5] shown in Figure 3.7, we can
access the position, but the intermediate result does not do a good job of representing velocity, since
the integrators are not interchangeable. It seems highly illogical to go to the trouble of generating a
state-space realization on the basis that state-space gives us access to all the states and somehow
lose access to velocity in one of the simplest state-space realizations available [5].

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
124

Winter 2022-2023
December 31, 2022

Models & Measurements

Consider the earlier example of the second order resonance, of Equations 2.18 and 2.19:

X(s)
F(s)

=

1
m

s2 + b
m s + k

m

=
Kω2

d

s2 + 2ζdωd s + ω2
d

, (3.42)

or to the more general analog biquad model:

ẍ = −a1ẋ − a2x + u (3.43)

y = b0ẍ + b1ẋ + b2, (3.44)

with the transfer function description:

(

s2 + a1s + a2

)

= U(s)

Y(s) =
(

b0s2 + b1s + b2

)

,
(3.45)

yielding
Y(s)
U(s)

=
b0s2 + b1s + b2

s2 + a1s + a2
. (3.46)

A discrete transfer function version of (3.46)

Y(z)
U(z)

=
b0,Dz2 + b1,Dz + b2,D

z2 + a1,Dz + a2,D
=

b0,D + b1,Dz−1 + b2,Dz−2

1+ a1,Dz−1 + a2,Dz−2
. (3.47)

The question is what the meaning of the new coefficients in relation to the old ones, and this is entirely
related to both the original parameters and the discretization method. Exact discretization methods
obscure the coefficient meaning and couple states in a very non-intuitive way. Some other approx-
imations, in which the original transfer function is broken into a cascade of second order sections
(biquads) can preserve much physical intuition.

There are lots of discretization methods and even when one does the “exact” math, one doesn’t get
a satisfying answer. In fact, the exact math can give an answer that is so convoluted as to obscure
any hope of physical intuition and this is bad. The trapezoidal rule, also known as Tustin’s Rule or a
bilinear equivalent, substitutes discrete time operators (based on the Z transform) for the continuous
time operator (based on the Laplace transform). Using the Trapezoidal Rule, we make the substitution:

s←− 2
T

(

z − 1
z + 1

)

(3.48)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
125

Winter 2022-2023
December 31, 2022

Models & Measurements

and if we substitute for s in (3.46) to get to (3.47) then we end up with the following mappings:

∆ = 1+ a1
T
2 + a2

T 2

4

b0,D = 1
∆

(

b0 + b1
T
2 + b2

T 2

4

)

a0,D = 1

b1,D = 2
∆

(

b2
T 2

4 − b0

)

a1,D = 2
∆

(

a2
T 2

4 − 1
)

b2,D = 1
∆

(

b0 − b1
T
2 + b2

T 2

4

)

a2,D = 1
∆

(

1− a1
T
2 + a2

T 2

4

)

(3.49)

For the simple spring-mass-damper system of (3.42), we end up with

∆ = 1+ b
m

T
2 +

k
m

T 2

4

b0,D = 1
∆

(
1
m

T 2

4

)

a0,D = 1

b1,D = 2
∆

(
2
m

T 2

4

)

a1,D = 2
∆

(
k
m

T 2

4 − 1
)

b2,D = 1
∆

(
1
m

T 2

4

)

a2,D = 1
∆

(

1− b
m

T
2 +

k
m

T 2

4

)

(3.50)

The point of the discussion is, if it looks complicated, it’s supposed to be. The physical parameters
get lost in the shuffle a lot and we need to fight to keep them in terms that are meaningful in our
discrete time model. The b, k, and m parameters are spread all over Equation 3.50. This also spells
bad news for trying to extract physical parameters from time domain ID with discrete time models.
The accuracy to which we need to identify the coefficients in Equation 3.47 in order to back out the
physical coefficients using Equation 3.49 is tremendous. The problems get worse when the system
order gets higher.

What I’ve come to realize is that breaking the problem down into blocks and discretizing the blocks
makes a lot of sense in the sense that each block has it’s own discretization error, but it also preserves
the physical meaning of the original block (if you do it right, which still isn’t trivial).

In even a simple problem such as our spring-mass-damper example, the physical parameters matter.
Perhaps the damping coefficient, b, is changing as a shock absorber on a car wears out. Perhaps
a mass, m, is changing as a device picks up a load. Were we to try to detect a changed mass from
Equation 3.50, we would have to measure and back out changes from 5 parameters. Furthermore,
m shows up in a nonlinear way in all 5 terms. Contrast that with the elegant way in which m, b, or k
show up in the analog model of Section 2.3.8.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
126

Winter 2022-2023
December 31, 2022

Models & Measurements

3.8 A Brief Look at Discrete-Time Time Domain Identification

In this section, we will briefly describe the basic idea behind time domain identification using linear,
discrete time models. This type of identification dominates the academic literature and yet its use in
high performance, physical dynamic systems can be limited. With this brief section we should be able
to understand some of this dichotomy.

In the signal processing world, much of the work is dominated by Moving Average (a.k.a. all-zeros or
FIR Filter) model. Say,

y(k) = b0u(k) + b1u(k − 1)+ . . . + bNu(k − N) + n(k), (3.51)

where the bi are the model (filter) coefficients, uk−i are delayed values of the input, and n(k) is some
random noise input. This can be rephrase in a vector form:

y(k) = [b0, b1, b2, . . . , bN]

uk

uk−1

uk−2
...

uk−N

+ n(k), (3.52)

which is often used in system ID equations. The Z-transform of this (discrete time frequency domain)
is:

Y(Z) =
(

b0 + b1z−1 + . . . + bNz−N
)

U(z) + N(z). (3.53)

u(k)

n(k)

y(k)

e(k)

y(k)

S

S
-

B(z)
-1

B(z)
-1

Figure 3.8:A diagram of discrete time, time domain identification of a Moving Average (MA) or
FIR model.

If we do not know the model parameters, bi, we can generate an estimate of the model with our best

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
127

Winter 2022-2023
December 31, 2022

Models & Measurements

estimate of them:

ŷ(k) =
[

b̂0, b̂1, b̂2, . . . , b̂N

]

uk

uk−1

uk−2
...

uk−N

, (3.54)

where we assume that we know the past inputs and we don’t add the unknown noise into our model.
The error between the output of the actual model and the model estimate would be:

ε = y(k) − ŷ(k) = y(k) −
[

b̂0, b̂1, b̂2, . . . , b̂N

]

uk

uk−1

uk−2
...

uk−N

. (3.55)

This is diagrammed in Figure 3.8.

Estimating the model parameters, having the b̂i converge to the bi over time generally involves forming
the squared error, and doing a search, usually based on some gradient or gradient plus adjustment
method. Since we do not know the actual parameters, we cannot form an error based on them, but
only on the measured signals and the parameter estimates. If we let

B̂k =
[

b̂0,k, b̂1,k, b̂2,k, . . . , b̂N,k

]

and (3.56)

Uk =

uk

uk−1

uk−2

. . .

uk−N

, (3.57)

then

ε2k = y2
k − 2B̂kUk + UT

k B̂T
k B̂kUk. (3.58)

To make sense of it, we take the expectation, and get:

E
{

ε2k
}

= E
{

y2
k

}

− 2E
{

B̂kUk

}

+ E
{

UT
k B̂T

k B̂kUk

}

. (3.59)

This results in a least-squares problem that can be solved recursively with a gradient or Newton or
other method.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
128

Winter 2022-2023
December 31, 2022

Models & Measurements

u(k)

n(k)

y(k)

e(k)

y(k)

S

S
-

B(z)
-1

A(z)
-1

B(z)
-1

A(z)
-1

Figure 3.9:A diagram of discrete time, time domain identification of an Auto-Regressive , Mov-
ing Average (ARMA) or IIR model.

In control systems, we normally assume a model that has both poles and zeros, represented by an IIR
(Infinite Impulse Response) filter model also known as an Auto-Regressive, Moving Average (ARMA)
model. In this case, the equations are:

y(k) = b0u(k) + b1u(k − 1)+ . . . + bNu(k − N) − a1y(k − 1)− a2y(k − 2) . . . − aNy(k − N) + n(k), (3.60)

where the bi, ai are the model (filter) coefficients, yk−i and uk−i are delayed values of the output and
input, respectively, and n(k) is some random noise input. This can be rephrase in a vector form:

y(k) = [b0, b1, b2, . . . , bN , a1, a2, . . . , aN]

uk

uk−1

uk−2
...

uk−N

−yk−1

−yk−2

. . .

−yk−N

+ n(k), (3.61)

which is often used in system ID equations. The Z-transform of this (discrete time frequency domain)
is:

Y(Z) =

(

b0 + b1z−1 + . . . + bNz−N
)

(

1+ a1z−1 + . . . + aNz−N
) U(z) + N(z). (3.62)

If we do not know the model parameters, bi, ai, we can generate an estimate of the model with our

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
129

Winter 2022-2023
December 31, 2022

Models & Measurements

best estimate of them:

ŷ(k) =
[

b̂0, b̂1, b̂2, . . . , b̂N ,−â1,−â2, . . . ,−âN

]

uk

uk−1

uk−2

. . .

uk−N

−yk−1

−yk−2

. . .

−yk−N

, (3.63)

The error between the output of the actual model and the model estimate would be:

ε = y(k) − ŷ(k) = y(k) −
[

b̂0, b̂1, b̂2, . . . , b̂N ,−â1,−â2, . . . ,−âN

]

uk

uk−1

uk−2

. . .

uk−N

−yk−1

−yk−2

. . .

−yk−N

, (3.64)

and we can similarly generate a least squares problem from this, diagrammed in Figure 3.9.

Somewhere, I have rederived the least squares problems in my notes several times over. However,
I don’t know where those notes are and am running out of time. The derivations that lead to various
least squares problems that can be solved iteratively are found in many texts, e.g. [24, 47], so it can
be found. Maybe by next year’s notes. Right now, with the time I have left, I’m going to push to give
some practical insight that may be missing from some textbooks.

3.8.1 Some Things to Note

1) In both formulations, there is an assumption that the model is essentially correct, that
noise ‘ is additive, white, Gaussian noise (AWGN), and that the input is persistently excit-
ing.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
130

Winter 2022-2023
December 31, 2022

Models & Measurements

2) There is an assumption that the unknown parameters are changing slowly or not at all.

3) There is an underlying assumption that we can adapt parameters slowly – much more
slowly than signal dynamics – but much faster than parameters can change.

4) Adaptation is done via some gradient, Newton, Newton-Raphson, etc. based on E
{

ε2k

}

.
The simplest of these is least mean squares (LMS) [24, 55], where εk is used as an
estimate for the gradient of E

{

ε2k

}

. It is the slowest/simplest adaptive algorithm, and by far
the most popular.

• There is no convergence proof, but

• it is the easiest to implement if the changes to the parameters are slow.

• It is even the starting point for most neural network adaptive algorithms.

The implementability was the key to it’s success, and one of the two world changing things
that Ted Hoff did in his career.

5) It’s assumed that B̂ & Â are of high enough order to adequately model A & B.

6) In textbooks and papers, lots of noise filters are added into the model to better account
for shaped model noise.

7) Presumably, the model can be identified from test or operational data assuming persistent
excitation (PE) , a term that indicates that there is enough rich signal content to adequately
excite all the critical dynamics of the system. (It may be that achieving high SNR is a bigger
problem that achieving PE.)

However,

a) Little structural information remains. B̂, Â, A, & B etc. are bland, polynomial form quanti-
ties, with little physical insight.

b) Because of the effects of discretization (Section 3.7), the physical parameter changes are
spewed all over A & B, and consequently even harder to extract from B̂ & Â.

c) There is an inherent assumption that the sample rate is in the “Goldilocks” zone: not too
slow and not too fast.

• Too slow means little room in frequency for filtering and compensation. This is why
there is a generic rule of thumb that sampling should be at 8–20× the highest relevant
frequency in the system.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
131

Winter 2022-2023
December 31, 2022

Models & Measurements

• Too fast and all the poles and zeros rush towards z = 1, making any ability to distin-
guish between them difficult at best. In single precision floating point or fixed point
math, it means that the differences between large physical parameter ranges may be
lost. Furthermore, the signal doesn’t move much in any one time step, which means
that the signal can be dominated by noise and or quantization.

d) Highly stimulative inputs often are not great for meeting control objectives. Meeting control
objectives is often not great for getting a signal that stimulates a lot of dynamics.

e) If the physical parameters are smeared across B̂ & Â, then small changes in B̂ & Â often
represent large changes in physical parameters. Conversely, large changes in physical
parameters may be so spread out across B̂ & Â that it may be hard to see them above the
noise and quantization.

f) We have only shown the open-loop plant measurement. In many cases, the plant cannot
be measured without wrapping it in a nominal feedback loop and this correlates the input
noise and output noise, making the problem more difficult.

Discrete-time, time-domain identification produces a parametric model directly. Frequency response
methods produce frequency response functions (FRFs) that must be curve fit to get a parametric
model. We implement controllers with parametric models, but we often evaluate models/results with
frequency responses.

Time domain ID often adds extra discrete-time, transfer-function type filter models, but never ques-
tions if the fundamental structure makes sense. Again, Section 3.7 should give pause.

When can discrete-time, time-domain methods work?

1) When you don’t need physical understanding of the system. This is very rare for moving
machinery II problems, but more common in AT and “big data” formulations.

2) When the sample rate is in the Goldilocks zone.

3) When you have great signal-to-noise ratios (SNR) and lots of bits of precision in your
compensation.

4) When the dynamics are well damped and not high-Q.

5) When the underlying dynamic model is relatively low order.

6) When you can provide great input data.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
132

Winter 2022-2023
December 31, 2022

Models & Measurements

3.8.2 When Discrete-Time, Time-Domain ID Goes Bad

If you’ve read to this point, you might believe that there are a lot of physical situations in which discrete-
time,time-domain identification will have modest or bad results. That is, few of the parameters will be
matched well and no physical intuition will be available. In this case, the designer who still needs to
understand their physical system. In these cases, it is not an option to simply give up because the
above textbook methods fail. Instead, we need to add in Step Response Methods (Section 3.9) and
Frequency Domain Methods (Section 3.15).

3.9 Step Response Measurements

There is nothing like a stepped-sine for extracting high SNR Bode plots of the frequency response
functions (FRFs) of complex physical systems (Section 3.15). However, lots of physical systems are
not amenable to such measurements. For example:

• It is hard to do stepped-sine measurements on a functioning textile machine or batch chemical
process. We cannot provide either sweepable sinusoids or random noise inputs of sufficient
amplitude.

• For these, some variant of a step method using either operational inputs (inputs typical during
normal operation) or some sort of special tuning inputs are used.

• What can be extracted from these is typically limited to parameters from one of our simple
models.

• This means we need to assume one of these simple models, either from first principles or from
measurements, and then use that model to extract parameters.

• In this tutorial, we will examine two of our simple models, the single order low pass with delay
of Section 2.3.3 and the simple resonance with no zeros of Section 2.3.8 for step response
methods.

Textbooks often show a system model, derive the transfer function, and then show how that model
response will look in time. This section will work the other way, looking at a time response and seeing

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
133

Winter 2022-2023
December 31, 2022

Models & Measurements

10%

90%

Time

Input

Response

Settled

Figure 3.10: Zoomed in step response of a stable system. The behavior of this system is consistent with
that of a first order system with transport delay.

10%

90%

Peak

Input

Response

Time

Settled

Figure 3.11: Zoomed in step response of a stable system. The behavior of this system is consistent with
that of a second order system with low damping and transport delay.

what relevant time response parameters can be extracted. Specifically, we look at extracting step
response parameters from the time response of the system to square wave inputs.

Textbook step response methods show a simple step and some extractable parameters, as shown
in Figures 3.10 and 3.11 [56, 14, 57]. Step response measurements are useful because they can
often be adapted from the normal operation of the device under test (DUT). Step changes in setpoints
are typical in many systems. If one has access to the system input and output, then one can extract
certain parameters from the step, among them:

• gain (K),

• time delay/startup time (tD),

• rise time (trise or tr),

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
134

Winter 2022-2023
December 31, 2022

Models & Measurements

• settle time (tsettle), and (for second order systems with low damping)

• overshoot (Mp).

Under the assumption that the system is a first order low pass of the form of Equation 2.5, one can
use the rise time and settle time to extract the gain, transport delay, and time constant of the system.
Under the assumption that the system is a second order resonance of the form of Equation 2.19,
one can use these parameters to extract such system parameters as natural frequency (ωd), damping
factor (ζd), and gain (K).

There are a few intuitive things that should be clear from this simple schematic:

• The system should be stable, otherwise the quantities are meaningless.

• The length of the step should be such that the response can settle.

• The height of the step must be large enough to clearly see the response through the noise,
while not being so large as to saturate the Digital-to-Analog Converters (DACs) and actuators
or the sensors and Analog-to-Digital Converters (ADCs).

• In generating the input signal, we have complete control over where things happen. This is the
point to tag the data so that we can measure the times at which responses happen.

3.10 Signal Segmentation

10%

90%

Time

Input

Response

Settled

Figure 3.12: Square wave used to extract step response parameters and provide some averaging for a first
order system.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
135

Winter 2022-2023
December 31, 2022

Models & Measurements

10%

90%

Peak

Time

Input

Response

Settled

Figure 3.13: Square wave used to extract step response parameters and provide some averaging for a
second order system with low damping.

Since a step has infinite frequency at the instant of the step and zero frequency content afterwards,
it can tell us a lot about the system’s response. Textbooks discuss these parameters [56, 14, 57], but
parameter extraction can only be managed with excellent signal-to-noise ratio (SNR). Real measure-
ments have noise and so we need repeated steps, repeated responses, and averaging to improve our
SNR. Now, in some cases, such as slow, chemical process control (CPC), thermal control, or pres-
sure control systems, the time constants of the physical system are so slow compared to the sample
rate of the measurement computer that there is plenty of data in a single step with which to average
out noise effects. In some of these systems, the idea of needing to average out multiple cycles seems
both unnecessary and slow.

For most other problems, a single step does not contain enough points to average out the data. The
single step of Figures 3.10 and 3.11 are replaced by the square wave input and response of Figures
3.12 and 3.13. Acquiring this data only requires more computer memory than the step response, but
making sense of it so that it can be averaged requires segmenting the data. While this makes intuitive
sense, actually segmenting the data requires a bit more bookkeeping oriented computer programming
than engineers are comfortable spending time with.

In order to average responses of a system to square wave inputs, we need to segment the data, so
that each step portion and the response to that portion is treated as a cycle of a repeated signal. The
segmentation is well understood when viewing averaging on a digital oscilloscopes [58, 59] where
triggered signals are averaged together. Our intention is to mimic this behavior in our measurement
software, but to have full access to all the data.

We start with two (or more) vectors of data, indexed by the sample time. The first is the system input,

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
136

Winter 2022-2023
December 31, 2022

Models & Measurements

which we have defined as a square wave. The others are system responses to that square wave.
We will stick with a single output measurement of the system here. We can see in the schematic
drawings of Figures 3.12 and 3.13 that even in the noise free case, we are better off segmenting our
data based on the input square wave signal.

Here, we will simplify the discussion by assuming that the square wave driving the system is generated
by our control computer and injected into the system using a digital-to-analog-converter (DAC). We will
also assume that the response is read into the computer using an analog-to-digital converter (ADC),
so that both the stimulus and response share the same time base and sample rate. Furthermore, the
designer has to determine if rising edge steps and falling edge steps will be treated in the same way, or
if the physical system responds differently to these, requiring the data to be segmented differently. For
simplicity here, we will assume that the response to a step up has the same shape as the response
to a step down (albeit in the opposite direction), so that one could combine these to obtain a single
set of step response parameters.

.21 .19.81 .80 .90 .95 0.0.81 .79.20.89 .91.11.99 .98.00.95 .94.04.98 .99.01.96 .97.031.0 1.00.0.98 .98.031.0 1.00.0

1 10 01 101 1 1 1 1 1 1 1 1 1 1 101 01 01 01 01 01 01 0

Square Wave In

.20 .79 .91 .99.94 .98.96 1.0.98 .99

1 1 1 11 11 11 1

.21 .81 .90 .99.95 1.0.97 .99.97 1.0

1 1 1 11 11 11 1

.19 .79 .91 .98.94 .99.97 1.0.98 1.0

1 1 1 11 11 11 1

.21 .81 .89 .99.95 .98.96 1.0.98 1.0

1 1 1 11 11 11 1

.80 .20 .10 .01.05 .01.03 0.0.02 0.0

0 0 0 00 00 00 0

.80 .21 .11 .01.06 .02.02 0.0.03 0.0

0 0 0 00 00 00 0

.80 .19 .09 .02.05 .01.04 0.0.02 0.0

0 0 0 00 00 00 0

.81 .20 .11 .00.04 .01.03 0.0.03 0.0

0 0 0 00 00 00 0

Steps Up

Step 1

Step 2

Step N

Average
Step

Steps Down

Response Out

Figure 3.14: Segmentation of a time measurement trace. At the top is a conceptual diagram of a square
wave input data measurement. Since this is on the computer and can be cleanly recorded, we let the values
be purely0 and1 without losing the point of the exercise. Below it is the response of what seems like a
damped first order system. By indexing the data into time segments related to the input steps up (to1) and
steps down (to0) we can also segment the output data. The output segments canthen be averaged for a
cleaner response from which to attempt to extract parameters.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
137

Winter 2022-2023
December 31, 2022

Models & Measurements

The data segmentation is better understood by looking at Figure 3.14. Our goal is to take the long
data vectors at the top and produce the repeated short data vectors that can be averaged together to
minimize noise. We need to be aware of different time periods in the system. First of all, there is the
sample period of our digital measurement system, TS = 1/ fS , where fS is the measurement sample
frequency. This has to be short enough, relative to the physical system time constants, to meet the
requirements of the Nyquist sampling criterion. However, for any sort of practical system, we need fS

to be 10 to 20 times as fast as the fastest dynamics we wish to identify or control. In practice, this is
not much of a problem for most systems in the modern world. The explosion of incredible processing
capabilities in low power and low cost packages such as the Raspberry Pi [60] and the Xilinx Zynq
[61] means that real-time processing is available for even the cheapest application. The exceptions
are generally high speed electronic or mechatronic systems. For most systems, even the smallest of
today’s processors and converters can easily sample 20–100 times as fast as the fastest dynamics of
interest. We will then assume here, that the digital system can sample far, far faster than the system
dynamics of interest and far, far faster than the frequency of the square wave being injected into the
system.

The second time period of interest is the period of the square wave, TS Q = 1/ fS Q, where fS Q is the
frequency of the square wave input. Each period of the square wave generates a step up and a step
down, and the responses to each of these is its own segment, so it is the half period of the square
wave TS Q/2 which is of greatest interest to us. We have assumed that TS Q/2 ≫ TS . While it is not
necessary, since we are generating the square wave with our digital system, we can simplify our lives
by setting

TS Q

2
= MTS . (3.65)

That is, we make the square wave half period an integer multiple (M) of the sampling period, and
make sure it is relatively long compared to that sample period, e.g. M ≥ 10.

With this assumption, we know that we can use the edges of our square wave to accurately segment
our measurement data. Furthermore, in our equations we can work with the sample indices, and
factor TS back in when we need to convert data index back into actual time.

For a data vector that is N samples long, assume we have found the first rising edge of the square
wave at index, c. Then all other rising edges of the square wave should be found multiples of 2M
away from that, so

Rising Edge(k) is at c + 2 ∗ M ∗ k. (3.66)

Likewise, falling edges will be found at the odd multiples of M away from c, that is:

Falling Edge(k) is at c + (2 ∗ M + 1) ∗ k. (3.67)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
138

Winter 2022-2023
December 31, 2022

Models & Measurements

This means that
S tep U p(k) = {data(i)} , where for k = {0, . . . ,N − 1}

c + 2 ∗ M ∗ k ≤ i < c + (2 ∗ M + 1) ∗ k,
(3.68)

and
S tep Down(k) = {data(i)} , where for k = {0, . . . ,N − 1}

c + (2 ∗ M + 1) ∗ k ≤ i < c + (2 ∗ M + 2) ∗ k.
(3.69)

3.11 Extracting Step Response Parameters from Step Response
Data

The ability to measure these quantities relies largely on knowing the parameters of the input steps. If
we know those, then we can tell when the system response passed certain critical values. However,
we do it, we should assume that if the system works, then the final value of the response will be
system gain times the final value of the step (plus any offsets). We then draw our information from the
step itself, including when the step starts and ends, what its initial value was and what its final value
was.

With the data segmentation of Section 3.10 under our belts, we can now isolate on extracting step
parameters from our segmented and averaged data. We will assume a few things in order to do this.
There are often implicitly assumed in textbooks and by practicing engineers, but we will make an
attempt to own up to them.

1) We will drive the system with a square wave to which we have complete access.

2) The system as driven is stable, so that the response to the square wave steps will damp
out.

3) We are able to lengthen TS Q/2 so that the response to each step has time to settle.

4) The data is segmented and the response to each step is averaged, as described in Sec-
tion 3.10

5) One of the low order models of Section 2.3 can be assumed. In particular we will focus on
the first order system in Equation 2.5 and the simple resonance with no zeros of Equation
2.19.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
139

Winter 2022-2023
December 31, 2022

Models & Measurements

6) We will also assume that the responses to steps-up and steps-down can be handled
together. This is not necessary, but useful in simplifying our description. We assume that
the response data can be flipped and aligned so that they can be treated uniformly.

10%

90%

Time

Input
Actual

Response

Ideal
Response Settled

10%

90%

Peak

Response

Time

Settled

Ideal
Response

Input

Figure 3.15: Zoomed in step response of two stable systems. The behavior of this system on the left is
first order while the one on the right is consistent with that of a second order system with low damping
and transport delay.

Let’s consider the step responses of the two stable systems shown in Figure 3.15. Several time
response parameters can be instantly measured from the step response and can be related to system
parameters. Others require the assumption of a specific system model.

3.11.1 LTI Testing

One of the simple measures of linearity is that if one doubles the input, the output is doubled. Note
that linear systems with offsets usually, technically are not called linear, but affine, since there is a
portion of the response that stays constant with growing input and so the basic linearity test fails.
However, most people can live productive lives without knowing or caring about that one, so we will
stick to referring to those as linear with the “You know what we mean” proviso.

The first variation is to alter the height of the steps and then check the variability of the rise time, settle
time, overshoot, etc. If the system were dominated by linear effects, these would not vary much.
However, if the nonlinearities come into play, we will see a marked difference in these quantities,
depending upon the step height. Linearity testing is fairly simple in this way, and should be a first
step.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
140

Winter 2022-2023
December 31, 2022

Models & Measurements

3.11.2 Gain

Gain involves the steady state response height over the step height. With segmented and averaged
data, over the segment:

K =
yss − ystart

xss − xstart
. (3.70)

For a step input, xss is reached instantly with the step, so xss − xstart is trivially the step height. To
obtain yss we need to take the end of the response. Since there may be noise on this response as
well, we can average over the last bit of the averaged responses. For example, if we can determine
that the system is settled in the last 20% of the step time, then

yss =
1

0.2N

N∑

k=0.8N

y(k), (3.71)

where N is the index of the last data in a segment.

3.11.3 Transport Delay or Startup Time

With a noise free system, transport delay is often discernible by inspection. One merely measures the
time delay from the moment the input changes to the moment the output starts to respond and that
is τD. For real measurements, determining that a level is changing and not merely bumping due to
noise is harder. The segment averaging helps. We can also assume that the response in the current
segment was the steady state value of the final response in the previous segment, i.e.

ystart(segment j) = yss(segment j−1). (3.72)

One simple threshold that shows up a lot is 10% of the step response height. If one can measure
the time from ystart(segment) to 0.1 ∗ (yss − ystart) + ystart, then this is often considered a reasonable
approximation for transport delay.

Of course, any threshold can be used so long as we can distinguish between system movement and
noise. Increasing the number of averages in the segmentation step can significantly reduce the noise
threshold.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
141

Winter 2022-2023
December 31, 2022

Models & Measurements

3.11.4 Settle Time

Settle time can be defined as the time at which the response gets to and stays within a defined
percentage of the steady state value. Again, staying with an averaged segment we define tsettle as the
first time that

tsettle = min{t} s.t. |y(t) − yss| ≤ 0.1 |yss − ystart| , (3.73)

for 10% settle time or

tsettle = min{t} s.t. |y(t) − yss| ≤ 0.01|yss − ystart| , (3.74)

for 1% settle time.

The averaging of multiple segments helps reduce noise here, but since the value within the averaged
segment is still changing as it is settling, it doesn’t help much to average the last 20% of a response
as we might do with establishing yss.

3.11.5 Overshoot

Overshoot is the peak level above the steady state response that the system achieves on a step up
(or the peak level below steady state achieved on a step down). Overshoot is only defined when the
response goes past the steady state value. It is a sign that a system is second order or higher and
underdamped. Overshoot is defined in [56] as, MP where:

Mp =

∣
∣
∣
∣
∣

ymax − ystart

yss − ystart

∣
∣
∣
∣
∣
, (3.75)

on a step up and

Mp =

∣
∣
∣
∣
∣

ymin − ystart

yss − ystart

∣
∣
∣
∣
∣
, (3.76)

on a step down. We will limit ourselves to talking about the step up for now. So long as we can
establish the steady state value and normalize by the height of the step response, we can easily
measure overshoot if it exists.

Corresponding with overshoot is the peak time, tp, is the time at which the maximum overshoot is
reached.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
142

Winter 2022-2023
December 31, 2022

Models & Measurements

3.11.6 Rise Time

Informally, rise time is the time between when the system starts responding and when it gets in the
neighborhood of the steady state value. Because this is fairly non-specific, it is generally considered
to be the time for the response to go from 10% of the steady state response to 90% of the steady
state response. These values are typically used to avoid noise and stiction issues. Again, the multi-
segment averaging can minimize the noise issues.

3.12 Extracting Model Parameters from Step Response Data

While gain, linearity, and transport delay are immediately available from the step response parame-
ters, other model parameters need the assumption of a basic model to reduce the number of param-
eters. Only when we have done this, can we approximate model parameters from the step response
parameters measured in Section 3.11. In this discussion, we will assume either a first or second order
section, each of which will give rise to a different set of parameters.

3.13 The Mythical First Order Section

Repeating Equation 2.5 we have the transfer function of a simple first order section with transport
delay:

X(s)
F(s)

=
Ka

s + a
e−sTD (3.77)

and this corresponds to a impulse response of:

h(t) = Kae−a(t−TD), for t − TD ≥ 0.
0, otherwise.

(3.78)

If we have measured K and TD as described earlier, we can adjust our data so that we are looking at
the non delayed response,

h(t) = Kae−at, for t ≥ 0.
0, otherwise.

(3.79)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
143

Winter 2022-2023
December 31, 2022

Models & Measurements

For the step response, we want to convolve the impulse response with a step,

1(t − τ) = 1, for t − τ ≥ 0.
0, otherwise.

(3.80)

It’s useful to follow through with the calculation

1(t) ∗ h(t) =
∫ t

−∞
1(t − τ)Kae−a(τdτ, so (3.81)

1(t) ∗ h(t) = Ka
∫ t

0
ae−aτdτ, (3.82)

= Ka
e−aτ

−a

∣
∣
∣
∣
∣

t

0
(3.83)

= K
[

1− eat] (3.84)

Since we have already extracted K and TD, the only parameter left to fit is a which is the inverse of
the system time constant. We can get a from similar measurements used to get the rise time. The
standard rise time is defined as:

tr = t90− t10. (3.85)

Given that we have determined K, measuring the time at which the response is at 10% and 90% of
steady state means that if we assume an input step is applied at t = 0 and u(t0+ − u(t0−) = ustep, then

y(t90) − y(0) = 0.9Kustep = K
[

1− e−at90
]

ustep (3.86)

and
y(t10) − y(0) = 0.1Kustep = K

[

1− e−at10
]

ustep (3.87)

we can back out two estimates of a, one for the 90% rise time and one for the 10% rise time:

0.9 =
[

1− e−at90
]

(3.88)

0.1 = e−at90 (3.89)

a =
− ln(0.1)

t90
(3.90)

0.1 =
[

1− e−at10
]

(3.91)

0.9 = e−at10 (3.92)

a =
− ln(0.9)

t10
(3.93)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
144

Winter 2022-2023
December 31, 2022

Models & Measurements

If our measurements have been carefully made and the segments averaged, these two estimates
should agree very well.

This relatively simple set of step response measurements and calculations allow us to extract the
relevant system parameters from our first order model. A lot of systems involving thermodynamics
(e.g. temperature control, HVAC) and chemical process control are adequately modeled this way.
Furthermore, many of these systems do not easily lend themselves to frequency response function
measurements, and so really this type of combined measurement and analysis is the best we can
practically do.

The next section will move on to a simple second order model that describes some of our simpler
electrical, mechanical, and combined (mechatronic) systems.

3.14 The Mythical Second Order Section

Most of the parameters that one computes from a step response are predicated on the system be-
having like a second order section. The reason we do this is – as George Carlin would say – is
because we can. A second order section has a very nicely defined response to a unit step. Because
of that, parameters such as rise time, settling time, and overshoot are easy to compute analytically.
Furthermore, these can be tied to parameters of the second order section.

We often have something with far more dynamics than such a second order section. Furthermore, the
system might have some nonlinearity, might be discretized, might be noisy. With all that being said,
there is still a lot that can be gained from the intuition of analyzing the response of such a section.
Consider the classic second order linear section with transfer function:

X(s)
F(s)

= H(s) = K
ω2

d

s2 + 2ζdωd s + ω2
d

(3.94)

In this section, we will borrow heavily from the analysis of Franklin, Powell, and Emami [56], but we
will come at the problem from a different perspective. In the book, the idea was to take the transfer
function and relate model parameters to step response parameters. In our analysis, we will work
the problem backwards, taking the step response parameters and try to extract model parameters.
Furthermore, we will stick with the notation of Section 2.3, rather than that of [56]. Thus, ωd will
represent the undamped natural frequency of the denominator, and we will select ωp to signify the
damped natural frequency of the denominator. ζd will be the damping factor for the denominator.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
145

Winter 2022-2023
December 31, 2022

Models & Measurements

3.14.1 Gain from Step Response

If H(s) is stable, then its response to a unit step is given by the inverse Laplace transform of H(s)/s [56]:

y(t) = K

[

1− e−σdt

(

cosωpt +
σd

ωd
sinωpt

)]

, (3.95)

where ωp = ωd

√

1− ζ2
d and σd = ζdωd.

Looking at Figure 3.11 which is a zoomed in version of Figure 3.13, we can relate various quantities
that define a step response to Equation 3.95. Even when our system isn’t second order, continuous
time, and linear, we can still use the intuition supplied by these quantities.

It is worth noting that the final value of y(t) can be inferred from the final value theorem (FVT), i.e.

lim
t→∞

y(t) = lim
s→0

s
H(s)

s
(3.96)

= lim
s→0

H(s) (3.97)

= lim
s→0

Kω2
d

s2 + 2ζdωd s + ω2
d

(3.98)

=
Kω2

d

ω2
d

(3.99)

= K (3.100)

(3.101)

So, because this second order section happens to have a DC gain of K, the final value of the step
response will be that step value. The point of dealing with the second order section is that for such an
idealized system, these quantities all have well defined analytical expressions, related to the param-
eters of Equations 3.94 and 3.95.

For a middle level of damping, ζd = 0.5

tr ≈
1.8
ωp
. (3.102)

Note the condition on ζd for this to hold. The rise time number is not a particularly good estimate.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
146

Winter 2022-2023
December 31, 2022

Models & Measurements

3.14.2 Extracting Data from Ringing

If ζd is small enough, then the system will oscillate around yss before settling down. The response, y(t)
will cross yss and intervals of Tp/2 where

Tp =
1
fp

and (3.103)

fp =
ωp

2π
so that (3.104)

ωp =
2π
Tp
. (3.105)

We can measure Tp from the response, and then back out the damped natural frequency. Thus, from
here, we can extract σd = ζdωd. The problem is that we need ζd. If we had this, we could also extract

ωd from ωp = ωd

√

1− ζ2
d . Fortunately, for our model, if ζdis small enough, we can extract it from the

measurement of overshoot.

3.14.3 Extracting Data from Overshoot

For our measurement purposes, if we can measure the overshoot, Mp, we can back out ζd. Looking
at Equation 3.95, we can find tp and Mp by looking for the points where ẏ(t) = 0.

ẏ(t) = K

[

σde−σd t

(

cosωpt +
σd

ωp
sinωpt

)

−e−σdt
(

−ωp sinωpt + σd cosωpt
)]

= 0, (3.106)

= e−σd t

(
σ2

d

ωp
sinωpt + ωp sinωpt

)

= 0, (3.107)

This occurs when sinωpt = 0, so
ωptp = π, (3.108)

or
tp =

π

ωp
. (3.109)

Substituting (3.109) into (3.95), we get

y(tp) = K(1+ Mp) (3.110)

= K

[

1− e−σdπ/ωp

(

cosπ +
σ

ωp
sinπ

)]

(3.111)

= K
[

1+ e−σπ/ωp
]

. (3.112)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
147

Winter 2022-2023
December 31, 2022

Models & Measurements

So
Mp = e−πζd/

√
1−ζ2d . (3.113)

From here

ln Mp = −
πζd

√

1− ζ2
d

, (3.114)

so let

L = −
ln Mp

π
=

ζd
√

1− ζ2
d

. (3.115)

Now

L2 =
ζ2

d

1− ζ2
d

, (3.116)

which means

ζ2
d =

L2

1+ L2
. (3.117)

Since our system is stable, ζd is the positive root, and thus:

ζd =

√

L2

1+ L2
(3.118)

where we compute L from (3.115).

Of course, all of this depends upon there being overshoot. Looking at the problem from the other
side, what values of ζd provide measurable levels of Mp? First of all, we are only considering values
of ζdsuch that 0 ≤ ζd < 1. For ζd ≥ 1, the poles are real and so we get no oscillatory behavior. For
ζd < 0 the poles are unstable. When ζd is very close to 0, Mp is close to 1 while as ζd gets close to 1,
Mp drops to 0. We can evaluate Equation 3.113 for different values of Blueζd:

ζd Mp

0.8 0.02
0.7 0.05
0.6 0.09
0.5 0.16

It is unlikely that overshoot below 5% will be detectable, so we really are talking about needing to
have ζd ≤ 0.7 to make use of any of these techniques from measured data. For the damping factor
above 0.7 we are unlikely to find any discernible overshoot, and without that, we won’t be detecting
y(t) crossing yss.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
148

Winter 2022-2023
December 31, 2022

Models & Measurements

3.14.4 Extracting Data from Settling Time

If we define settling time as ts being the time from the application of the step until the response stays
within a certain percentage of the final steady state value, then we can look at the envelope of the
decaying exponential given by

v(t) = e−σd t = e−ζdωd t (3.119)

The settling time for a given amount, δ, is when v(t) ≤ δ. So for the 1% settling time,

e−ζdωd ts,1% = 0.01, (3.120)

or
ζdωdts,1% = − ln (0.01)= 4.6, (3.121)

so

ts,1% =
− ln (0.01)
ζdωd

≈ 4.6
ζdωd
. (3.122)

Likewise,

ts,10% =
− ln (0.1)
ζdωd

≈ 2.3
ζdωd
. (3.123)

3.15 Frequency Response Measurements

The prior sections dealing with step response methods are useful for a wide variety of practical sys-
tems, but they also expose the great limitation of these methods: they only work on low order models,
or on the low order portion of a more complex model. For any systems in which the behavior of higher
order dynamics need to be identified, step response methods fall short. There is a great amount of
literature in system identification using time domain methods [44, 49, 45]. These mostly focus on
identifying discrete time system models based on time domain measurements. They have great utility
in certain circles, but in order to be practical, one must be able to map the physical parameters to
the identified discrete model parameters (and back) and guarantee that the inputs are rich enough
in content to provide adequate signal-to-noise ratio (SNR) for the multi-parameter regression. The
discussion of why this might be difficult follows the path outlined in Section 3.7. We will skip this set of
measurements in this tutorial since they are often difficult to apply if one wishes to extract the physical
parameters of models.

An alternative is to stimulate the system with some sort of excitation signal, calculate the frequency
response function (FRF) from the input-output properties, and then fit a parametric model to that

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
149

Winter 2022-2023
December 31, 2022

Models & Measurements

response. For a large set of systems, especially mechatronic systems with lightly damped dynamics,
this is really the only way to avoid the limitations of the prior methods. This section will focus on the
essentials of doing frequency response measurements.

3.15.1 Practical Limits on Frequency Response Methods

Frequency response methods are quite common in mechanical, electrical, and electro-mechanical
or mechatronic systems. At the same time, it is rarely practical for slow process systems, such as
thermal, pressure, biological, or chemical process control (CPC). There might be several reasons
for this, but one major one is time constants. Frequency response methods looking at the system
over some span of frequencies and when the dominant time constants of a system are in seconds or
minutes, the integration time for the measurements described in the sections that follow make these
tools a lot less practical.

In computing a frequency response, we want to evaluate the system response to signals over a broad
frequency range, typically from a factor of 10 below to at least a factor of 10 above the key frequencies
of the system. In order to compute the Fourier transform of any experimental system, we need to
integrate over at least 1 and probably more periods of each frequency component. The Fast Fourier
Transform (FFT) still has this integral underlying its computation, although certain assumptions are
made to make the actual computation of the integral far easier for limited computer power. Still, the
frequency width that one can resolve is dependent on the integration time: the longer the integral, the
narrower the resolvable bandwidth.

What this means is that if a system has time constants that are on the order of a minute, then to
get a well resolved frequency response requires integrals that are on the order of 10 minutes to
have any chance of resolving the lowest frequency, significantly longer if we wish to have a more
accurate integral. Even FFT calculations which tend to be faster are averaged on the order of 10–100
times to decrease the effects of noise. Thus, the time required to compute a lot of frequency domain
measurements is so long as to make them impractical for many biological and chemical process
control (CPC) problems.

Even if this were not the case, many of the measurements described below involve actively injecting
a non-operational signals at the input of the system. With electrical, mechanical, and mechatronic
systems, these input output measurements can be done at non-operational times and have no real
effect on the final product. This means we can at test time shake the system with signals of our

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
150

Winter 2022-2023
December 31, 2022

Models & Measurements

choosing in order to get rich set of output signals from which to calculate our responses. Once
the system is in operation, we have to be far more judicious about what signals we inject and our
identification functions are often done by passively monitoring operational input and output signals
and working from those.

In the case of a large reactor that might be used in CPC, it is not clear that we can fill it with our
own meaningless inputs (some chemicals) and make measurements off of some output based on
that (other chemicals) in any practical way. (It’s a lot of waste chemicals, which are a lot more of an
issue than waste voltages or waste vibrations.) Our identification then must happen during normal
operations, and injecting some variation to the product input would result in waste product at the
output. This is usually seen as financially and environmentally unacceptable.

Finally, one can argue that frequency domain methods are limited by nonlinearities. This is partly, but
not completely true. It is true that the one-to-one relationship between time domain and frequency do-
main models only exists when the model is a linear, time-invariant differential (or difference) equation.
However, this does not mean that we cannot get useful insight from frequency domain analysis of sys-
tems that are – as Miracle Max from The Princess Bride would call them – mostly linear. Methods such
as describing functions [13] lead to measurement techniques such as the swept-sine, describing func-
tion method [62, 63]. While these methods are not exact, and the frequency responses are amplitude
dependent, they yield a large amount of usable insight into the system. Besides, if any nonlinearity
would make frequency domain methods unusable, the first analog-to-digital (ADC) or digital-to-analog
(DAC) converter in a system would eliminate FFTs forever. This clearly is not the case, so it is really a
matter of what usable insight we can get from incomplete and always slightly flawed measurements.

3.15.2 Clearing Up Some Frequency Response Terminology

A bit of terminology is useful here. The terms transfer function (TF) and frequency response func-
tion (FRF) are often used interchangeably in the literature. Sometimes, the term Empirical Transfer
Function Estimate (ETFE) is used [45]. For this tutorial, and for any of the author’s writings, the term
transfer function (TF) will be used only to describe an analytic function between input and output of
some model, where the function is in the form of some frequency variable, typically s, jω, or f for con-
tinuous time systems described by a linear-time-invariant differential equation and z or q for a discrete
time system described by a linear-time-invariant difference equation. On the other hand, a frequency
response function (FRF) is a set of ordered pairs of frequency variables (real numbers) and complex
responses of the system evaluated at that frequency. A TF will look like some sort of rational function

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
151

Winter 2022-2023
December 31, 2022

Models & Measurements

(fraction) of polynomials in the frequency variable and a FRF will be two or more columns of numbers.
For most of this tutorial we will stick with frequency response functions in continuous-time, and specif-
ically those obtained by a Fourier Transform, because they can be easily mapped back to Laplace
Transforms, by replacing jω by s in the derived transfer functions. Mapping back to discrete-time z
transforms takes more work.

Converting from a TF to an FRF is fairly simple. One merely evaluates the TF at the desired frequency
values. The reverse direction, converting FRFs to TFs is far more difficult. There has been much
written about this, but the difficulty of this step on certain systems is the main reason why frequency
response methods are less popular in some fields [64, 65, 66, 67]. What is clear to experienced
engineers is that from an accurate FRF, one can extract many physical model parameters. The issue
becomes doing this in an automated way.

The sections that follow will describe ways of generating that accurate frequency response function
measurement.

3.15.3 A Note on Notation

There is a notational issue that must be dealt with in order to make the text and diagrams easier
to follow. By convention, when we draw block diagrams, we are generally filling in the boxes with
symbols for the frequency domain quantities e.g. Figure 3.16, in which P is the physical system or
plant model and by convention, the capital letter indicates this model to be a transfer function. IF we
are to be mathematically precise, the signals into and out of this block should also be uppercase. Into
a Transfer Function block, P, we inject the frequency domain input and noise (U and W) and read an
output that is a combination of the filtered input and sensor noise (V), i.e.

Z(s) = P(s)U(s) + P(s)W(s) + V(s). (3.124)

However, the loop algebra works for any frequency variable, so long as we are self consistent, so
once we’ve established what we need to establish about which frequency domain we are in, we often
drop the frequency variable from the equations (as long as it’s clear what our meaning should be).
From that we get the simpler:

Z = PU + PW + V. (3.125)

What I have found is that the readability of both the block diagrams and the equations becomes much

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
152

Winter 2022-2023
December 31, 2022

Models & Measurements

clearer (assuming that it is obvious in which domain we are operating), if the frequency domain signals
revert to lower case while the model blocks remain in upper case, i.e.

z = Pu + Pw + v. (3.126)

Purists might argue that this is bad notation as we do not explicitly distinguish between the z variable
that is a time or space domain quantity and the z variable that is a frequency domain quantity. How-
ever, if it is clear from the context what domain the variable occupies, then we are better off with a
notation that is easy to parse. We will have plenty of opportunities to generate errors without having
hard to parse notation.

3.16 Frequency Response Options

v

zu

w

SS P

Figure 3.16: Basic “device under test (DUT)” view of frequency response function (FRF) measurement.
The deterministic input to the physical system,P, is given byu, but this is by input noise,w, which is
often called process noise in the literature. The pure output of the physical system is given byy, but we do
not have access to this, only a noisy version,z, corrupted by measurement noise,v. Having access to only
u andz, our job is to extract a usable model ofP.

From a test signal, a system or device under test, disturbed by input noise, w, and output noise, v,
we would like to extract a model, in the case of Figure 3.16, a continuous-time transfer function, P(s).
Frequency response function (FRF) measurements transform the input and output into a frequency
response. A further step (curve fitting) is needed to transform this into a parametric system model. At
a fundamental level, FRF measurements allow for much more complex models than step response
measurements, depending upon the richness of the input signal, and the accuracy of the measure-
ment and post processing. However, with enough frequency content in the input signal, u, and enough
signal-to-noise (SNR) in the output signal, z, the right processing can reveal an accurate model for a
fairly complex system.

The number and complexity of these operations has led to the invention of pushbutton instruments,

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
153

Winter 2022-2023
December 31, 2022

Models & Measurements

called Dynamic Signal Analyzers (DSAs), to handle them [53, 68, 69, 70, 71]. DSAs are essentially
low frequency network analyzers, specifically adjusted for dynamic system measurements. The op-
eration of DSAs makes it relatively straightforward to extract accurate FRFs of many systems, and
sometimes straightforward to extract parametric data from those, but it is worth understanding the
mathematical basis of the operations done by these devices [70, 72, 73, 74].

Looking at just the plant to measurement of Figure 3.16 we can measure:

Z(f) = P(f)U(f) + P(f)W(f) + V(f). (3.127)

Here Z(f) and U((f) are the Fourier transforms of signals z and u, respectively. W(f) and V(f) are the
Fourier transforms of the noise terms, w and v, and while they usually cannot be measured directly,
their signal properties can be usually estimated.

Note that we are using f as a generalized frequency variable. The loop algebra does not change
whether the frequency domain is Fourier (jω), Laplace (s), Z (z or q), or some other frequency repre-
sentation. The frequency domain allows the convolution integrals/sums of systems interacting with a
dynamic system to be turned into the product of their respective transforms.

In practice, it is easiest to compute Fourier Transform estimates from data. We will discuss that in
greater detail in the subsections of Section 3.19. However, if the signal is corrupted with noise, then
the transformed signal will be corrupted with the transform of the noise. Less experienced users are
often tempted to extract P(f) from

P(f) =
Z(f)
U(f)

, (3.128)

however, this is susceptible to noise. That is:

Z(f)
U(f)

= P(f) + P(f)
W(f)
U(f)

+
V(f)
U(f)

. (3.129)

If we have excellent signal-to-noise ratios (SNR), i.e. if U(f) ≫ W(f) and U(f) ≫ V(f) in the
frequencies, f , of interest, then Equation 3.129 certainly provides an easy way to extract the desired
physical system FRF, P(f) . However, while we can consider U((f) to be noise free, Z(f) will be
corrupted by V(f) resulting in a bias of the response, which show up in the last two terms of the right
hand side of Equation 3.129.

Most experienced engineers and all dynamics analyzers instead do an operation based on the follow-
ing observation. Since w, v, and u are almost certainly uncorrelated, the relationship in Equation 3.133
will yield an unbiased response.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
154

Winter 2022-2023
December 31, 2022

Models & Measurements

We start by computing the cross spectra and take the expectation [75]. That is we compute the spectra
of the individual signals and multiply these spectra times either their own complex conjugate (for auto-
spectra) or the complex conjugate of another signal (for cross-spectra). For measured frequency
response functions, we are doing these computations one frequency at a time, so even though the
frequency responses are each a pair of vectors, the computation of the cross and auto spectra are
done on the scalar signals at any given frequency.

Expectation is a harder thing, since we are not going to compute an infinite number of averages.
Instead, we pick a finite number of averages. In low noise environments, this number can be as low
as 3. In higher noise environments the number can be much higher, even in the hundreds. There is
a tradeoff between how much noise can be limited in Fourier calculation and how many averages we
need to do. However, when we discuss “expectation” here for a physical measurement, then we really
mean some finite number of averages.

It is important to note below that we average the cross and auto spectra, rather than computing the
cross and auto spectra of averaged signal Fourier Transforms. This allows us to take advantage of
signals being uncorrelated to drive the expected value of their cross spectra to 0.

E{Z(f)U∗(f)} = P(f)E{U(f)U∗(f)}. (3.130)

We assume that the noise, w and v is typically uncorrelated with u (with the loop open).

Practically, the single-sided auto or cross spectrum is used [75], rather than the two-sided spectrum
from theory. The two-sided spectrum is denoted here by S ab and the single sided spectrum is denoted
by Gab, where

Gab(f) =

2S ab(f) f > 0
S ab(f) f = 0

0 f < 0
. (3.131)

or in terms of our variables:

Gzu(f) =

2E {Z(f)U∗(f)} f > 0
E {Z(f)U∗(f)} f = 0

0 f < 0
. (3.132)

which we can obtain the frequency response function, P(f) , from

P(f) =
Gzu(f)
Guu(f)

(3.133)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
155

Winter 2022-2023
December 31, 2022

Models & Measurements

where

Gzz(f) =

2E {Z(f)Z∗(f)} f > 0
E {Z(f)Z∗(f)} f = 0

0 f < 0
(3.134)

and

Guu(f) =

2E {U(f)U∗(f)} f > 0
E {U(f)U∗(f)} f = 0

0 f < 0
. (3.135)

Note that this depends on expectation which means that we need to be careful about how we aver-
age our measured signals. This will be discussed in Section 3.23. In actual measurements, these
transforms will be replaced by time-dependent estimates of the Fourier transforms [75]. Let’s at
least say at this point is that when we say these signals are independent, it means that the Expected
Value of their cross correlation or cross spectra is zero. Approximating any sort expected value re-
quires multiple measurements and averaging. In other words, we need to average data from more
than one measurement to be able to claim some sort of independence. Furthermore, we need to do
the averaging on the auto and cross spectra before we do the divisions of spectra. This allows the
uncorrelated signals to have their cross spectra go to zero.

This result comes from the fact that if P is linear then

Gzu(f) = 2E {Z(f)U∗(f)} , (3.136)

= P(f)2E {U(f)U∗(f)} , (3.137)

= P(f)Guu(f). (3.138)

and

Gzz(f) = 2E {Z(f)Z∗(f)} , (3.139)

= P(f)P∗(f)2E {U(f)U∗(f)} , . (3.140)

= P(f)P∗(f)Guu(f). (3.141)

3.17 The Coherence Function

The coherence function is given by

γ2(f) =
Gzu(f)Guz(f)
Guu(f)Gzz(f)

where Gzu(f) = G∗uz(f) (3.142)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
156

Winter 2022-2023
December 31, 2022

Models & Measurements

or

γ(f) =

√

Gzu(f)Guz(f)
Guu(f)Gzz(f)

where Gzu(f) = G∗uz(f) (3.143)

and gives an indication of how much of the output is generated from the input [75]. The coherence
function is an excellent figure of merit, and is limited below by 0 and above by 1. If the output, y, is
entirely caused by the input then γ2(f) = 1. The presence of noise or nonlinearities will cause the
coherence to be less than 1. For any FRF measurement, γ(f) tells us how much we can trust the
measurement.

Consider Equations 3.138 and 3.141. From (3.138) we get that

Gzu(f)Guz(f) = P(f)P∗(f)Guu(f)G∗uu(f) = P(f)P∗(f)G2
uu(f), (3.144)

and from (3.141) we get that
Gzz(f)Guu(f) = P(f)P∗(f)G2

uu(f), (3.145)

so that calculated this way:

γ2(f) =
Gzu(f)Guz(f)
Guu(f)Gzz(f)

=
P(f)P∗(f)G2

uu(f)
P(f)P∗(f)G2

uu(f)
= 1. (3.146)

However, when the noises and signals are not uncorrelated, the numerator will generally be smaller
than the denominator. This happens when we try to extract FRFs from signals inside a feedback loop,
or when there are unaccounted for noises or nonlinearities in the system. To the extent that γ(f) ≈ 1,
we can say that the output is a linear, noise free, filtered representation of the input.

3.18 Closed-Loop Measurements: Two vs. Three Wire

It would be great if we could simply measure systems in open loop, as depicted in Figure 3.16.
However, it turns out that a lot of interesting systems cannot be measured without the presence of
a feedback controller, and so we often have to make measurements in the context of a closed-loop
system, as shown in Figure 3.17. In this case, the user has to chose between two possible non-ideal
measurements. The first, known as a three-wire measurement is one in which signal is injected at one
of the input points (r, n1, or n2) and the open loop plant FRF (P(f)) is estimated using measurements
of two signals within the loop u and z. The issue here is that because of feedback, both u and z will
have correlated noise in them. On the other hand, a two-wire measurement is a measurement of

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
157

Winter 2022-2023
December 31, 2022

Models & Measurements

d

ye

n1 n2 u w

z

v

r

Controller Plant

SS

S

S S S

-
C P

Figure 3.17: More complex view of FRF measurement inside of closed-loop system with noise added in.
The process noise and measurement noise are signified byw andv, respectively, while an unmeasured
disturbance that affects the output is calledd.

the closed-loop response and in this case the signal is injected as before, but the closed-loop FRF is
extracted from measurements of say, r and z or r and e. This closed-loop measurement is a ratio of a
closed-loop signal to an external reference, where as the three-wire measurement involves the ratio
of two closed-loop signals. The issue for the two wire measurement is that the FRF must be opened
in order to calculate an open loop FRF. We could measure

Tcl =
Y
R
=

Y
N1
=

PC
1+ PC

and/or (3.147)

S cl =
E
R
=

E
N1
=

1
1+ PC

. (3.148)

Also, the compensator, C, can be measured from available signals E and U, as:

C =
U
E
, (3.149)

(or calculated based on a model of C), and the open loop FRF can be obtained from measurements
of closed loop quantities by means of

PC =
Tcl

1− Tcl
(3.150)

or

PC =
1

S cl
− 1. (3.151)

From an “opened” closed-loop measurement as in (3.150) and a measurement or model of C, we can
get our plant response, P. Clearly, many combinations of measurements are possible and as long
as there is sufficient signal to noise in the measurement, loop manipulations can be done to extract
needed responses [76, 77].

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
158

Winter 2022-2023
December 31, 2022

Models & Measurements

v

y

z

e u

w

S

SS

-
C P

r

Figure 3.18: Structure for discussing closed-loop measurements. We have dropped the system annotations
from Figure3.17, as well as the disturbance,d. The process noise and measurement noise are signified by
w andv, respectively.

In discussing closed-loop measurements, we will simplify Figure 3.17 down to that of Figure 3.18.
The measured output, z is again defined by

z = Pu + Pw + v, (3.152)

where w is the process noise that affects the system response and v is the measurement noise that
affects the sensing of the signal. The physical system again is denoted by P, and the feedback
controller is denoted by C. The feedback controller computes the input, u, as Ce where e = r − z.

u = Ce (3.153)

u = C(r − z) (3.154)

u = Cr −CPu −CPw −Cv (3.155)

(1+CP)u = Cr −CPw −Cv. (3.156)

If we stick with Single-Input, Single-Output (SISO) systems,

(1+ PC)u = Cr − PCw −Cv (3.157)

so that

u =
C

1+ PC
r − PC

1+ PC
w − C

1+ PC
v. (3.158)

From Equations 3.152 and 3.158, we can compute z:

z =
PC

1+ PC
r − P

PC
1+ PC

w − PC
1+ PC

v + Pw + v, (3.159)

which leads to:

z =
PC

1+ PC
r + P

(

1− PC
1+ PC

)

w +
(

1− PC
1+ PC

)

v, (3.160)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
159

Winter 2022-2023
December 31, 2022

Models & Measurements

and finally,

z =
PC

1+ PC
r +

P
1+ PC

w +
1

1+ PC
v. (3.161)

Now, we are still trying to measure the plant FRF, P. We have two choices:

• We can measure the closed loop response from Equations 3.147 or 3.148 and back out the
open loop FRF, PC from Equations 3.150 or 3.151. We then use the measurement of C in
Equation 3.149 to end up with C.

• Alternately, we can simply extract

P ≈ Gzu

Guu
.

To see which of these is better, we need to compute the cross and auto spectra as we did in the open
loop case. The math below really applies to generate the dual sided spectra, S zr, S rr, S zu, and S uu,
but we will immediately go from there to the single sided spectra and so we will use the terms, Gzr,
Grr, Gzu, and Guu. We need to compute these and the simplest one is Gzr:

zr∗ =
(PC
1+ PC

)

rr∗ +
(P
1+ PC

)

wr∗ +

(

1
1+ PC

)

vr∗. (3.162)

Taking the expected value,

E {zr∗} = Gzr =
PC

1+ PC
Grr, (3.163)

because the reference input is uncorrelated with the noise. Thus,

Gzr

Grr
=

PC
1+ PC

= Tcl. (3.164)

Notice that the effects of noise are negligible, assuming that we have done enough averaging so
that the expected values start to converge. For FFT based measurements, the number of averages
needed can be anywhere from 10 to 100, while for stepped-sine measurements, the SNR is so much
higher that anywhere from 3 to 10 averages are often suitable.

zu∗ =
(PC
1+ PC

)

ru∗ +
(P
1+ PC

)

wu∗ +

(

1
1+ PC

)

vu∗, (3.165)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
160

Winter 2022-2023
December 31, 2022

Models & Measurements

zu∗ =
PC

1+ PC
r

[(C
1+ PC

)∗
r∗ −

(PC
1+ PC

)∗
w∗ −

(C
1+ PC

)∗
v∗

]

, (3.166)

+
P

1+ PC
w

[(C
1+ PC

)∗
r∗ −

(PC
1+ PC

)∗
w∗ −

(C
1+ PC

)∗
v∗

]

, (3.167)

+
1

1+ PC
v

[(C
1+ PC

)∗
r∗ −

(PC
1+ PC

)∗
w∗ −

(C
1+ PC

)∗
v∗

]

. (3.168)

The common denominator ends up as

(1+ PC) (1+ PC)∗ = ‖1+ PC‖2 , (3.169)

so that

zu∗ =
PCr [Cr∗ − PCw∗ −Cv∗]

‖1+ PC‖2

+
Pw [Cr∗ − PCw∗ −Cv∗]

‖1+ PC‖2

+
1v [Cr∗ − PCw∗ −Cv∗]

‖1+ PC‖2
. (3.170)

When we take the expectation, the noises being uncorrelated from the reference means that:

E {zu∗} = Gzu (3.171)

Gzu =
P ‖C‖2 Grr −C ‖P‖2 Gww −C∗Gvv

‖1+ PC‖2
. (3.172)

Similarly, we can compute Guu via:

uu∗ =
(C
1+ PC

)

uu∗ −
(PC
1+ PC

)

wu∗ −
(C
1+ PC

)

vu∗, (3.173)

uu∗ =
C

1+ PC
r

[(C
1+ PC

)∗
r∗ −

(PC
1+ PC

)∗
w∗ −

(C
1+ PC

)∗
v∗

]

, (3.174)

− PC
1+ PC

w

[(C
1+ PC

)∗
r∗ −

(PC
1+ PC

)∗
w∗ −

(C
1+ PC

)∗
v∗

]

, (3.175)

− C
1+ PC

v

[(C
1+ PC

)∗
r∗ −

(PC
1+ PC

)∗
w∗ −

(C
1+ PC

)∗
v∗

]

. (3.176)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
161

Winter 2022-2023
December 31, 2022

Models & Measurements

Again making use of Equation 3.169, we have:

uu∗ =
Cr [Cr∗ − PCw∗ −Cv∗]

‖1+ PC‖2

+
PCw [Cr∗ − PCw∗ −Cv∗]

‖1+ PC‖2

+
Cv [Cr∗ − PCw∗ −Cv∗]

‖1+ PC‖2
. (3.177)

When we take the expectation, the noises being uncorrelated from the reference means that:

E {uu∗} = Guu (3.178)

Guu =
‖C‖2 Grr −C ‖P‖2 Gww − ‖C‖2 Gvv

‖1+ PC‖2
. (3.179)

Finally, after all that, we can look at Gzu/Guu:

Gzu

Guu
=

P ‖C‖2 Grr −C ‖P‖2 Gww −C∗Gvv

‖C‖2 Grr −C ‖P‖2 Gww − ‖C‖2 Gvv

, (3.180)

and we see the reason for all the work. Looking at Equation 3.180, we see that when Grr dominates
Gww and Gvv then we can easily extract P from the three-wire measurement. On the other hand, in
regions where the system components make the contributions of Gww and Gvv cannot be ignored, then
the estimate of P will be biased.

While this would seem to settle the matter of using the two-wire measurements in place of the three-
wire, there is an issue of the calculation of Equations 3.150 or 3.151. When the controller is working
well, when the gain is high, then Tcl ≈ 1 and S cl is very small. Equations 3.150 and 3.151., can be
poorly conditioned in those regions. The engineering part comes in understanding the tradeoffs of
each measurement and being willing to apply multiple measurements to improve our understanding.

3.19 Fourier Analysis

There are many many reference for general Fourier analysis. A classic starting point is Bracewell [78].
Other nice ways to populate one’s bookshelf include Oppenheim & Shafer [79] and Press, Flannery,

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
162

Winter 2022-2023
December 31, 2022

Models & Measurements

Teukolsky & Vettering [80]. Many of these are very good at explaining the math, but fall a bit short in
relating this to real measurements. Bendat & Piersol [75] seems to be excellent for bridging this gap,
but it is often hard to find the exact location where the appropriate incantations are revealed. Having
run the gauntlet of trying to understand various spectra creation tools and how to compare results, I
thought I’d write this stuff down before the knowledge got lost.

As far as making measurements of physical systems in order to extract a dynamic models, one has
to actually compute some transform estimates based on input and output signals of some device-
under-test (DUT). One of the great Emacs vs. VIM or Kirk vs. Picard debates among folks making
FRF measurements is the choice between FFT based measurements and stepped-sine (also called
sine-dwell by some academics and swept-sine in industry) measurements. In order to do this justice,
and because there are no extra page charges in this tutorial, we will first go back and describe the
underpinnings of Fourier Analysis, and how these two different measurements emerge. From here
we will be able to see the tradeoffs of the two methods as the pertain to our goal of extracting good
frequency-response function measurements (FRFs) and the physical parameters from our systems.

3.19.1 Fourier Transforms

The Fourier transform (FT) of a signal x(t) is defined as

X(f) =
∫ ∞

−∞
x(t)e− j2π f tdt, (3.181)

while the inverse Fourier Transform becomes

x(t) =
∫ ∞

−∞
X(f)e j2π f td f . (3.182)

In some cases, the authors use ω in place of f . This doesn’t affect the first integral (which is over the
time variable, t)

X(ω) =
∫ ∞

−∞
x(t)e− jωtdt, (3.183)

but in integrating over ω in place of f we need to factor out the 2π, so the inverse Fourier Transform
becomes

x(t) =
1
2π

∫ ∞

−∞
X(f)e− jωtdω. (3.184)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
163

Winter 2022-2023
December 31, 2022

Models & Measurements

If only a finite data record of time length t exists then the finite length Fourier Transform is

X(f ,T) =
∫ T

0
x(t)e− j2π f tdt. (3.185)

We should note that for any practical measurement, only a finite data record of time length t will ever
exist, so to apply Fourier transforms in real life, we need to make use of Equation 3.185.

If that signal is sampled with a sampling period of ∆t then the sequence that results is

xn = x(n∆t) n = 0,1,2, . . .N − 1 (3.186)

and Equation 3.185 can be recast as the discrete Fourier Transform:

X(f ,T) = ∆t
N−1∑

n=0

x(n)e− j2π f n∆t. (3.187)

3.19.2 Fourier Series

A Fourier series is a method of representing a periodic signal by a sum of cosines and sines. Note that
a Fourier Series is a related but different animal than a Fourier Transform since the latter generally
is a broadband calculation, while the former really extracts the response for a single frequency at a
time.

One way of representing the Fourier Series sum is described in Witte [81] (as well as many other
sources) as:

x(t) =
a0

2
+

∞∑

n=1

(an cos 2πn f0t + bn sin 2πn f0t) (3.188)

where

an =
2
T

∫ T
2

−T
2

x(t) cos(2πn f0t)dt (3.189)

bn =
2
T

∫ T
2

−T
2

x(t) sin(2πn f0t)dt (3.190)

and where

f0 = the fundamental frequency of the periodic

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
164

Winter 2022-2023
December 31, 2022

Models & Measurements

signal in Hertz, (3.191)

T = the period of the signal, and (3.192)

w0 = 2π f0 = the frequency in radians/second. (3.193)

For a variety of reasons, it is often easier to use the complex sinusoid form of the Fourier series, which
uses a complex exponential in place of sines and cosines:

x(t) =
∞∑

n=1

cne j2πn f0t (3.194)

where

cn =
1
T

∫ T
2

−T
2

x(t)e− j2πn f0tdt (3.195)

and the two series are related by

cn =
(an − jbn)

2
. (3.196)

Fourier series form the basis for several methods of analyzing signals. In particular, both stepped-
sine (swept sine) methods and describing function methods make use of identifying only the first
coefficient of the Fourier series, c1. A good introduction to describing function methods can be found
in Ogata [13]. Swept sine measurements will be discussed in Section 3.21.

3.20 Fast Fourier Transform (FFT) Based Analysis

Fast Fourier transforms (FFTs) are very fast to compute and thus are used by lots of instruments and
by Matlab exclusively. While they lack certain niceties of Spectrum Analyzer methods, the speed of
computation and the number of places that they show up make them very useful.

3.20.1 FFTs

By letting fk =
k
T =

k
N∆t in Equation 3.187 we get

X(k) =
X(fk)
∆t
=

N−1∑

n=0

x(n)e
− j2πnk

N . (3.197)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
165

Winter 2022-2023
December 31, 2022

Models & Measurements

Let WN = e
− j2π

N and W̃N(u) = e
− j2πu

N . Then Equation 3.197 can be written as

Xk = X(k) =
N−1∑

n=0

x(n)Wkn
N =

N−1∑

n=0

x(n)W̃N(kn). (3.198)

This is what a standard FFT, including the one in MATLAB computes. Note that

X(fk) = ∆tX(k) (3.199)

which returns the FFT to something closer to the physical units.

From this definition of the FFT, the inverse FFT is given by

xn =
1
N

N−1∑

k=0

X(k)e
j2πkn

N =
1
N

N−1∑

k=0

X(k)W−kn
N . (3.200)

Note that the placement of the 1
N is arbitrary. However, it is significant in trying to return the FFT

calculation to physical units. Alternate FFT definitions are available as:

X̃k =
1
√

N

N−1∑

n=0

xnWkn
N ⇐⇒ xn =

1
√

N

N−1∑

k=0

X̃(k)W−kn
N (3.201)

or

X̂k =

N−1∑

n=0

xnWkn
N ⇐⇒ xn =

1
N

N−1∑

k=0

X̂(k)W−kn
N . (3.202)

This is generally a pain because we would like physical units when measuring stuff in the lab and
the physical units do not have arbitrary scaling. One of the main reasons for writing this document
is to alleviate some of the confusion that these arbitrary definitions which differ from tool to tool have
caused me and the people that I have been interacting with.

3.20.2 Power Spectral and Cross Spectral Densities

Earlier, we discussed cross spectra, S ab(f), and auto spectra, S aa(f), and how they were used to
compute frequency response functions that were more immune to noise. This section deals with the
practical generation of these auto and cross spectra from spectra generated by Fourier Transforms (or
FFTs) or Fourier Series calculations. When the cross or auto spectra is normalized by the bandwidth

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
166

Winter 2022-2023
December 31, 2022

Models & Measurements

of the measurement, we get the spectral density. Because we are making discrete time measure-
ments with a sample period, ∆t = TS = 1/ fS , our measurement bandwidth is from − fS /2 to fS /2.
Thus, we end up normalizing by the sample frequency, fS . A common term for the auto-spectral den-
sity is power spectral density (PSD). Cross spectral densities may be referred to as CSDs. Note that
if we assume the same sample frequency for all of our FRF measurements, then we can use PSDs
and CSDs in place of the spectra.

Now let’s look at PSDs. To compute a PSD of a measurement we want

PS D(x) =
X∗(f)X(f)

Be
(3.203)

where Be is the Resolution Bandwidth of the filter used to compute the spectrum (or the Noise Equiv-
alent Bandwidth which is technically not the same but very close to the Resolution Bandwidth) and
where X(f) is the Fourier Transform from Equation 3.181. This is the smallest change in frequencies
that a given measurement can resolve.

In general Be is inversely proportional to the length of the time window over which a measurement is
made , i.e.,

Be =
1
T

(3.204)

where t is the length of the time record. For an FFT,

Be =
1
T
=

1
N∆t

(3.205)

where N is the number of points in the FFT and ∆t is the sample period between points.

Note that for a FFT, the resolution bandwidth is fixed as all the integrations are done over a single
period of time (N∆t, as in Equation 3.205. Band Selectable Fourier Analysis or Zoom-FFT [82, 83] can
be used to maximize the resolution, but this is usually only known to experts. However, a spectrum
analyzer computes a separate integral for each frequency. To eliminate errors due to a partial period
integral, the integration should be done over an integer number of periods of the frequency in question.
This means that except in special cases, the actual resolution bandwidth of the calculations at different
frequencies will differ slightly.

MATLAB computes the FFT in Equation 3.198 and (with some details to be filled in later) then pro-
duces

Pxx = PS D(x) =
X∗. ∗ X

N
(3.206)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
167

Winter 2022-2023
December 31, 2022

Models & Measurements

where X∗ is the complex conjugate of x and N is the number of points in the FFT and the .∗ operation
is the element by element multiply of two same-sized vectors in MATLAB . (Windowing and scaling
are standard methods of improving the performance of FFTs by driving the time signal to 0 at the
beginning and end of the data run, but we will not discuss those here.)

Note that these units are not physical. From Bendat & Piersol[75], page 407 there is a procedure
for computing a PSD from FFT based measurements. At any frequency, fk, the PSD of a signal x is
given by:

P̃xx(fk) =
X∗(fk)X(fk)

N∆t
(3.207)

where X(fk) = ∆tXk. This means that

P̃xx(fk) =
(∆t)2X∗k Xk

N∆t
(3.208)

or

P̃xx(fk) =
∆tX∗k Xk

N
(3.209)

so

P̃xx =
∆tX∗. ∗ X

N
(3.210)

and thus
P̃xx = ∆tPxx (3.211)

i.e. to go from MATLAB units to physical units, multiply the MATLAB PSD by ∆t.

3.21 The Stepped-Sine Integral

The stepped-sine integral implements a special case of a lock-in amplifier, diagrammed in Figure 3.19.
A lock-in amplifier mixes a signal with a sine and cosine at the desired frequency at which one wants
to extract the response. The mixed components are then low pass filtered to produce an in-phase
(ILP(t)) and quadrature (QLP(t)). If the mixing and filtering are done properly, the resulting signals will
be relatively flat representations of in-phase and quadrature portions of the signal at that frequency.
The issue is that this low pass filtering takes a fair amount of time. It is not uncommon to specify filters
with the time constants on the order of several hundreds of periods of the frequency to be measured.

The solution is to be far more careful about the integration, as described in [53]. In the case of
stepped-sine (swept-sine), the input signal is generated by the instrument and therefore precisely

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
168

Winter 2022-2023
December 31, 2022

Models & Measurements

sin(t)wo

s(t)

cos(t)wo

Low Pass
Filter

Low Pass
Filter

I(t) I (t)LP

Q (t)LPQ(t)

Figure 3.19: A lock-in amplifier mixes an in-phase and quadrature signal with the measurement signal and
then uses a low pass filter to extract the response at the fundamental frequency.

sin(t)wo

s(t)

I(t) I (t)INT

Q(t) Q (t)INTcos(t)wo

()dtʃ
0

MTO1
MTO

()dtʃ
0

MTO1
MTO

Figure 3.20: The stepped-sine demodulation replaces the low pass filter of the lock-in amplifier [84] with
an integration over an integer number of periods of the sinusoid.

known. The response of the system should have a strong component of this stimulus signal. More-
over, since the input is precisely known, one can integrate over an integer number of periods of the
input wave, as diagrammed in Figure 3.20. The mixed curve is approximated by a polynomial fit. In
[53] a fifth order polynomial is fit through six points, three on either side of the region of integration.
In part, this overcomes the limited sampling rate of the particular DSA, which is limited to 250 kHZ,
leaving an effective measurement range of only up to 100 kHz. The author has presented several
simplifications of the algorithm in [53] in the AC mode demodulator for Atomic Force Microscopes in
[85, 86] and in the built-in stepped-sine measurements of [87]. In [85, 86] the integration was accom-
plished via a trapezoidal rule. However, the methodology of [87] allowed for a longer integration time
and so that algorithm could use a backwards rectangular rule with little loss of fidelity. We will focus
on the integration algorithm of the latter.

The solution in [87] involves breaking the computation up into two blocks, those that need to be done

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
169

Winter 2022-2023
December 31, 2022

Models & Measurements

in real time and those that can be treated as pre and post processing. The real-time computations
involve stimulating the loop at various points, extracting responses at other points, and computing the
stepped-sine integral, will be described in Section 3.22. The pre and post processing, in which the
measurement parameters are set and integrated response is tabulated and turned into magnitude
and phase will be described in Section 3.23.

The stepped-sine method would have one of the loop stimulus signals set to a sinusoid at a desired
frequency, ω0 = 2π f0 = 2π

T0
. The other stimulus inputs would be set to 0. A given output signal, s(t),

can be demodulated using a stepped-sine demodulator. We can use Fourier series to decompose
the signal, s(t), as

s(t) = A0 +

∞∑

k=1

(Ak sin(kω0t) + Bk cos(kω0t)) . (3.212)

We can expect that if the stimulus signal is single sinusoid, then s(t) will have a strong first Fourier
component:

s(t) ≈ A1 sin(ω0t) + B1 cos(ω0t) + n(t) (3.213)

= C1 sin(ω0t + φ1) + n(t), (3.214)

where

C1 =

√

A2
1 + B2

1 and φ1 = arctan
A1

B1
. (3.215)

Mixing with in-phase and quadrature signals as shown in Figure 3.20 yields
∫

I(t)dt =
∫

s(t) sin(ω0t)dt ≈
∫

C1 sin(ω0t + φ1) sin(ω0t)dt +
∫

n(t) sin(ω0t)dt (3.216)

and
∫

Q(t)dt =
∫

s(t) cos(ω0t)dt ≈
∫

C1 cos(ω0t + φ1) cos(ω0t)dt +
∫

n(t) cos(ω0t)dt. (3.217)

As mentioned above, in a stepped-sine demodulator, we will want to integrate over an integer, M,
number of periods of the frequency that we wish to demodulate. Making the integrals definite and
using well known trigonometric identities, yields:

1
MT0

∫ MT0

0
I(t)dt (3.218)

=
C1

2

(

cosφ1
1

MT0

∫ MT0

0
dt − 1

MT0

∫ MT0

0
cos(2ω0t + φ1)dt +

1
MT0

∫ MT0

0
n(t) sin(ω0t + φ1)dt

)

and

1
MT0

∫ MT0

0
Q(t)dt (3.219)

=
C1

2

(

sinφ1
1

MT0

∫ MT0

0
dt − 1

MT0

∫ MT0

0
sin(2ω0t + φ1)dt +

1
MT0

∫ MT0

0
n(t) cos(ω0t + φ1)dt

)

.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
170

Winter 2022-2023
December 31, 2022

Models & Measurements

Equations 3.218 and 3.219 both have the properties that the second term on the right hand side goes
to 0 for all positive M. The third term goes to 0 for increasing MT0 as long as n(t) is uncorrelated with
the mixing sinusoids.

Such precise control of the integration period is difficult in an analog circuit but straightforward in a
digital operation. As MT0 gets large the contribution of n(t) goes to 0, yielding the familiar relationships

Iint =
1

MT0

∫ MT0

0
I(t)dt ≈ C1

2
cos(φ1) (3.220)

and

Qint =
1

MT0

∫ MT0

0
Q(t)dt ≈ C1

2
sin(φ1). (3.221)

By assembling the two integrals into one complex number we get the first Fourier component of s(t) at
f0, S (f0). We can do this for any number of signals around the loop and any desired set of frequencies
and using Equation 3.130, compute the complex FRF, H(f), between those two measurement points.

There are several issues with standard methods of demodulation. The first is that imperfections in the
integration approximation and noise in the signal require that MT0 be large, relative to the period of
the frequency at which demodulation is to take place, T0, so M must be large.

End of last full
period of signal

Sample Points

Sine Wave very close to f0

Sine Wave at f0

Figure 3.21: The top drawing shows a sine wave which doesn’t end up on an integer number of sample
points. Adjustingf0 slightly allows an integer number of periods to line up with an integer number of
samples, as shown in the bottom drawing.

The second is that with a digital controller, we have to be careful if we want to honor our desire to

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
171

Winter 2022-2023
December 31, 2022

Models & Measurements

integrate over an integer number of periods of oscillation. We want

NTS = MT0, (3.222)

where N are are the number of samples in the integration, TS is the sample period, M is the number of
periods of oscillation, and T0 is the period of oscillation. As illustrated in Figure 3.21 the data sample
rate is rarely an integral multiple of the oscillation frequency, so it is difficult to make Equation 3.222
hold. Most digital systems are run at a fixed sample rate, fS =

1
TS

. The oscillation frequency, f0 = 1
T0

,
comes from the frequencies at which we want to measure the FRF. That means f0 will vary but fS will
not. We can integrate over a fractional sample interval as described in [53] and [85]. An alternate
solution is that for any desired f0 and M, we can pick N such that:

NTS ≤ MT0 = NRealTS ≤ (N + 1)TS . (3.223)

We then round NReal to the nearest integer. We don’t want to change TS or M, so we are left with
adjusting T0 so that

ÑTS = MT̃0, (3.224)

Here Ñ is either N or N + 1 and T̃0 is the adjusted period of oscillation which makes equality hold.
The adjustments to that make equality hold can be kept small if N and M are made large. The
computational hardware must have enough bits in the register that holds the intermediate integral
approximation so as to allow for long integrals over many sample points. This is in contrast to the
algorithm the author presented in [85] and [86] in which the oscillatory frequency was much closer to
the sample frequency and there was a strong desire to minimize latency by keeping M small.

The steps involved in generating a FRF with stepped-sines are:

• Select a set of oscillation frequencies, { f0}, at which to compute the FRF.

• For each oscillation frequency, f0, and desired number of oscillations, M0, there will be a number
of data samples, N, such that

NTS ≤ M0T0 ≤ (N + 1)TS . (3.225)

• Adjust each T0 =
1
f0

so that equality holds for one side of Equation 3.225. For M0 sufficiently
large, this adjustment will be small.

• Set up a measurement period of NTS = M0T0,ad j.

• Set oscillator in the system controller to generate sinusoidal stimulus at frequency, f0,ad j =
1

T0,ad j
.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
172

Winter 2022-2023
December 31, 2022

Models & Measurements

• At each sample time step, inject the sinusoidal stimulus signal into the chosen input in the
control loop and measure the response at the chosen measurement points of the loop, and
compute the next step in the Fourier integral.

• Store the partial integrals in memory.

• After N samples, finalize the Fourier integrals by dividing by MT0,ad j = NTS to get C1
2 cos(φ1) and

C1
2 sin(φ1) at each frequency, in real time.

• In post processing, use the integral values to compute the desired auto and cross spectra. If
averaging is on, repeat the measurement and integral Navg times.

• In post processing, compute the desired FRFs between sets of these signals using the averaged
cross and auto spectra.

The choice of measurement frequencies, the adjustments, and the setup of the integral can be done
in a host computer. Generation of the stimulus, measurement of the signal responses, and calculation
of the integral need to be done on the real-time system. (One could argue that one could simply store
the measured data, pass it to the host computer, and do the calculations there. However, for even
modest sample rates, the data transfer becomes huge and impractical. 10 periods of a 100 Hz signal
sampled at 1 MHz results in 105 points per channel to store transfer. That is a lot of memory for a real-
time system.) Finally, Fourier coefficients are passed back to the host computer for post processing
and another stimulus/integration run is set up.

3.22 Stepped-Sine Stimulus and Integration for FPGAs

Field-programmable gate arrays (FPGAs) offer parallel processing for simple operations, so if we can
break our algorithm into simple operations, we can do much faster computing with FPGAs, allowing
for control at significantly higher sample rates than are possible with conventional DSP chips. In our
stepped-sine calculation, the key to approximating the integral in real time is to turn it into a convenient
sum form, that is:

1
MT0

∫ MT0

0
I(t)dt =

1
NTS

∫ NTs

0
I(t)dt ≈ 1

NTS

N−1∑

k=0

I(kTS)TS =
1
N

N−1∑

k=0

I(kTS). (3.226)

Likewise,

1
MT0

∫ MT0

0
Q(t)dt =

1
NTS

∫ NTs

0
Q(t)dt ≈ 1

NTS

N−1∑

k=0

Q(kTS)TS =
1
N

N−1∑

k=0

Q(kTS). (3.227)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
173

Winter 2022-2023
December 31, 2022

Models & Measurements

We are using a rectangular rule approximation, unlike the fifth order polynomial of [53] or the trape-
zoidal rule of [85], since our relatively high sample rate and large number of samples minimizes the
integration error caused by the simple approximation. We still need to normalize the sums by 1

N and
for a long integration with a fast sample frequency, N can be huge. For example on a Xilinx FPGA
using a DSP48E block [88], has multiplies of 25-bit by 18-bit numbers, where the numbers are in twos
compliment form. If we have 25 bit data values multiplied times 18 bit sine/cosine values, the resulting
product has 43 bits, of which the top 2 are redundant. We want to sum a lot of these values, so we
need a fairly large accumulator. (The DSP48E has a 48 bit P (product) register.)

So, if we have up to 20 million sums, that’s enough for 100 cycles of 10 Hz signals sampled at 2 MHz.
For 20e6 sums, we need log2(20e6) = 24.25 bits or just under 25 bits. We have bits 43–48 free (6
bits) and then we need 25 bits of accumulation total, we will need a 67-bit register. Choosing a 68-bit
accumulation register, we still need to multiply by 1/N, but doing a multiply on a 68-bit quantity would
involve a slow process with multiple DSP48Es. However, there is a different way.

To do a 1/N average, we do the computation N = L(2K). The 1/2K will be done by the right shift by
K bits and the last part of the normalization will be done by a multiply by 1/L. Now, 1 < L < 2 so
0.5 < 1/L < 1, and we can represent 1/L as s1.17 two’s complement number where the number
looks like 0.1XXXXXXXXXXXXXXXX, where the “X” bits can be either 0 or 1. Our host computer
can calculate K and 1/L for each frequency and download it to the real-time system, which can
normalize a large sum by first right shifting by K bits and then by multiplying the resulting value by
our 18 bit representation of 1/L. Our stepped-sine integral has been turned into a single multiply and
accumulate at each time step, followed by the fairly easy 1/N normalization just described.

3.23 Software Pre and Post Processing

The choice and tweaking of measurement frequencies to tile into integer numbers of sample periods
is all done in a host computer, as is the calculation of 1/L and K for the normalization. Once the
integrals are collected on the real-time system, cross and auto spectra are computed and the entire
process is repeated for the requisite number of averages. Thus, we estimate Equation 3.130 with

E{Z(f)U∗(f)} ≈ 1
Navg

Navg∑

1

Zi(f)U∗i (f), (3.228)

for all signals of interest. Typically, we need Navg ≥ 3 for the coherence to have any relevance, but
the stepped-sine is clean enough that Navg ≤ 10 usually works. This is in sharp contrast to FFT

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
174

Winter 2022-2023
December 31, 2022

Models & Measurements

methods, where Navg can often be in the hundreds to try to restore SNR. While this is being done, a
new frequency is measured. Once all frequencies have been measured in this way, the FRFs can be
extracted from the averaged cross and auto spectra.

3.24 FFT versus Stepped-Sine Tradeoffs

With all that previous discussion, we can now get back to the tradeoffs in FFT versus stepped-sine
measurements.

Things to note about FFT measurements:

• The number of terms in an FFT based measurement is always a power of 2. If the number of
measurement points is not a power of 2, then the data is either truncated or padded to make it
fit.

• The FFT calculation comes from a time when computational power was limited, memory was
expensive, and the high level programming language was FORTRAN [89]. As such, a lot of
tricks are played to minimize the number of calculations, including every possible symmetry
property of the frequency factors.

• The resolution bandwidth, Be is set by the integration time (as it is with stepped-sine). However,
in this case

Be =
1
T
=

1
N∆t

=
1

NTS
=

fS

N
. (3.229)

That is to say that to maintain the same frequency resolution, as the sample rate goes up, the
number of samples must also go up. This is not surprising, except that the ratio is at certain
quantized levels. We might increase fS by 10% but need to double N to be able to keep Be

within a certain range.

• f = 0 i.e., DC, is always included in the calculation. That is to say if our frequency band of
interest is between fa and fb, we cannot simply integrate between those. If fa and fb are close
together but still relatively high in frequency, this means that most of the frequency bins in our
calculation are wasted. A seldom remembered technique known as Zoom-FFT can be used
[82, 83], but often folks simply accept poor resolution bandwidth or huge N to meet their needs.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
175

Winter 2022-2023
December 31, 2022

Models & Measurements

• On the other hand, we can compute FFTs on any signal including square waves and their
responses. This makes FFT methods more practical for FRF measurements on operational
data. FFTs compute the entire spectrum from − fS /2 to fS /2. There might not be much signal
content in some of those frequency bins, which is a real issue in getting accurate parameters.
There is a lot of literature aimed at generating good input signals for exciting systems so that
FFT based FRF measurements will be accurate [90, 91, 92].

Stepped-sine measurements are based on a computation of the first term in a Fourier Series expan-
sion for a desired set of frequencies. Because of this:

• We can select the desired frequencies for evaluation. If we want to add a frequency, it is just
appended to the list.

• We can narrow the resolution bandwidth, Be by simply extending the integration time, and we
extend our integration time by adding an integer number of periods of the frequency of interest.

• We can filter and integrate to eliminate almost all the content outside of the frequency of mea-
surement.

• However, we cannot generate stepped-sine measurements simply by using operational signals.
The measurement requires controlled injection of a set of sinusoids and carefully controlled
integration of the responses.

DSAs are capable of FFT based measurements and of stepped-sine (usually called swept-sine in
industry) measurements. Figure 3.22 shows an example of why one might opt for the more complex
swept-sine measurement over the theoretically more satisfying FFT based measurements.

Mechatronic systems are often characterized by system flexibility, which manifests itself as a large
number of high Q resonances and anti-resonances in the physical system FRF. Such responses are
typically hard to measure using time domain methods because the amount of signal concentrated
near any particular feature is small. In other words, identifying large numbers of high Q features
during normal operation is difficult if not impossible, unless normal operation continuously stimulates
all of those features.

Likewise Fast Fourier Transform (FFT) based methods do not focus signal in any one feature area,
instead relying on broadband excitation (pseudo-random, noise-like signals) or on a chirped sine

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
176

Winter 2022-2023
December 31, 2022

Models & Measurements

10
2

10
3

-80

-60

-40

-20

0

10
2

10
3

-800

-600

-400

-200

0

Frequency (Hz)

M
a
g
n
it
u
d
e
 (

d
B

)
P

h
a
s
e
 (

d
e
g
)

nPoint Stage Direction Frequency Response Function (FRF)x

FFT Based

Stepped-Sine

Figure 3.22: Comparison of stepped-sine and FFT based FRF measurements. (Courtesy: Jeff Butter-
worth).

signal. FFTs are computationally fast, but this speed comes at a price. Besides the lack of frequency
isolation on the input, the frequency bins are fixed for a given sample rate and number of samples.

In contrast stepped-sine or sine dwell [53] uses a single sinusoid injected into the system. The
input is continued until the system goes to steady state and then the output is measured. The LTI
system response that sinusoid will be another sinusoid at a different magnitude and phase, but at the
same frequency. By repeating measurements, as series of frequency points can be identified and
these will delineate the frequency response function of the system. Because the stimulus is a single
sinusoid, the algorithm uses coherent demodulation (mixing with a sine and a cosine wave of the
same frequency and integrating over an integer number of periods of that wave) to extract the system
response. The focus on one frequency at a time has a clear SNR advantage over broadband methods.
While both methods will include components from the normal operation of the loop in the measured
signal, FFT methods cannot isolate on a single stimulus frequency. The loop signals may show up in
the stepped-sine measurements, but these will largely be not coherent with the stimulus and therefore
suppressed by the coherent demodulation. Furthermore, the measurement degrades gracefully in the
presence of nonlinearities [62, 63]. For this reason, stepped-sine responses typically produce much
“cleaner” measurements, especially at higher frequencies where the mechatronic system response
is low as clearly seen in the example of Figure 3.22. This has also been analyzed in the context of
settling time and signal to noise ratios in earlier work [93].

The cost of doing this is a far more complicated software algorithm combined with significantly longer

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
177

Winter 2022-2023
December 31, 2022

Models & Measurements

measurement times, as the measurements are repeated with each frequency step [93]. For this rea-
son, stepped-sine measurements have largely been restricted to external and expensive instruments.
As will be discussed in Section 3.26, this is a severe limitation in modern digital control systems. The
contribution of this paper is to reformulate the algorithm so it is simple enough to implement in an
FPGA. In doing so, it enables high precision FRF measurements to be added to any digital controller.

3.25 The Case for Connected Measurements

“But the point of a measurement is lost, if you keep it a secret. Why didn’t you record
it so you could tell the world, eh?” – Dr. Strangelove, evangelizing about connected
measurements

Consider the following scenario: An engineer is measuring the response to a laboratory system with
one or more high quality tools, such as a digital oscilloscope or a dynamics analyzer. The engineer
reads the response from the small, outdated screen of the instrument, pushes a few buttons and
extracts some system properties. Perhaps they even capture a bitmap of the screen, but not the data.
The data captured by this highly engineered instrument cannot be shared, cannot be used in CAD
tools (such as MATLAB , Maple, or Labview), and if retained at all has some obscure filename such
as m2016 57.csv. If John Oliver were an engineer, one of his “How is this still a thing?” segments
would focus on this.

It is now close to 50 years since Hewlett-Packard introduced the Hewlett-Packard Instrument Bus (HP-
IB) [94, 95] specifically to resolve what was recognized as an issue even in those early days. Starting
in the 1970s, National Instruments built an entire business and platform around the idea of connected
computer based instruments [95]. If one remained in the Labview [96] environment, one could connect
one’s measurements. However, this left many high quality boxed instruments out of the picture (unless
one wished to connect them into Labview using a cryptic language known as Standard Commands
for Programmable Instruments (SCPI) [97]. It seems that the programming effort needed to automate
instruments using SCPI has left unconnected measurements as “still a thing”. Furthermore, as Mike
Borrello points out in his tutorial [98], instruments such as dynamic signal analyzers (DSAs) have not
been evolved in recent years and so are stuck with ancient floppy disks and GP-IB connectors, but no
Ethernet or USB connections. This section makes the case for overcoming these programming issues
and connecting instruments anyway, even if the programming language is just this side of Cuneiform
[99].

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
178

Winter 2022-2023
December 31, 2022

Models & Measurements

Y Actuator

X Actuator

Flexure

Y Sensor

X Sensor

Sample

Figure 3.23: The pieces of an AFM X-Y measurement. At the top left is a picture of an nPoint nXY-100
stage and n-c300 controller. A conceptual and inaccurate drawing of the X-Y stage architecture is on
the upper right. For control design, we wish to measure frequency response functions using our trusty
HP-3562A [69, 70] dynamic signal analyzer (lower right). However, since modern computers do not
have GP-IB ports, we need to find an alternate connection, such as the Agilent (now KeySight) E5810A
GP-IB-LAN Bridge. All that is left is writing the software glueto tie these together.

nPoint makes several precision X-Y stages, such as the one shown in the upper left of Figure 3.23.
On the right is a conceptual drawing of the X-Y stage from the author’s imagination, rather than using
information from nPoint. The n-c300 controller comes with a built-in PID loop designed for robustness
and low speed accuracy. The controller some digital filters that can be adjusted if a researcher
asks nicely. The controller provides analog IO ports, that is ports where an analog voltage can be
injected in and others where analog voltages can be extracted out. However if one is channeling Jeff
Goldblum’s “Must go faster,” (of both Jurassic Park and Independence Day) then one has to be able to
transfer accurate frequency response measurements into design software, use these to extract model
parameters, use those parameters to design a new loop shaping controller, and download those into
the n-c300.

A connected measurement setup to accomplish just that is shown in Figure 3.24. The HP 3562A
is used to stimulate the analog inputs and read the analog outputs of the controller module. The
controller stimulates and measures the X-Y stage. Setting up the instrument is done in MATLAB
using the Instrument Control Toolbox to talk to connected devices. The Agilent (now KeySight) GP-
IB-LAN bridge allows the computer to connect via the LAN to HP-IB connected old instruments. This

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
179

Winter 2022-2023
December 31, 2022

Models & Measurements

C300

Ethernet

HP 3562A

Spectrum

Channel 1

Channel 2

Location:

Spinstand 401

Measurement

1/28/00

Power

Amp

Windage

Disk Position

Arm Mechanics

Σ

Σ

ADC DAC

Motor

Torque

LDV

Demod

-

Position

Sensing

Noise

ADC

Noise
DAC

Noise

PA

Noise

Head Position

PES

DSP

Piezo X-Y
Actuator

Sample

Agilent E5810A

HP-IB

USB

X Axis Y Axis

Figure 3.24: A connected measurement ties instruments and physical systems into CAD tools.

allows not only the measurement data to be captured, but also allows the instrument setup to be
downloaded from a MATLAB m-file.

The only measurements that can be made via this setup is a closed-loop two-wire measurement of
the type discussed in Section 3.18. In other words, for either axis (x or y) we need to follow a type of
“Lather, rinse, repeat” type process:

• Run DSA measurements on closed-loop system, controller.

• Use MATLAB to model existing controller or measure the existing controller by opening the loop
on the system (disconnecting the wires from the controller to the X-Y stage).

• Open the loop using the equations from Section 3.18 to extract the FRF of PC.

• Divide out the FRF (measured or modeled) of C to reveal P.

• Use P to design a new controller C using the structure of PID-plus-filters.

• Project new open and closed-loop responses (PCnew and PCnew

1+PCnew
) in MATLAB . This can be

considered a frequency domain simulation.

• When a good projection is seen, dump new filter parameters from MATLAB to stage controller.

• Back to the top and measure again.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
180

Winter 2022-2023
December 31, 2022

Models & Measurements

The key prerequisite steps, the busy work that most people avoid, are:

• Connect the DSA to MATLAB by writing all the SCPI commands into a MATLAB m-file. This
involves looking through arcane old manuals, trying out programs with few debugging tools, and
using the Instrument Control Toolbox and the LAN bridge to tunnel through to the GP-IB. It is
tedious and frustrating.

• Write scripts in MATLAB (or one’s preferred CAD tool) to mimic the loop operations of the DSA
[76].

• Translate between DSA FRF format which has a header with start and stop frequencies and
frequency spacing information and MATLAB format, which generates FRFs in magnitude and
phase form. The latter must be converted to a complex response for manipulation, via

resp = mag. ∗ e jπ
ϕdeg
180 . (3.230)

• For the former, the frequency spacing information from the DSA data header must be used
to generate a frequency vector for use in MATLAB . That same frequency vector is used to
generate frequency response in model so that Bode plots of measurement frequency response
functions line up with MATLAB Bode plots.

• Mix and match measurement and model FRFs to get simulation of what FRFs we can measure
with new system.

FRF measurements of the original closed-loop responses from both the x and y axes are shown in
Figure 3.25. The closed-loop x axis has a -3 dB point at 200 Hz, but has a resonance near 500 Hz.
Similarly, the closed-loop y axis has a -3 dB point at 10 Hz and a resonance peaking up around 600
Hz. Such a system cannot be pushed very fast, particularly in the y axis. There is also nonlinear
coupling as might be inferred from the conceptual drawing of Figure 3.23, which puts a limit on how
high the inputs to the actuator can be. However, the reader should note the incredible noise rejection
of the stepped-sine measurement of the HP 3562A.

The extracted plant FRFs are shown in Figure 3.26. From this, we are able to use the existing
controller programming structure (PID for basic control and filters to knock down resonances) and
iterate. The resulting projected open-loop responses both with old and new PID controllers is shown
in Figure 3.27. We can also close the loop in FRF math and project the closed-loop as done in Figure
3.28. Note the improved bandwidth, better roll off, and lessened peaking. However, this is just a
projection, based on combining extracted plant measurement with controller and filter model. Note

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
181

Winter 2022-2023
December 31, 2022

Models & Measurements

10
0

10
1

10
2

10
3

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Frequency (Hz)

M
ag

. (
dB

)

Closed−Loop Response (DaveNPoint_Ch_1_400mv_3avg_c)

10
0

10
1

10
2

10
3

−800

−700

−600

−500

−400

−300

−200

−100

Frequency (Hz)

P
ha

se
 (

de
g)

Stage/Channel: DaveNPoint_X

10
0

10
1

10
2

10
3

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Frequency (Hz)

M
ag

. (
dB

)

Closed−Loop Response (DaveNPoint_Ch_2_400mv_3avg_c)

10
0

10
1

10
2

10
3

−700

−600

−500

−400

−300

−200

−100

Frequency (Hz)

P
ha

se
 (

de
g)

Stage/Channel: DaveNPoint_Y

Figure 3.25: Closed-loop FRF measurements of X and Y stages with original controllers.

that the projected closed-loop with the new PIDs look slightly worse than those with the old PIDs.
However, in the measured closed-loop responses, the new PID and filters work exceptionally well, as
seen in Figure 3.29. The x axis now has a -3 dB point at about 250 Hz, and no resonance to worry
about. The y axis has a -3 dB point at about 150 Hz, and no resonance to worry about. This means
that scan signals beyond the bandwidth get low pass filtered in a graceful way.

Although often overlooked, projecting or simulating the frequency response can yield excellent con-
troller designs. Tight integration between MATLAB , the dynamics analyzer, the physical system, and
the controller make rapid iteration easy. All the tools have to pass data between themselves gracefully
(the hardest part) and have to have similar data structures. As important, to do actual FRF manipula-

10
0

10
1

10
2

10
3

−30

−20

−10

0

10

Frequency (Hz)

M
ag

. (
dB

)

Plant Response (DaveNPoint_X)

10
0

10
1

10
2

10
3

−500

−400

−300

−200

−100

Frequency (Hz)

P
ha

se
 (

de
g)

Extracted from Closed−Loop Meas. (DaveNPoint_Ch_1_400mv_3avg_c)

10
0

10
1

10
2

10
3

−30

−20

−10

0

10

Frequency (Hz)

M
ag

. (
dB

)

Plant Response (DaveNPoint_Y)

10
0

10
1

10
2

10
3

−500

−400

−300

−200

−100

Frequency (Hz)

P
ha

se
 (

de
g)

Extracted from Closed−Loop Meas. (DaveNPoint_Ch_2_400mv_3avg_c)

Figure 3.26: Extracted plant FRF measurements of X and Y stages.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
182

Winter 2022-2023
December 31, 2022

Models & Measurements

10
0

10
1

10
2

10
3

−50

−40

−30

−20

−10

0

10

20

30

Frequency (Hz)

M
ag

. (
dB

)

Open Loop Response with New Filter and Different PIDs (DaveNPoint_X)

10
0

10
1

10
2

10
3

−800

−700

−600

−500

−400

−300

−200

−100

Frequency (Hz)

P
ha

se
 (

de
g)

Extracted from Closed−Loop Meas. (DaveNPoint_Ch_1_400mv_3avg_c)

Open Loop
OL + Filter (measured PID)
OL + Filter (new PID)

10
0

10
1

10
2

10
3

−60

−50

−40

−30

−20

−10

0

10

20

30

Frequency (Hz)

M
ag

. (
dB

)

Open Loop Response with New Filter and Different PIDs (DaveNPoint_Y)

10
0

10
1

10
2

10
3

−700

−600

−500

−400

−300

−200

−100

Frequency (Hz)

P
ha

se
 (

de
g)

Extracted from Closed−Loop Meas. (DaveNPoint_Ch_2_400mv_3avg_c)

Open Loop
OL + Filter (measured PID)
OL + Filter (new PID)

Figure 3.27:Extracted open loop FRFsand projected FRFs of new open loop usingold PID and new
filters andnew PID and new filtersfor X and Y stages.

tions in MATLAB (or similar CAD tools) the frequency responses must be kept in a complex response
form.

3.26 The Case for Built-In Stepped-Sine

This section will discuss the advantages of building a DSA right into the real-time digital controller.
Figure 3.30 shows the FRF measurement in the context of an overall digital feedback and feedforward
controller. In this case, the sheer complexity of the digital “patch-panel” argues against using external
instruments and for having these measurements built into the digital controller [87]. We will discuss
when that might be a good idea and what is involved.

Identifying the many component blocks in the system involves injecting and extracting signals at mul-
tiple locations, and the majority of access points are buried in the digital controller.

Using an instrument through analog test points involves not only creating those test points with cir-
cuitry, but also forcing many signals that were digital to be converted to analog signals before being
measured with our external instrument. Perhaps more critical is the fact that much of the controller

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
183

Winter 2022-2023
December 31, 2022

Models & Measurements

10
0

10
1

10
2

10
3

−50

−40

−30

−20

−10

0

Frequency (Hz)

M
ag

. (
dB

)

Closed−Loop Response (DaveNPoint_Ch_1_400mv_3avg_c)

10
0

10
1

10
2

10
3

−800

−700

−600

−500

−400

−300

−200

−100

Frequency (Hz)

P
ha

se
 (

de
g)

Stage/Channel: DaveNPoint_X

10
0

10
1

10
2

10
3

−60

−50

−40

−30

−20

−10

0

Frequency (Hz)

M
ag

. (
dB

)

Closed−Loop Response (DaveNPoint_Ch_2_400mv_3avg_c)

10
0

10
1

10
2

10
3

−700

−600

−500

−400

−300

−200

−100

Frequency (Hz)

P
ha

se
 (

de
g)

Stage/Channel: DaveNPoint_Y

Figure 3.28:Measured closed-loop FRFsplotted against updated projected FRFs of new closed-loop using
old PID and new filtersandnew PID and new filtersfor X and Y stages.

is inaccessible to the instrument. This can be remedied by modifying the instrument to have digital
interfaces, as was done with the HP 3563A [70], but connecting such an instrument involved coming
up with a digital bus protocol between the instrument and the control system [76, 19]. Given this level
of work, one might as well build the instrument right inside the controller.

Returning to Figure 3.30, we see that not only do we want multiple digital access points, but reconfig-
uration of the controller would require modifying those access points. This reconfigurability is exactly
what software allows us to do. In a single CPU or DSP based system, operations for computing the
stepped-sine stimulus and integration would take away from the processing time available for real time
control. This evaporates with the parallel processing capability of Field Programmable Gate Arrays
(FPGAs). While difficult to program, FPGAs allow algorithms to multiplex in chip space instead of
processing time. Very simply, this means that in an FPGA, we do not burden our controller by the ad-
dition of this measurement algorithm. This allows for measurements of systems with extremely high
sample frequencies. In the examples of Section 3.27, the atomic force microscope (AFM) system in
question was sampled at 2 MHz. The FPGA firmware would have allowed measurements on dynamic
systems sampled at 40 MHz. In contrast, the HP 3562A and HP 3563A were external instruments
with sample rates limited to 250 MHz [70].

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
184

Winter 2022-2023
December 31, 2022

Models & Measurements

10
0

10
1

10
2

10
3

−50

−40

−30

−20

−10

0

Frequency (Hz)

M
ag

. (
dB

)

Closed−Loop Y Axis Comparison

Original Controller
New Controller

10
0

10
1

10
2

10
3

−800

−700

−600

−500

−400

−300

−200

−100

Frequency (Hz)

P
ha

se
 (

de
g)

Measured Responses

10
0

10
1

10
2

10
3

−60

−50

−40

−30

−20

−10

0

Frequency (Hz)

M
ag

. (
dB

)

Closed−Loop Y Axis Comparison

Original Controller
New Controller

10
0

10
1

10
2

10
3

−700

−600

−500

−400

−300

−200

−100

Frequency (Hz)

P
ha

se
 (

de
g)

Measured Responses

Figure 3.29: Closed-loop FRF measurements oforiginal versusnewresponses.

3.27 Simulation and Measurement Results

The FPGA portion of the algorithm was simulated in ModelSim. Two results are shown in Figure 3.31
and 3.32. The sample rate for both of these is 2 MHz, and the simulated amplitude is 0.25 while
the phase is at −15◦. The sines, at 2 kHz and 101 kHz, respectively, were corrupted by AGWN.
The stepped-sine integral was run for 8 periods before faithfully returning the magnitude and phase.
(These were extracted in the ModelSim testbench.)

Following the successful tests of the FPGA portion, it was integrated into a real-time digital controller
while the software portion was implemented on a host computer. A closed-loop measurement of
an nPoint N-XY30 stage is shown in Figure 3.33, while the extracted plant response is shown in
Figure 3.34. Note that the NPXY30 has a much stiffer response than the NPXY100A of Figure 3.22.
However, the main observation is the cleanliness of the FRF measurement.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
185

Winter 2022-2023
December 31, 2022

Models & Measurements

Adjusted
Reference

Reference

Error
(e)

Control
(u)

Position
(y)

S

-
FCLI

FPI

Controller
Reference
Generator

Physical
System

ADC

DAC Amps

Sensor

S S

S

SS

Stim Stim

Stim

Stim

PlantDigital Controller

Closed-LoopFeedforward

F OutputCLI

F OutputPI

Figure 3.30: More complete measurement of system inside a digital control loop reveals the need for
multiple stimulus and measurement points often not easily achieved with traditional instruments. Increased
computing power means that far more of the conceptual systemlies within the digital controller. The
dramatic expansion in availability of sensors and low cost ADCs mean that single measurement or signal
injection points in a measurement system are terribly outdated. By keeping the “digital patch panel” inside
the digital controller, we can more easily assure a synchronized time base and compatible signal formats.

3.28 Extracting a Parametric Model

In the case of time domain system ID on a discrete time model, the identification itself is supposed
to provide the transfer function (or state space canonical form) parameters. As we have tried to drive
home far too much for an evening’s entertainment – but not nearly enough to make the point – the
connection between these parameters and any physical parameters is often so tenuous that one
might as well start looking for mystical energy fields. Nevertheless, if one uses the direct Z-domain
approach of Ragazzini and Franklin [51, 15], this is sufficient for design, but maybe not for debugging
and insight.

On the other hand, if we are using our step response methods. we can – under the assumption
that we have picked our simple model correctly – extract some basic physical parameters out of the
step response. These can be used both for controller design but also for intuition and understanding.
The issue with them is that the number of parameters one can extract that way is limited, and it truly
depends upon having an assumed model that describes reality pretty well. Still, sometimes that is the
best you can do.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
186

Winter 2022-2023
December 31, 2022

Models & Measurements

0 0.002 0.004 0.006 0.008 0.01 0.012
−0.4

−0.2

0

0.2

0.4

Time (s)

S
ig

na
l 2

Signal 2: Freq: 2000.0 Hz, Amplitude: 0.25, Phase Offset −15 Deg, Offset: 0.0

0 0.002 0.004 0.006 0.008 0.01 0.012
0

0.1

0.2

0.3

0.4

Time (s)

M
ag

ni
tu

de

Computed Magnitude: 0.25

0 0.002 0.004 0.006 0.008 0.01 0.012
−15

−10

−5

0

Time (s)

P
ha

se
 (

de
g)

Computed Phase: −14.69 Deg

Figure 3.31: Bit accurate simulation of FPGA stepped-sine integral. f0 = 2000Hz, Amplitude= 0.25, and
Phase Offset= −15◦. Integration done for 8 periods of oscillation, after whichresult is extracted.

We have tried to make the case that for characterizing the system, frequency domain methods may be
superior when they are available. This is not standard thinking on the topic, and I believe that the main
reason for this is that when most folks in the academic/theoretical world discuss frequency domain
methods, they are referring to FFT based methods with broadband excitation. In such discussions,
Parseval’s theorem [101] comes up as:

∫ ∞

−∞
|x(t)|2dt =

1
π

∫ ∞

−∞
|X(ω)|2dω =

∫ ∞

−∞
|X(2π f)|2d f . (3.231)

That is, the energy in the time domain is equal to the energy in the frequency domain and so no
improvement in identification comes from moving to the frequency domain.

What this discussion leaves out is that in the frequency domain, we can get a better understanding of
which parts of the system model to target with input. It makes no sense to provide input from “DC to
daylight” (old analog engineer term), if the system response is 120 dB down above a frequency of 100
Hz. The frequency domain gives us a better understanding about how to target this input – assuming
that we have such an opportunity – which is not always the case.

Another thing left out of this discussion is Resolution Bandwidth, described in Equations 3.203 and
3.204. Resolution Bandwidth tells us that there is no magic here. We can resolve no better than
the reciprocal of our integration time (at best). Thinking about this and Parsevall’s theorem, we can

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
187

Winter 2022-2023
December 31, 2022

Models & Measurements

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−0.4

−0.2

0

0.2

0.4

Time (s)

S
ig

na
l 2

Signal 2: Freq: 101.0 Hz, Amplitude: 0.25, Phase Offset −15 Deg, Offset: 0.0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.05

0.1

0.15

0.2

0.25

Time (s)

M
ag

ni
tu

de

Computed Magnitude: 0.25

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−20

−15

−10

−5

0

Time (s)

P
ha

se
 (

de
g)

Computed Phase: −15.02 Deg

Figure 3.32: Bit accurate simulation of FPGA stepped-sine integral. f0 = 101Hz, Amplitude= 0.25, and
Phase Offset= −15◦. Integration done for 8 periods of oscillation, after whichresult is extracted.

realize that resolving frequencies with broadband excitation requires a lot of energy (large time integral
to cover the broad frequency range). However, if we narrow the frequency to a very thin line then the
amount of energy goes down both in time and frequency. Still, for a certain resolution, the Resolution
Bandwidth tells us we need to integrate longer.

What does all of this mean? The resolving power of stepped-sine is in large part due to the long
integration time. Of course, the coherent demodulation, the single sinusoid input, the gain adjustment
all play a role, but eventually, we need to integrate for a while. Not nearly as long for the same
resolution as broadband methods, but still.

When we generate a frequency response function (FRF), we still are not at a parametric description
of the system. We need to do a curve fit [64, 65, 102]. For many of these instruments, the complex
curve fitting method is used, but it runs into problems with the FRF is not pristine, or when there
is extra negative phase, or when there are small measurement bumps in the FRF. A method that
tries to reduce these effects by assuming certain filter block components and using the logarithmic
magnitude response was proposed by Sidman et. al. back in 1991 and recently adapted for tuning
of Atomic Force Microscopes [103, 19]. This shows promise but this method is limited to identifying
stable, minimum phase responses.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
188

Winter 2022-2023
December 31, 2022

Models & Measurements

10
1

10
2

10
3

10
4

−80

−60

−40

−20

0

Frequency (Hz)

M
ag

. (
dB

)

Closed−Loop Responses

10
1

10
2

10
3

10
4

−1500

−1000

−500

Frequency (Hz)

P
ha

se
 (

de
g)

Extracted from Closed−Loop Meas.

Measured Closed Loop Response

Figure 3.33: Built-in stepped-sine measurement of nPoint NPXY30 [100] x actuator in closed-loop.

10
1

10
2

10
3

−100

−80

−60

−40

−20

Frequency (Hz)

M
ag

. (
dB

)

Plant Response

10
1

10
2

10
3

−1500

−1000

−500

0

Frequency (Hz)

P
ha

se
 (

de
g)

Extracted from Closed−Loop Meas. (nP30u_XO_XI_Ref_Ch2_Level_2000mV_10_10K_Hz_20100913T113146)

Figure 3.34: nPoint NPXY30 x axis plant response extracted from measurement of Figure3.33. DSA.

3.29 Improved Curve Fitting for Mechatronic Systems

Working on optical drives [19, 31, 76], my desire was to move to MIMO models, which required
model-based control, which required parametric models of the physical system. Extracting parametric
models from the Frequency Response Functions (FRFs) produced by the HP 3563A Control System
Analyzer (CSA) required curve fits, [104, 69, 102, 64, 65]. The CSA and DSA had curve fitting
algorithms that worked well on measurements of analog circuits, but failed repeatedly on those of
the drive mechanism. Instead of a second or fourth order model that physical intuition would have
suggested, the models were of high order, and contained unstable poles and non-minimum phase
zeros. A more mature version of myself would have worked to improve the measurements from the
start, but it was sufficiently confusing for me at the time to realize that I could not use the existing tools
to get parametric models from which to work. While I should have recognized that discrete-time FRFs
needed to be sanity checked against continuous time FRFs, the discrete-time representation of high

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
189

Winter 2022-2023
December 31, 2022

Models & Measurements

Q systems had issues.

10
0

10
1

10
2

10
3

−30

−20

−10

0

10

20

Frequency (Hz)

M
ag

 (
dB

)
Resonance FRF: fn_n = 100, Q_n = 25, fn_d = 80, & Q_d = 12.5

10
0

10
1

10
2

10
3

−400

−300

−200

−100

0

100

Frequency (Hz)

P
ha

se
 (

de
g)

MP (no noise)
NMP (no noise)
MP (low noise)
NMP (low noise)
MP (more noise)
NMP (more noise)

Figure 3.35: FRF of biquad filter withfn,n = 100 Hz,Qn = 25, fn,d = 80 Hz,Qd = 12.5. Additive white
Gaussian noise withσ = {0,0.002,0.02} is added to the real and imaginary responses.

Consider the example in Figure 3.35. This is a fairly simple second order section where the FRF has
been corrupted by adding various levels of additive white Gaussian noise to the complex response.
Two versions of the dynamics are plotted, one with a complex pair of minimum phase zeros and a
second where the zeros have been flipped over the jω axis to make them non-minimum phase. A
simple version of the complex curve fit is applied to this system, in that the order of the complex fit is
limited to be second order. For very small amounts of noise in the FRF measurement, the complex
curve fit still works, as shown in Figure 3.36. However, increasing the noise level slightly causes the
complex fit to badly miss the parameter locations, as shown in Figure 3.37. Furthermore, the fit has
missed the sense of the NMP zeros as well.

One possible explanation is as follows: One of the problems with curve fitting results from small bumps
in the FRF magnitude that are not accompanied by matching phase variations. Thinking about Bode’s

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
190

Winter 2022-2023
December 31, 2022

Models & Measurements

10
0

10
1

10
2

10
3

−30

−20

−10

0

10

20

Frequency (Hz)

M
ag

 (
dB

)

Complex Curve Fit Results: Effect of Noise and NMP Zeros

10
0

10
1

10
2

10
3

−400

−300

−200

−100

0

100

Frequency (Hz)

P
ha

se
 (

de
g)

Noisy Resonance FRF: fn_n = 100, Q_n = 25, fn_d = 80, Q_d = 12.5 & sig_resp1 = 0.002

MP (low noise)
NMP (low noise)
CFit to MP
CFit to NMP

Figure 3.36: Complex curve fit applied to simple resonance/anti-resonance with FRF noiseσ = 0.002. At
this point, the curve fit still seems to work, and can match both minimum phase (MP) and non-minimum
phase (NMP) responses. (Cyan overlays blue, magenta overlays red.)

gain-phase relationship [105], we realize that if the magnitude variation is not accompanied by phase
variation, the only way for the curve fitter to explain it is by adding a pole-zero combination that result
in a magnitude blip and a net 360 degree phase jump. Unfortunately, this is well suited to matching
a high Q resonance with a high Q pair of NMP zeros. This kind of issue with the linear fit makes the
normal curve fit method largely unusable. The examples here are very simple. For responses with
many resonance, anti-resonance features, it only gets worse.

One major source of discrete-time non-minimum phase zeros is the unwitting fitting of poles and
zeros to pure time delay, as discussed in [106]. One of the ways to approximate delay is with a Padé
approximation, and even at low order this maps time delay to NMP zeros. Accounting for the delay
directly means that the compensator is only trying to account for the part of the system it can do
something about.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
191

Winter 2022-2023
December 31, 2022

Models & Measurements

10
0

10
1

10
2

10
3

−30

−20

−10

0

10

20

Frequency (Hz)

M
ag

 (
dB

)

Complex Curve Fit Results: Effect of Noise and NMP Zeros

10
0

10
1

10
2

10
3

−400

−300

−200

−100

0

100

Frequency (Hz)

P
ha

se
 (

de
g)

Noisy Resonance FRF: fn_n = 100, Q_n = 25, fn_d = 80, Q_d = 12.5 & sig_resp2 = 0.02

MP (more noise)
NMP (more noise)
CFit to MP
CFit to NMP

Figure 3.37: Complex curve fit applied to simple resonance/anti-resonance with FRF noiseσ = 0.02.
Even with this low level of noise, the complex curve fit has failed badly.

So, even if the FRF measurement is good, that is, even if it is done using sine-dwell and has high
coherence as described in Section 3.26, we are a long way from a usable state-space model or a
usable model for any sort of control design. At this point, the missing piece was the ability to extract
reasonable models from good FRF measurements.

The situation in Figure 3.37 is telling, since even a simple biquad with fairly low levels of noise in the
FRF measurement cause a pretty dramatic miss in the fit response. The inspiration for a solution
came in an old paper by Sidman et. al. [66] in which they suggested two fixes: to work with the
log magnitude response (which would force an assumption of a minimum phase system, but would
de-emphasize noise in the amplitude) and to do the fit by cycling through a series of fixed dynamic
models to see which produced the lowest residual error. I guessed that if I could fit low-order dynamics
and remove them from the response – something I called successive dynamic removal – then a series
of low-order fits would result in an eventual fit to the entire response. I was asked to hand off my notes
that detailed this strategy [107] (as well as the Matlab scripts for automatic PID tuning [108, 109] and

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
192

Winter 2022-2023
December 31, 2022

Models & Measurements

10
0

10
1

10
2

10
3

−30

−20

−10

0

10

20

Frequency (Hz)

M
ag

 (
dB

)

Log Mag. Curve Fit Results: Effect of Noise and NMP Zeros

10
0

10
1

10
2

10
3

−400

−300

−200

−100

0

100

Frequency (Hz)

P
ha

se
 (

de
g)

Noisy Resonance FRF: fn_n = 100, Q_n = 25, fn_d = 80, Q_d = 12.5 & sig_resp2 = 0.02

Minimum Phase
Non−Minimum Phase
LM to MP

Figure 3.38: Least squares fit assuming a biquad filter structure and using only log magnitude (LM)
measurement data. The fit done with the higher level of noise,σ = 0.02, still matches the no noise
response extremely well.

multinotch parameterization [54, 33] to a new member of the Agilent Labs AFM team, Chris Moon.
Using this approach, he found that if he used the multinotch of Section 6.11, the built-in stepped-sine
of Section 3.26, Sidman et. al.’s log magnitude fit, and MATLAB ’s lsqfit routine, he could use suc-
cessive dynamic removal to eventually turn the open-loop response into an integrator. The filter that
was fit to do this was a combination of PID controller and multinotch, with parameters automatically
arrived at by the algorithm. He made the assumption that resonances and anti-resonances would be
interlaced and added scripts to roughly approximate these peaks and troughs to give a starting point
for fitting individual sections [110].

Applying this method to our earlier example results in the very accurate match of the minimum phase
dynamics as shown in Figure 3.38, which shows none of the issues from the complex fit. However,
the assumptions of the fit are that the system is minimum phase. To get around this, the fit can be
adjusted by a method that checks the phase residuals in the area of an identified feature (resonance,

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
193

Winter 2022-2023
December 31, 2022

Models & Measurements

10
0

10
1

10
2

10
3

−30

−20

−10

0

10

20

Frequency (Hz)

M
ag

 (
dB

)

Adjusted Log Mag. Curve Fit Results: Effect of Noise and NMP Zeros

10
0

10
1

10
2

10
3

−400

−300

−200

−100

0

100

Frequency (Hz)

P
ha

se
 (

de
g)

Noisy Resonance FRF: fn_n = 100, Q_n = 25, fn_d = 80, Q_d = 12.5 & sig_resp2 = 0.02

Minimum Phase
Non−Minimum Phase
Adj. LM to MP

Figure 3.39: Adjusted least squares fit to the LM curve, wherethe fit from Figure3.38 is subsequently
checked for phase jumps near dynamic features.

anti-resonance, or pair) and then makes an adjustment and checks the phase residuals again. An
example of this is shown in Figure 3.39 and this method will be discussed in [111].

3.30 The Effect of Delay on Curve Fits

Back in 2007, Jeff Butterworth, then a graduate student working with Lucy Pao was making measure-
ments on an nPoint X-Y stage donated by Agilent Technologies to Professor Pao’s group. (Technically,
at that time it was on loan, but was donated later.) Jeff was measuring the x response and getting
a 7th order discrete model, with 3 non-minimum phase (NMP) zeros. It turns out that at that time I
was making similar measurements on a similar nPoint stage and getting a 4th order continuous model
with some delay. The thing was that our frequency response functions looked almost identical. This

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
194

Winter 2022-2023
December 31, 2022

Models & Measurements

set Jeff to thinking and within a couple of weeks, he came back with the elegant answer: attempting
to model the delay in a discrete transfer function generated the non-minimum phase (NMP) zeros,
and this was clear from any understanding of the Padé approximation. As soon as Jeff emailed me a
couple of weeks later, it became obvious. It ended up in a couple of papers [112, 113].

As briefly noted in Section 2.5.2, time delay manifests itself as a pure negative phase in the frequency
domain. Repeating Equation 2.31, for a delay, TD, the Fourier Transform pair [26] is:

f (t − TD) ⊃ F(s)e− j2π f TD , (3.232)

which means once again that even if everything else is done perfectly, the time delay will eventually
drive the open-loop phase below −180◦ at some frequency, f = flim.

It’s easy enough to plot this in a Bode plot. The magnitude remains 1 and the phase gets increasingly
negative. That’s great, but it doesn’t give us a pole-zero type interpretation of things. For this, we
need the Padé approximation [114], which allows us to model a function such as an exponential or a
sinusoid as a transfer function.

In the case of e−sTD , we can use varying orders of transfer function approximations. Delay results in
extra negative phase, and we can only get that in a transfer function by adding poles (but this affects
the magnitude) or adding a section with magnitude 1, but some non-minimum phase zeros that add
negative phase. This is what happens with the Padé approximation. A first order Padé approximation
would look like [14]

e−sTD ≈
1− TD

2 s

1+ TD
2 s
. (3.233)

Higher order approximations are the second and third order:

e−sTD ≈
1− TD

2 s +
T 2

D
12 s2

1+ TD
2 s +

T 2
D

12 s2
(3.234)

and

e−sTD ≈
1− TD

2 s +
T 2

D
10 s2 − T 3

D
120s3

1+ TD
2 s +

T 2
D

10 s2 +
T 3

D
120s3

, (3.235)

respectively. Note that all of these have stable poles, have magnitude 1, but have non-minimum phase
zeros to produce the extra negative phase. However, thinking about a lot of control design techniques,
those non-minimum phase zeros severely limit what the control design can do.

Why does this happen? Well, one of the things that made Bode plots useful to begin with was Bode’s
Gain/Phase Relationship, in which he pointed out that if a system was stable and minimum phase,

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
195

Winter 2022-2023
December 31, 2022

Models & Measurements

then if one knew the magnitude of the response, one also knew the phase. Let’s say we have a
magnitude response but a lot more negative phase than can be accounted for by a stable, minimum
phase model. The curve fit is trying to minimize the error between the model response and the
measured response and the only way to do that with a rational function approximation is to throw in
some non-minimum phase zeros. In other words, if you want a pole zero description of a system with
extra delay, you will end up with some NMP zeros.

When we have delay, we can handle in in a combination of ways. We can ignore it if we believe it is
of a small enough amount not to affect the system performance we need. We can use it as a direct
limit on the performance of our system, using phase margin calculations that include delay to gate
our overall system bandwidth. Alternately, we can model these as NMP zeros and try to use a design
technique that attempts to compensate for this, however keeping in mind the limitations that Bode’s
Integral Theorem (Section 5.4) places on these. Finally, if we have some knowledge of the reference
signal, extra sensors, or a portion of the disturbance that is repeatable, we can use Feedforward
Control (Chapter 8) to help without offending Bode.

3.31 Chapter Summary

The performance of control systems relies on the designer having the ability to extract usable models
from measurements of the physical system. Since it is only reasonable to think of measurements as
being done at discrete time intervals, we must consider the effects of discretization as discussed in
Section 3.6 and what happens to physical parameters under the effects of discretization (Section 3.7).

That being said, when they work, the discrete-time model, time domain identification methods outlined
in Section 3.8 can result in a usable design model taken from time domain data. Furthermore, the
methods go straight to a parametric model without having to detour through curve fits or other side
measures of the step response methods.

One might very well ask why do step response methods (Section 3.9)? The most basic answer is
that sometimes, that’s all you’ve got. Sometimes, the discrete-time model, time domain identification
doesn’t give anything usable for nominal design. Sometimes, one has to wrap a nominal feedback
controller around the plant to be able to drive the system with inputs that can be used for a more
complete identification. Sometimes, the physical system only admits step inputs (such as a setpoint
change). If you want to generate either confused looks or good belly laughs, suggest stepped-side

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
196

Winter 2022-2023
December 31, 2022

Models & Measurements

methods to someone working in chemical process control.

Finally, the Frequency Domain Methods (Section 3.15) seem in many ways more complex, convoluted,
and indirect than any of the others. The best of these – stepped sine in my opinion – requires special
inputs and demodulation. The resulting FRFs still need to be curve fit in order to create a usable
parametric model. Why would anyone in their right mind go through all this effort? The simple and
inescapable answer is that when these methods work, they beat the crap out of anything else in the
real world. Seriously, nothing comes close for complex mechatronic systems with high-Q resonances,
so when this is what we are facing, the effort to build the infrastructure for Frequency Domain Methods
is absolutely worth it.

We haven’t discussed multisine methods that have been popular in the literature. The main issue
that I have with them is that their seem to use multi-sines as inputs to the system, but still rely on
FFT methods on the output. I am a big fan of the SNR improvement one gets from the coherent
demodulation of the stepped sine, even if coding it is some work.

Some folks may model for the sake of modeling, but we control folks do it to generate good controllers.
Good control engineers want to get the most out of the system that the physics will allow. You can’t
have any of this without models based on frequent and accurate measurements, and you won’t make
frequent and accurate measurements if they involve a lot of grunt work. Ergo, connect your measure-
ment system, your physical system, your real-time system, and your CAD system together in a way
that makes it trivial to pass measurements, models, and designs amongst these tools. Time spent on
this aspect almost always is paid back by an order of magnitude or more return, in the speed and the
quantity of measurements.

The problem with this is usually not the technology to do it; but the will of the engineer and their
managers to put up with the busy work needed to make this happen. Engineers hate spending
time away from their main area of contribution, fearing it will make them look like they are wasting
time. Programmers hate the inelegant interfaces to instruments and the classless nature of real-time
programming. Managers consider such projects out of the main line of contribution and not easily
accounted for in Microsoft Project.

However, the low overhead, self consistent connection of time and frequency measurements with CAD
programs such as Matlab, Octave, Maple, Mathematica, or Python, and with the real-time processing
system open up whole new vistas for co-measurement and design. Consider the humble frequency
response measurement. To do such a measurement, one must connect to analog or digital test points,

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
197

Winter 2022-2023
December 31, 2022

Models & Measurements

set up the measurement, run the measurement (with appropriate levels of repetition for averaging and
statistical confidence), and then transfer the data back to Matlab or its cousins. It is always amazing
how many good engineers are willing to do all these steps manually and repeatedly over the course
of months, rather than spending a couple of weeks to make it all happen with the push of a button
(modulo the wiring, which we deal with in Section 3.26).

On the other hand, programming real-time digital controllers is hard enough without trying to add in
sophisticated FRF generation code, and so much is done from time domain measurements or FFTs
of time-domain measurements. Breaking down the barrier allows measurement decisions to be made
based on what is best for modeling. It also allows measurements to be done repeatedly and quickly
so that modeling is based on the best of many measurements rather than “that one time we actually
got some lab data.” Spend the time to make the data path trivial and consistent, and everything in the
control design gets better.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
198

Winter 2022-2023
December 31, 2022

Chapter 4

Simple Controllers for Simple Models (or
why so many controllers are PIDs)

4.1 In This Chapter

This chapter will discuss simple controllers: mostly leads, lags, and PIDs. More specifically, we will
try to give some deeper insights into these ubiquitous structures and the physical system models
to which they are most often applied. We will do this in a hope of being able to tune these simple
controllers in a much more effectively than what is usually considered practical with these structures.
We will see that:

• a generalized form of a PID controller can – in principle – control any second order LTI plant
model which is not actually unstable and

• leads and lags, and lag-lead controllers can all be cast as a generalized or particular form of a
PID.

It turns out that we can learn a lot about simple controllers by really understanding PID (proportional
plus integral plus derivative) controllers. Perhaps the first question to ask is why are PIDs so common?
One plausible reason is that engineers are very good at beating problems into a form (formally called

199

Simple Controllers

redesigning) so that they are dominated by a second-order model. This ties back to those simple
models introduced in Section 2.3. Once we have isolated the particular dominant simple model then
we can often get a lot of information about the parameters from the simple step response methods
described in Section 3.9.

This chapter will start with some observations about the use of PID controllers and some questions
that arise from those. It may seem odd that something as “standard” as PID is not very standardized.
There are so many different ways of parameterizing the coefficients of the proportional, integral, and
derivative terms that three different vendors can sell PID controllers for the same application with
seemingly no relationship between how they are parameterized and programmed. We will then work
to cast PID controllers into one of a handful of standard forms so that engineers can both do more
effective comparisons and also see the benefits and drawbacks of a particular form.

We will also relate PID controllers to a variety of second order filter structures, including notches,
leads (single and double), lags, and lag-lead structures.

There will be a discussion of discretization methods. PID controllers are perhaps the most common
example of a controller that is designed in continuous time and then specifically discretized (as op-
posed to starting with a discrete-time system model). Furthermore, PID controllers are unique in that
they are almost universally discretized using a backwards rectangular rule equivalent described in
Section 3.6.3.

We also go into anti-windup methods used in PI and PID controllers with an eye to understanding
which methods are most appropriate in a given situation.

Finally, we will do something that is surprisingly uncommon: We will apply a standard form continuous-
time model PID controller to each of the simple models introduced in Section 2.3 and analytically
“close-the-loop” so that we can examine the best case behavior of these models under PID control.
We look at each of them with proportional (P), proportional plus integral (PI), proportional plus deriva-
tive (PD), and full PID control. The results are at the same time intuitive and surprising, as we see
very clearly why certain classes of models need certain types of control.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
200

Winter 2022-2023
December 31, 2022

Simple Controllers

4.2 Chapter Ethos

One cannot shake a stick in an industrial control setting without hitting a proportional-integral-derivative
(or Proportional plus Integral plus Derivative) (PID) controller. In fact, PIDs are so ubiquitous that feed-
back controllers are often simply referred to as PIDs even if they are far more sophisticated. PIDs offer
the simplicity of a small number of tuning knobs, but often the tuning of PIDs is viewed either as too
trivial to consider academically interesting, or too heuristic to apply even the most basic analysis.

It is ironic that if one refers to a controller as a controller, non-engineers will be confused, but if one
calls it a PID, they will know what function the block accomplishes. How is it that so many industrial
control engineers working on systems both mechatronic and otherwise can simply drop in a PID and
get reasonable results. One can argue that they are simply naive or unthinking, but I believe that:

If something keeps working over and over again in widely varying situations, it is prob-
ably not complete nonsense. There is probably a fundamental reason for this. It is worth
the effort to understand that fundamental reason and how far it can be applied, i.e., what
limits it.

In retrospect, this would seem obvious, yet it is often ignored in practice. Making a gross oversim-
plification, I will say that my academic friends generally ignore such a simple algorithm as being
uninteresting for research, while my industrial friends generally never ask themselves why this thing
keeps working. The questions of why these simple things work so well have stayed with me for a long
time and I will try to give insight here.

One of the common observations about industrial control systems is that 95–98% of them are PID
controllers. That is a lie, because almost all of these PID controllers have the D gain set at or close to
0, so they are effectively PI controllers. Why is this? If one returns to our low order models of Section
2.3, we find that if one does not know anything, that is if one has very little knowledge of system
parameters, one can still control most of these models using a PI controller with a relatively small I
gain, and low overall system gain. That means that while there is zero steady state error to steps,
the response is slow (low overall gain). This is a downside, but it generally guarantees the controller
is not amplifying higher order dynamics. It turns out, most folks have bad models, so they get the
system working with PI controllers, turn the knobs until it’s right below ringing, and tell their bosses

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
201

Winter 2022-2023
December 31, 2022

Simple Controllers

that it’s working. The D term can get you into trouble by amplifying high frequency dynamics, and
who needs that? It is only in the systems with relative order 2, such as the double integrator model
found in spacecraft movement or disk drive actuators, that requires some phase-lead, and hence a
non-zero D.

While PID controllers are the “Brand X” of most control Ph.D. candidates’ theses and spent the 1990s
being derided by the denizens of fuzzy control, they remain today the most ubiquitous example of
feedback controller design, by some measures accounting for 95–98% of all controllers in the field.
Rather than dismissing this as an alternative and boring reality, we will examine the underlying implicit
assumptions about modeling the physical system – and how those models derive from what can be
measured (from Chapter 3), to motivate the generic and fundamental utility of PID controllers. With
that context, we will show:

• Some simple control structures: lag, lead, double lead, lag-lead, and PID (Section 4.5).

• A unified framework for discussing PID controllers, which is helpful not only in generating a
design, but also in understanding the underlying structures of off-the-shelf, commercial PID
controllers. How do PID controllers relate to lead/lag controllers (Section 4.6)?

• A discussion for representing PID controllers in discrete time without losing the intuition of the
continuous time framework. Put another way, what’s up with Backwards Rectangular Rule dis-
cretization (Section 4.10)?

• How PID controllers can be expected to behave in closed-loop for various low order models
(Section 4.11).

• Tuning PID controllers: from step response, from frequency response, from generalized Ziegler-
Nichols (Section 4.13), from the relay method of Åström et. al. [115] (Section 4.14).

• If one is clever about working in the frequency domain and understands the parameterization of
PID controllers, one can use a PID to affect some pretty reasonable loop shaping on systems
that are second order or less (Section 4.15). It can even form the basis of loop shaping on
higher order systems when combined with the correct filters (Chapter 5). Nevertheless, this
starts with extracting the system model parameters, from one of the methods above or from
step response or frequency response methods described in Chapter 3.

• Some PID code/pseudo-code examples (Section 4.16).

• A discussion of windup and anti-windup mitigation: why it’s needed and what options exist
(Section 4.18).

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
202

Winter 2022-2023
December 31, 2022

Simple Controllers

• We will go through some design examples in Section 4.17.

• A special case combination comes when PID controllers are used in conjunction with slow, low
pass systems, such as heaters and pumps. In this case, rather than an analog signal output
from a Digital to Analog Converter (DAC) or a digital connection, the PID output is scaled to
go between 0 and 1 and then used to modulate a single digital signal line using pulse-width-
modulation (PWM) (Section 4.19).

• A logical, but unexpected use of PID controllers is as an explanation for slow, biological feedback
mechanisms. Our understanding of the principles behind and the behavior of a PID controller
allow us to recognize PID-like behavior in biological (and other natural) models (Section 4.20).

• Why using “D” in PID often fails to improve performance and how to fix that. Where is “D” most
often beneficial?

This chapter aims to walk between those AT (academic/theoretical) and the II (industrial/implementa-
tion) worlds, explaining some simple common frameworks for PID controllers, how they are affected
by implementation issues (such as discretization), and what the consequences of turning the PID
knobs are when the PIDs control a handful of simple physical systems. The hope is to give the reader
both an intuitive and mathematically justified understanding of how to get the most from these devices
in their daily work.

4.3 Chapter Introduction

Understanding feedback loops and how to apply them to physical systems really needs to start with
a view of the physical system, its model, and with a view to how a feedback controller ties into the
system. Figure 4.1 shows a schematic of a feedback loop using an analog controller, while Figure
4.2 shows a generic digital feedback system. In each of these, the stuff on the right does not change:
the physical system behavior must be sensed and can only be affected through actuators. Converting
the small signals that do computation into larger signals that can drive motors or open valves requires
some actuation. On the other side, sensor signals often require conditioning before they can be used
in a meaningful way. On the far left of each is the decision making, computation end of things. As
engineers, we want to spend our time doing clever things in the left side of the drawing, but we really
need to keep in mind that we need to understand the right side of the drawing and how to get between
them to do a good job.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
203

Winter 2022-2023
December 31, 2022

Simple Controllers

Physical
System

Op Amp
Circuit

Actuators

Signal
Conditioning

Analog
Filters

Power
Amplifier

Sensor

Measured
Outputs

Small
Electrical
Signals

Small
Electrical
Signals

Small
Electrical
Signals

Small
Electrical
Signals

Analog controller:
mostly leads, lags,
PIDs, some notch,
maybe a bump
filter

The analog circuitry:
analog filters here are
mostly notch and low pass
filters.

The stuff that moves:
to make your computer
run this stuff, you have
to go through the other
stuff.

Electrical
Reference

Large
Electrical
Signals

Force/
Current/

Flow/
Etc.

Physical
Outputs

Analog
Filters

Figure 4.1:A generic overview of an analog control loop. This picture shows the component
pieces in an analog feedback loop.

The main difference in these two drawings is the discretization of signals for the digital side (Figure
4.2). Anyone with familiarity with digital control systems knows that we give up a lot of simplicity
and clarity in going from the analog, continuous time world (Figure 4.1), to the digital computer world
(Figure 4.2), but we accept this for the repeatability of behavior, simplicity of modification, and richness
of data collection that comes with the use of digital computers. It is why NASA chose to use digital
computers to guide astronauts to the moon [116, 117].

The reason that this matters is that we want to be aware of the effects of sampling on our control
system. Discretization changes our math, but it is understood that when the sample rate is high
enough, the effects of discretization can be safely ignored [15, 16]. PID controllers are often applied in
such situations, that is, they are often applied in situations where the dynamics of the physical system
are far slower than the speed at which the computer can look at and react to the system. In other
words, many of these systems are so slow that even the most basic real-time computer such as the
Raspberry Pi [60] and the Xilinx Zynq [61] has “high sample rate” compared to the dynamics of these
systems. This is why so much of the literature on PID controllers focuses only on the continuous time
world [115, 118, 119]. Even when the PIDs are considered as computer control components [120],
the consequences of discretization are rarely discussed.

This chapter will discuss the common discretization method applied to PID controllers, give a frame-
work that simplifies the translation between the analog and digital versions, and show a some of the
effects that happen when our discretization is not fast enough to ignore the effects of sampling.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
204

Winter 2022-2023
December 31, 2022

Simple Controllers

Physical
System

Digital
Computer

Actuators

Signal
Conditioning

Analog
Filters

Power
Amplifier

Digital to
Analog

Sensor

Measured
Outputs

Small
Electrical
Signals

Small
Electrical
Signals

Small
Electrical
Signals

Small
Electrical
Signals

Digital
Signals

Inside the computer:
plenty of chances to
do fancy stuff, but
cannot erase any
quantization
or delay inserted by
analog portions.

The analog circuitry:
analog filters here are
mostly notch and low pass
filters, including
anti-alias filters.

The stuff that moves:
to make your computer
run this stuff, you have
to go through the other
stuff.

Digital
Signals

Digital
Reference

Large
Electrical
Signals

Force/
Current/

Flow/
Etc.

Physical
Outputs

Analog
to Digital

Analog
Filters

Figure 4.2:A generic overview of digital control loop. This picture shows the component pieces
in a digital feedback loop.

ye ur
S
-

C P

Figure 4.3:A generic block diagram feedback loop.

A generic feedback loop in which we ignore the effects of sampling and fold the effects of actuation,
filtering, amplification, and signal conditioning into the plant – or assume that they are negligible – is
shown in Figure 4.3. For the sake of simplifying basic analysis we stick with the diagram of Figure
4.3, which is feedback only. We will discuss integrating in feedforward control in Chapter 8.

Often, it is the case that the controller block, C, is implemented with a Proportional-Integral-Derivative
(PID) controller. Increasingly, these controllers are digital, implemented on computers, as shown in
Figure 4.1, but analyzed using the simplified thinking of Figure 4.3.

PID controllers are so ubiquitous that more generic controllers are often simply referred to as PIDs
to people outside the field. One cannot examine most industrial control environments without tripping

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
205

Winter 2022-2023
December 31, 2022

Simple Controllers

e u
S

KP

K TsD

KI

Ts

C(s)

e u
S

KP

K (1-z)D

-1

KI

1-z
-1

C(z)

Figure 4.4:A parallel form topology of a simple analog & digital PID controller. We will disc uss
this more around Figure 4.6.

over simple controllers of all sorts of specifications broadly labeled as PIDs. A parallel form of a
continuous time PID is depicted on the left side of Figure 4.4, with a similarly structured digital PID on
the right side.

This chapter attempts to place PID controllers into the unified framework provided in [40]. We focus on
the most common discretization method applied to PIDs and show how one of the most common forms
of analog PID can be combined with the most common discretization to make for simple translation
between analog and digital PID controllers.

It is also important to realize that PID controllers are almost always applied to low order models or at
least to the low order behavior of more complex systems. We will give examples of several archetypal
simple models in Section 2.3. This will set us up to analyze the closed-loop behavior of these models
in Section 4.11. We will see that by knowing the basic model structure, we can predict which PID
forms have a chance of working, and we can also explain why certain forms show up in different
applications.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
206

Winter 2022-2023
December 31, 2022

Simple Controllers

4.4 What is a PID and When is It Useful?

While most readers are likely to to know the answer to the question in the heading, it’s best that we
answer here, “What is a PID?” Very simply it is a (mostly) linear controller that involves three versions
of the error signal:

• a signal proportional to the error,

• a signal proportional to the integral of the error, and

• a signal proportional to the derivative of the error.

These three components can be applied serially [119], but this may be a holdover from early im-
plementation methodologies. Here we will (at least for now) stick with parallel realizations of PID
controllers as diagrammed in Figure 4.4.

It should be obvious that there are many parameterizations that accomplish the above three actions,
and we will try to give a useful and unifying framework in Section 4.6. Here we will preview Equations
4.30 and 4.36 here as they are simple and understandable. A simple continuous time PID controller
is described by

u(t) = KPe(t) + KIT

∫ t

0
e(τ)dτ + KDT ė(t), (4.1)

in the time domain, where e(t) error input to the controller and u(t) is the controller In the frequency
domain the forms for C(s) = U(s)

E(s) is:

C(s) = KP +
KIT

s
+ KDT s. (4.2)

PID controllers have enough degrees of freedom to control any of the simple systems in Section 2.3
of the Introduction chapter. In fact, one of the great things about a PID controller is that for simple
control problems, we can turn on only the portions we need by proper use of the different gains.

Proportional control works well in some cases (e.g. when there is an integrator already in the plant
model and the relative degree of the denominator polynomial to the numerator is 1, with all the poles
and zeros in the left half plane), but with no integrator in the plant, it cannot achieve zero steady state
tracking error to a step input. When we let the integrator gain be nonzero, we have a proportional-
integral (or proportional plus integral) (PI) controller.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
207

Winter 2022-2023
December 31, 2022

Simple Controllers

On the other hand, the classic double integrator (Section 2.3.5) rarely needs more integration, but
can’t be stabilized with only proportional control, so we set the integrator gain to 0 and make the dif-
ferentiator gain positive, giving us proportional-derivative (or proportional plus derivative) (PD) control.
proportional plus derivative (PD) control. As we really don’t want to build a pure differentiation circuit,
we filter the derivative, resulting in the more rational lead filter.

The point is that by properly turning the PID “knobs,” most of the desired closed-loop behaviors of
physical systems described by simple, low order models (Section 2.3) can be achieved. This point
becomes even stronger when we realize that in many, many practical systems, engineers work very
hard to simplify the control problem until it is second order or less. In other words, PIDs can handle a
lot of practical problems.

4.4.1 Recalling the Final Value Theorem

The final value theorem (FVT) relates the limit time value of some response to the zero-frequency,
DC response of a transform. For control systems, it’s main use is to tell us how many integrators we
need in the forward path of a feedback loop in order to achieve 0 steady state error to some level of
input (step, ramp, quadratic, etc.). In continuous time, the theorem says if a function f (t) is bounded
for t ∈ (0,∞) and the lim t→∞ f (t) is bounded, then

lim
t→∞

f (t) = lim
s→0

sF(s), (4.3)

where F(s) is the Laplace transform of f (t). In discrete time,

lim
k→∞

f (k) = lim
z→1

(z − 1)F(z), (4.4)

where F(z) is the causal Z transform of f (k).

So, why mention this theorem here? Because it is the reason why almost every unity feedback control
loop attempts to have at least one integrator in either the plant or the controller. Working in the Laplace
domain, consider the transfer function, G(s) = P(s)C(s). For a unity feedback then we have:

E(s) =
1

1+G(s)
. (4.5)

Now, to use the Final Value Theorem, we look at the Laplace transform of different inputs. We
consider an impulse, a step, a ramp, and some higher order function of t. It is standard to have all but

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
208

Winter 2022-2023
December 31, 2022

Simple Controllers

the impulse multiplied by a unit step, 1(t) which is 0 for t < 0 and 1 for t >= 0.

L{δt} = 1, (4.6)

L{1(t)} = 1
s
, (4.7)

L{t1(t)} = 1
s2
, and (4.8)

L{tN1(t)} = N!
sN+1
. (4.9)

(4.10)

Now, to use the FVT, we want the final value of e(t) ∗ r(t), where r(t) is the reference input to the
closed-loop system, we have

lim
t→∞

e(t) ∗ r(t) = lim
s→0

sE(s)R(s) = s

(

1
1+G(s)

)

R(s). (4.11)

Let’s say r(t) is a step of height K. Then

lim
s→0

sE(s)R(s) = lim
s→0

s
(K

s

) (1
1+G(s)

)

(4.12)

= K lim
s→0

(

1
1+G(s)

)

. (4.13)

To use the FVT we have to assume that G(s) is stable, although we allow poles on the jω axis. Now,
if G(s) is strictly stable, that is if it has no poles on the jω axis, then G(0) exists, so the final value of
the error is nonzero, but finite, and given by:

lim
s→0

sE(s)R(s) =
K

1+G(0)
. (4.14)

Note that the error gets smaller with higher DC gain of the system, so as G(0) gets larger the steady
state error gets lower. Adding an integrator makes the DC value infinite, so if G(s) contains an inte-
grator, then we can separate it as G(s) = 1

sG̃(s). This means that

lim
s→0

sE(s)R(s) = lim
s→0

K

(

s

s + G̃(s)

)

(4.15)

= 0. (4.16)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
209

Winter 2022-2023
December 31, 2022

Simple Controllers

Right here, we have the reason why integrators show up in so many control loops: With an integrator
in the loop, we can get zero steady state error to a step input. For many simple models, a PI or a PID
controller is enough to provide that integrator term and thus, gets the system to track a step.

How do we extrapolate this? Let:

G(s) =
1
sM

G̃(s). (4.17)

Then

lim
s→0

sE(s)R(s) = lim
s→0

s
(K

sN

) (sM

sM + G̃(s)

)

, (4.18)

= K lim
s→0

(

sM−N+1
)
(

sM

sM + G̃(s)

)

, (4.19)

= ∞, for M − N + 1 < 0, (4.20)

=
K

G̃(0)
, for M − N + 1 = 0 & M , 0, (4.21)

=
K

1+G(0)
, for M − N + 1 = 0&M = 0, and (4.22)

= 0, for M − N + 1 > 0. (4.23)

Put another way, the number of integrators in the forward path of the unity feedback loop determines
the order of the signal that the loop can track with zero steady state error. The higher the order of the
input, the more integrators needed to achieve zero steady state error. For discrete time systems, the
1
s integrator is replaced by a 1

1−z−1 discrete integrator, and thus the open loop Z-domain model needs
discrete integrators to achieve zero steady state error.

In a discrete-time representation, the final value theorem also applies, albeit with discrete integrators.

Repeat FVT for discrete time

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
210

Winter 2022-2023
December 31, 2022

Simple Controllers

4.5 Lags, Leads, Lag-Leads, Double Leads, and the Like

In Chapter 2 we introduced the bilinear filter as a physical system model, but as with Shimmer (Floor
Wax/Dessert Topping – you all will want to Google that), the same model can also serve as a controller
circuit. Repeating Equation 2.6:

C(s) =
U(s)
E(s)

= K

(

a1c

b1c

) (

s + b1c

s + a1c

)

(4.24)

Back in the days of control via analog circuits, such a circuit was used to stabilize systems by providing
band limited differentiation. It is also the form that an analog lag filter takes. The key difference is that
for a lead, b1c < a1c and for a lag b1c > a1c. One prominent form of a lag is to set a1c = 0, making the
circuit an integrator with a zero, which is completely equivalent to a PI controller.

Also common, especially when we are starting with a double integrator (Section 2.3.5) plant that also
may have some high frequency resonances, is a double lead circuit, i.e.

C(s) =
U(s)
E(s)

= K

(

a1ca2c

b1cb2c

) (

s + b1c

s + a1c

) (

s + b2c

s + a2c

)

(4.25)

where a double lead requires b1c & b2c < a1c & a2c.

We will see in a feedforward example in Chapter 8 that when the closed-loop design produces a
nice low-pass-filter behavior, we can extend the input-output bandwidth by using a double lead as the
closed-loop input feedforward filter (FCLI) (Section 8.6).

We can implement Equation 4.25 as a biquad (short for biquadratic filter) by simplifying it as:

C(s) = K

(

a1ca2c

b1cb2c

) (

s2 + (b1c + b2c)s + b1cb2c

s2 + (a1c + a2c)s + a1ca2c

)

, (4.26)

or finally

C(s) = b0

(

s2 + b̃1s + b̃2

s2 + a1s + a2

)

. (4.27)

Here

a1 = a1c + a2c a2 = a1ca2c,

b̃1 = b1c + b2c, b̃2 = b1cb2c, and b0 = K

(

a1ca2c

b1cb2c

)

.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
211

Winter 2022-2023
December 31, 2022

Simple Controllers

In our example, we started with real pole and zero locations for the controller, but we do not need to
restrict ourselves that way. This author’s prior work [108] as well as the independent work of Messner
et. al. [121, 122, 123] show great advantages in implementing this biquad with complex roots. The
latter work restricts itself to the continuous time domain, while the former includes discretization.

We discuss these here because most PID controllers can be thought of as second order filters – with
an important caveat for idealized continuous time PIDs. Furthermore, if one turns off parts of the PID,
one returns either a lead controller (for KI = 0) or a lag controller (for KD = 0).

4.6 PID Control: A Unified Framework

Five basic versions of analog PID control equations show up in the control literature [20, 118, 122,
123, 119, 57, 124, 15, 16, 119, 16, 120, 14] and in commercial PID controllers. In the time domain
representation those forms are:

u(t) = K

(

e(t) +
1
TI

∫ t

0
e(τ)dτ + TDė(t)

)

, (4.28)

u(t) = KPe(t) +
KI

TI

∫ t

0
e(τ)dτ + KDTDė(t), (4.29)

u(t) = KPe(t) + KIT

∫ t

0
e(τ)dτ + KDT ė(t), (4.30)

u(t) = KPe(t) +
KI

TI

∫ t

0
e(τ)dτ + KDTD ẋ1(t), (4.31)

u(t) = KPe(t) + KIT

∫ t

0
e(τ)dτ + KDT ẋ2(t), (4.32)

where e(t) error input to the controller, u(t) is the controller output, and

ẋ1 = ė − a1

TD
x1 and ẋ2 = ė − a1x2. (4.33)

In the frequency domain the five forms for C(s) = U(s)
E(s) are:

C(s) = K

(

1+
1

TI s
+ TDs

)

, (4.34)

C(s) = KP +
KI

TI s
+ KDTDs, (4.35)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
212

Winter 2022-2023
December 31, 2022

Simple Controllers

C(s) = KP +
KIT

s
+ KDT s, (4.36)

C(s) = KP +
KI

TI s
+ KD

TDs
TDs + a1

, (4.37)

C(s) = KP +
KIT

s
+ KDT

s
s + a1

. (4.38)

The first form [119], in Equations 4.28 and 4.34 are often associated with chemical process control
(CPC), which involve slower processes often modeled as first or second order systems, or first order
plus time delay (FOPTD). These are alternately known as first order plus dead time (FOPDT) . In
these cases, the time constants are so slow that any modern processing system can easily sample
20–100× faster than the highest frequency in the physical system. Thus, the integration time TI and
the differentiation time TD are used as gain constants but it is bad nomenclature. These terms should
be related to the actual time over which one wants to integrate and differentiate, rather than as generic
tunable knobs.

For ease of explanation, we will keep to the frequency domain forms. In 4.37 and 4.38 we have
chosen the derivative filter gain so that – in combination with the derivative – it has a high frequency
gain of 1. We could also have chosen to a filter with DC gain of 1. Some books also apply a low
pass filter around the entire controller of Equations 4.35 and 4.36 [118]. The four forms are chosen
by picking two options:

• explicit time specification and

• differentiator filtering.

Explicit time specification simply refers to whether the TI and TD terms are present, or whether they
are absorbed into KI and KD, respectively. It is perfectly legitimate to have

KIT =
KI

TI
and KDT = KDTD, (4.39)

where KIT and KDT can be considered “implicit time” versions of the integral and differential gains.
Alternately, the designer can easily go from explicit to implicit time simply by setting TD = TI = 1.
However, leaving the TI and TD terms in the equation give the designer some flexibility and also allow
these terms to drop out when the discrete-time PID is generated. In particular, for the backward rule
equivalent of an ideal PID controller with the sample period, T = TI = TD, the time terms drop out of
the equation, making it appear much simpler.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
213

Winter 2022-2023
December 31, 2022

Simple Controllers

The second option is differentiator filtering. We know that any practical analog differentiator will even-
tually roll off. That is, real world circuits and devices are low pass after some frequency and so a pure
differentiator stage must attenuate at high frequency in this time-space continuum. It should make
sense to explicitly include this in the controller design, but this is not common. Perhaps designers are
expecting the plant dynamics and/or circuits to provide low pass behavior. Still, one might wonder why
use of a low-pass derivative filter is not a standard practice. The authors’ best guess is that the most
common implementation of a PID controller is a backward rule discrete equivalent approximation. As
we will see in Section 4.10.1, this equivalent puts in its own low pass filter on the differentiator. The
typical over-conservatism of the backwards rule equivalent saves the casual designer the trouble of
thinking about low pass filter design and will tend to behave well, especially at low frequencies. It is
natural to think that we need only filter the differentiator, since that is the only non-proper term, but we
will discuss doing this versus putting a low pass filter on the entire PID in Section 4.7.

Understanding these four basic forms are useful to a user that has purchased a system that includes
a PID controller e.g. the controller of a motion control system. Invariably, the user trying to model
these systems will find that one of these forms has been used without it being documented in the
product literature. Likewise, technical papers on PID controllers will often default to one of these
forms without any discussion about the particular choice Because of this, it is pretty common to see
PID gain ranges that vary all over the place, even for the same basic controller. These 4 forms are
summarized in Table 4.1.

Form
Time Dom.
Equation

Freq. Dom.
Equation

Time Constant, No Filtering (4.28) (4.34)
Explicit Time, No Filtering (4.29) (4.35)
Implicit Time, No Filtering (4.30) (4.36)
Explicit Time, Deriv. Filtering (4.31) (4.37)
Implicit Time, Deriv. Filtering (4.32) (4.38)

Table 4.1:A summary of the four basic forms of analog PID control with references to their
associated time domain and frequency domain equations.

It should be obvious that we can put these separate terms into one transfer function. What may not
be obvious is how this will look once it is combined. Sections 4.9 –4.10 discuss this.

Equations (4.35)–(4.38) can all be related to second order sections and these can be used for loop
shaping. We will focus on (4.35) and (4.37) since setting TI = TD = 1 gets these to (4.36) and (4.38).
Thus, by setting the parameters of the PID, we can set the parameters of the notch. Note that the
parameterization will change quite a bit depending upon if we use (4.35) or (4.37), and this is because

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
214

Winter 2022-2023
December 31, 2022

Simple Controllers

the filter in (4.37) is acting only on the differentiator.

In this chapter, we will not lose too much generality by assuming that our fundamental starting point
is a PID controller in the form shown on the left side of Figure 4.4. Tuning the controller often starts
with the proportional feedback term, KP, and then integral action from KI is added in. The derivative
term, KD, finds far less usage in practice, although this seems to be short sighted if one understands
the tradeoffs between noise amplification and signal lead, and applies the proper filtering.

4.7 Derivative Filtering Versus Whole PID Filtering

Looking at any of the unfiltered analog PID formulas in Section 4.6, e.g. Equations 4.28, 4.34, 4.29,
4.35, 4.30, and 4.36, we see that they are not proper. They have more zeros than poles if KD = 0.
This is almost universal in PID formulas and yet it seems that nobody worries about it, at least from
a “properness” point of view. Filtering of the derivative or the whole PID does get a page in [118],
mostly as a way of limiting noise amplification in the controller. For the most part, though, the texts
seem largely unconcerned. I think that there are two basic reasons for this. The historical one is
that older analog PIDs would have been implemented in circuits or pneumatics which had low pass
characteristics. In effect, any PID implementation would add in low pass which would make the
effective model proper, even if the controller equations were not. The more modern reason is that
– as will be discussed later – the most typical discretization of PID controllers is via a backwards
rectangular rule, and this implements the differentiator with a pole at z = 0.

However, given higher bandwidth analog circuits and/or the possibility of using a trapezoidal rule
discretization, it is worthwhile to get a clear mental picture of the use of a low pass filter in the PID to
make it proper. We will only discuss a single pole analog low pass,

L(s) =
a

s + a
, (4.40)

and compare applying this to the entire PID versus only applying it to the derivative section (D term,
the part that really needs it).

First, some intuition. The PI portion of the PID is in effect in the lower frequency range of the controller
– from DC up to some zero location. Most typically, the D portion is active at the higher frequency
range of the PID. That means that whether we apply our single pole L(s) on the entire PID or just
on the D term, the effective behavior of the controller will be largely the same. This is definitely not

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
215

Winter 2022-2023
December 31, 2022

Simple Controllers

true if we forget and apply a higher order low pass to the entire PID as described in [118]. Mentally
(and emotionally, perhaps ecumenically) it really makes the most sense to separate the single pole
low pass filter that makes the PID proper from the other low pass filters that should be considered as
part of a loop shaping scheme. When one has a more complex controller (e.g. PID plus filters) then
the extra LPF needs to be viewed as part of the higher order controller design.

Applying L(s)to the entire PID from Equation 4.35

CF1(s) =

(

KP +
KI

TI s
+ KDTDs

) (a
s + a

)

, (4.41)

=

(

KDTDTI s2KPTI s + KI

TI s

) (a
s + a

)

, (4.42)

= KDTD

(a
s + a

)

s2 +
KP

KDTD
s + KI

KDTDTI

s

 . (4.43)

Applying L(s)to the D term as done in Equation 4.37

CF2(s) = KP +
KI

TI s
+ KD

TDas
TDs + a

, (4.44)

=
KPTI s(s + a) + KI(s + a) + KDTDTIas2

TI s(s + a)
, (4.45)

=
s2(KPTI + KDTDTIa) + s(KPTIa + KI) + KIa

TI s(s + a)
, (4.46)

=

(KP + KDTDa
s + a

)

s2 +
(KPTIa+KI)

TI (KP+KDTDa) s + KIa
TI(KP+KDTDa)

s

, (4.47)

= (KP/a + KDTD)
(a

s + a

)

s2 +
KP+

1
a KI/TI

KP/a+KDTD
s + KI/TI

KP/a+KDTD

s

. (4.48)

We can see that although they have similar forms and accomplish the same things, the whole PID
filter version of Equation 4.43 seems considerably simpler than the derivative only form of Equation
4.48. If we use the implicit time versions where KI,i = KI/TI and KD,i = KDTD, then

CF1(s) = KD,i

(a
s + a

)

s2 +
KP
KD,i

s + KI,i

KD,i

s

and (4.49)

CF2(s) =
(

KP/a + KD,i
)
(a

s + a

)

s2 +
KP+

1
a KI,i

KP/a+KD,i
s + KI,i

KP/a+KD,i

s

. (4.50)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
216

Winter 2022-2023
December 31, 2022

Simple Controllers

So long as the frequency of the low pass, i.e. a = 2π fa ⇐⇒ fa =
a
2π , is reasonably well above the

zero of the PI section, thew two forms will behave similarly and CF1(s) is more intuitive.

Either way we filter, we can relate it to the lag and lead filters of Section 4.5. First, we start with a PI
controller as a lag filter:

PI(s) = KP1

(

s + bI

s

)

. (4.51)

The PI filter does not change with different versions of derivative filtering. On the other hand, the
PD filter, which to be practical, must be implemented as a lead filter, can take two forms. The first is
consistent with whole PID filtering:

PD1(s) = KP3a

(

s + b1

s + a

)

. (4.52)

The other form with derivative only filtering looks like

PD2(s) = KP2 +
KD2sa
s + a

, (4.53)

=
KP2(s + a) + KD2sa

s + a
, (4.54)

=
(KP2 + KD2a)s + KP2a

s + a
, (4.55)

PD2(s) = (KP2 + KD2a)

s + KP2a
KP2+KD2a

s + a

 . (4.56)

Combining these into respective filtered PIDs, for the whole PID filtering form, we get:

PI(s)PD1(s) = KP1

(

s + bI

s

)

KP3a

(

s + b1

s + a

)

, (4.57)

= KP1KP3

(a
s + a

) ((s + bI)(s + b1)
s

)

, (4.58)

PI(s)PD1(s) = KP1KP3

(a
s + a

) (s2 + (bI + b1)s + bIb1

s

)

. (4.59)

Likewise, for the derivative filtering form, we get:

PI(s)PD2(s) = KP1

(

s + bI

s

)

(KP2 + KD2a)

s + KP2a
KP2+KD2a

s + a

 , (4.60)

=
KP1(KP2 + KD2a)

s

(s + bI)
(

s + KP2a
KP2+KD2a

)

s + a

, (4.61)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
217

Winter 2022-2023
December 31, 2022

Simple Controllers

PI(s)PD2(s) =
KP1(KP2 + KD2a)

s

s2 +
(

bI +
KP2a

KP2+KD2a

)

s + bI KP2a
KP2+KD2a

s + a

. (4.62)

We can equate coefficients from Equations 4.26 or 4.27 to either the form in Equation 4.59 or 4.59
if we want, but the main part of this section is to get some intuition for the equivalences between
different forms.

4.8 PID Regions

10
1

10
2

10
3

10
4

10
5

10
6

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40
Resonant Second Order Responses

Frequency (Hz)

M
a
g
n
it
u
d
e
 (

d
B

)

Spring Line:
Crossover Here
for PI Control

Mass Line:
Crossover Here
for PD Control

Varying
Resonance

Figure 4.5:The regions of PID control for a second order, resonant plant. Such a Bode plot
often characterizes mechatronic systems, flexible structures, or ele ctronic circuits.

In many practical uses, one can consider a PID controller to be operating on a second order or lower
plant, such as the one diagrammed in Figure 4.5. In many cases, the control action is taken and
removed well below the resonance, and in this case the proportional plus integral (PI) part of the
controller is used, to make the open loop response look like an integrator near gain crossover, and

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
218

Winter 2022-2023
December 31, 2022

Simple Controllers

then remove the phase effects before the −180◦ effect of the resonance. In these cases, the derivative
term is seldom used. Similarly, when the resonance is well below the crossover region, the system
can be controlled as if it were a double integrator, and in this case the proportional plus derivative (PD)
action is used. In these cases, there may still be a motivation to use integral action at low frequency
and thus a PID with derivative filtering resembles separate lead and lag controllers. In neither case is
precise knowledge of the resonance needed. It is only when the crossover region is relatively close
to the resonance that more complex methods, such as those described in [108, 122, 123] become
important. The formulas that follow concentrate on the latter, more complex case, while emphasizing
the effects of digital implementation as described in [108]. In the case of first order time delay models,
such as those found in process control applications [20], full PID control is used, where the PI portion
provides low frequency gain and the PD portion adds some lead to compensate for the phase due to
the delay, the the requirements of matching a high Q resonance are not present.

4.9 Unfiltered Analog PID and Second Order Sections

Starting with (4.35), let’s set TD = TI = T and put everything over a common denominator:

C(s) = KP +
KI

T s
+ KDT s, (4.63)

C(s) =
1

T s

[

KPT s + KI + KD(T s)2
]

, (4.64)

=
KD

T s

[

(T s)2 +
KP

KD
T s +

KI

KD

]

, (4.65)

=
KDT

s

[

s2 +
KP

KD

s
T
+

KI

KDT 2

]

, (4.66)

=
KDT s2 + KPs + KI

T

s
. (4.67)

While (4.66) allows us to solve for the numerator parameters as a second order section, (4.67) is a
standard numerator/denominator form that we might use in Matlab. This form of the PID is not proper,
but this is typically mitigated by the way PID controllers are implemented.

Practically speaking, nothing gets realized this way for one of two reasons:

1) Any real differentiation circuit eventually flattens out, so there is some low pass filter, even
if it’s not acknowledged in the design.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
219

Winter 2022-2023
December 31, 2022

Simple Controllers

2) Discretizing the PID using a backwards rectangular rule fixes this and makes the discrete-
time transfer system proper. It forces a low pass digital filter with a pole at z = 0.

The numerator of (4.66) also has the form of a second order section i.e.,

N(s) =
K
ω2

n

(

s2 + 2ζωns + ω2
n

)

, (4.68)

so we should be able to set

KDT
s

[

s2 +
KP

KD

s
T
+

KI

KDT 2

]

=
K
ω2

ns

[

s2 + 2ζωns + ω2
n

]

. (4.69)

If we were simply to try to match N(s) in (4.68) then we might choose to match the DC gain to some
prespecified value, K. However, the form that we want our PID to match has infinite DC gain, so we
need to pick a frequency and gain that we wish to match and then evaluate the right side of (4.69). If:

N(s)
s
=

K
sω2

n

(

s2 + 2ζωns + ω2
n

)

, (4.70)

then
N(jω0)

jω0
=

K
jω0ω2

n

(

ω2
n − ω2

0 + j
ωnω0

Q

)

, (4.71)

where Q = 1
2ζ . If we pick our desired gain, K0, at a certain frequency, ω0 = 2π f0, then we get

K0 =

∣
∣
∣
∣
∣

N(jω0)
jω0

∣
∣
∣
∣
∣
=

K
ω0ω2

n

√

(ω2
n − ω2

0)
2 +

(

ωnω0

Q

)2

. (4.72)

This can be solved for K via

K =
K0ω0ω

2
n

√

(ω2
n − ω2

0)
2 + 4ζ2ω2

nω
2
0

=
K0ω0ω

2
n

√

(ω2
n − ω2

0)
2 +

(
ωnω0

Q

)2
. (4.73)

Using (4.73) to pick K allows us to equate terms in (4.69) gives us:

KDT =
K
ω2

n

, (4.74)

ω2
n =

KI

KDT 2
and (4.75)

2ζωn =
ωn

Q
=

KP

KDT
. (4.76)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
220

Winter 2022-2023
December 31, 2022

Simple Controllers

We can solve for ωn, ζ, and Q: Using (4.73) to pick K allows us to equate terms in (4.69) allows us to
solve for ωn, ζ, and Q:

ωn =
1
T

√

KI

KD
, ζ =

KP

2
√

KIKD

, and (4.77)

Q =
1
2ζ
=

√
KIKD

KP
. (4.78)

However, for design, we might want to specify ωn and ζ or Q and then re-derive the PID gains as a
function of those parameters. This should give us a better way of picking KP, KI, and KD, if we know
which center frequency and damping we want the controller numerator to achieve.

Let’s set ωn. We also know T , which is our integration and differentiation time, but will also be our
sample time. Finally, we set Q (which is equivalent to setting ζ). From (4.69) we have

KI

KD
= (ωnT)2 and

KP

KD
=
ωnT

Q
= 2ζωnT. (4.79)

If we now let KD be our overall controller gain, scaling KD means scaling KP and KI in the same
proportions to maintain the desired shape of the compensator. In summary pick K from (4.73) to set
the controller gain. Then

KD =
K

Tω2
n

, KI = KT , and KP =
K

Qωn
. (4.80)

It is worth noting that this particular analog PID controller is not a real physically realizable device
since it is impossible to design a true analog differentiator that works over all frequencies. More likely
is the case that there actually is some high pass filter on the analog differentiator, but that this is at a
frequency that is high enough to be ignored from the perspective of the control design. However, it
does have implications for the implementation of a discrete PID as will be discussed in Section 4.10.

In particular, if we use a backwards rectangular rule discrete equivalent, then we get a physically
realizable controller because the backwards rule places an extra pole at z = 0 in the differentiator
section, making it realizable. Furthermore, the discrete PID coefficients of that form will be very
closely related to the continuous PID coefficients of Equation 4.63.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
221

Winter 2022-2023
December 31, 2022

Simple Controllers

4.10 Discrete PID

More complex approximations to discretization will produce more accurate results, but since they are
often linked to the use of more points, the latency of the method goes up. For the three discrete
integration rules discretization methods used with PID controllers Table 3.1 is helpful. While the
Trapezoidal Rule is by far the most accurate of these methods, the issue of a pure differentiator
in the PID equation (unfiltered) creates a problem, and thus it is most common for the Backwards
Rectangular Rule to be used.

An ideal PID without differentiator filtering (from (4.35)) can be discretized using a backward rectan-
gular rule but not the trapezoidal rule. The usually conservative backward rule equivalent allows the
use of an unfiltered derivative PID design, since the continuous derivative maps to a zero at z = 1 and
a pole at z = 0. We can’t apply the trapezoidal rule to the unfiltered differentiator of (4.35), because
the z + 1 term in the denominator results in a pole at z = −1, which will be an internal oscillatory
pole in the compensator. So, while the closed-loop system might be stable, we wouldn’t have internal
stability.

The filtered differentiator of (4.37) can be implemented using either backward rectangular or trape-
zoidal rule as will be shown later.

4.10.1 Backward Rectangular Discrete PID

Applying the backward rectangular rule to (4.35) yields

C(z) = KP +
KITz

TI(z − 1)
+ KDTD

z − 1
Tz
, (4.81)

and setting T = TI = TD we get

C(z) = KP + KI
z

z − 1
+ KD

z − 1
z
. (4.82)

In terms of z−1 this is

C(z) = KP + KI
1

1− z−1
+ KD(1− z−1). (4.83)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
222

Winter 2022-2023
December 31, 2022

Simple Controllers

e u
S

KP

K TsD

KI

Ts

C(s)

e u
S

KP

K (1-z)D

-1

KI

1-z
-1

C(z)

Figure 4.6:The structural similarity between the explicit time continuous PID with TD = TI = T
and the discretization of that PID using the Backwards Rectangular Rule and a sa mple period
of T .

Note that (4.82) and (4.83) have discrete PID gains that are trivially related to the analog PID gains
through the sample period, T . The similarity to Equation 4.29 is striking, as seen in Figure 4.6.
Equation (4.83) is useful for generating the time domain difference equation in 3 separate units, pro-
portional, integral, and derivative. It is the equation from which we would program this controller, as
it would make it easy to add an anti-windup piece to just the integral portion despite being harder to
analyze in the z domain. We can rewrite (4.82), though, as:

C(z) =
KP(z − 1)(z) + KIz2 + KD(z − 1)2

z(z − 1)
, (4.84)

C(z) =
b0z2 − b1z + b2

z2 − z
, where (4.85)

b0 = KP + KI + KD, (4.86)

b1 = 2KD + KP, and b2 = KD. (4.87)

Using (4.85), we can examine the discrete-time properties of the linear model of this PID in Matlab.

4.10.2 Notes on Backwards Rule Discrete PID

Using the backwards rule discrete equivalent on the continuous time PID of Equation 4.63, that is,
unfiltered, explicit time PID, with T = TD = TI, we end up with the discrete PID of Equations 4.83 and

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
223

Winter 2022-2023
December 31, 2022

Simple Controllers

4.84.

Now, while the backwards rule is overly conservative, for fast sample rates, it faithfully reproduces
the behavior of the continuous system, so in many, many PID applications, where the sample rate,
fS = 1/T is much faster than the dynamics we wish to control, we can implement the controller using
Equation 4.84, but do our analysis using Equation 4.63. This is what we will do in Section 4.11.

4.11 Closed-Loop Responses

In this section, we will take some of the simple models of Section 2.3 and apply an analog PID
controller to them, closing the loop with unity gain. We will extract the closed-loop transfer function
symbolically from these simple systems, which will allow us to see how, when the PID gains are
adjusted, we can predict their effect on the overall system response.

Looking at Equation 4.63, we will define KIT =
KI
TI
=

KI
T and KDT = KDTD = KDT . The analog PID

controller becomes

CPID(s) = KP +
KIT

s
+ KDT s (4.88)

=
KDT

s

(

s2 +
KP

KDT
s +

KIT

KDT

)

. (4.89)

We don’t lose much generality to assume that K, KP, KIT , and KDT are all greater than or equal to 0.
If KDT is 0 we have proportional plus integral (PI) control:

CPI(s) = KP +
KIT

s
=

KP

(

s + KIT
KP

)

s
. (4.90)

If KIT is 0 we have proportional plus derivative (PD) control:

CPD(s) = KP + KDT s = KDT

(

s +
KP

KDT

)

. (4.91)

Finally, if both KIT and KDT are 0 we have proportional (P) control:

CP(s) = KP. (4.92)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
224

Winter 2022-2023
December 31, 2022

Simple Controllers

There are situations in which pure integral (I) control or pure derivative (D) control are used, but these
are much more rare.

4.11.1 Closed-Loop PID on an Integrator

In this section, we will apply various PIDs to the integrator of Section 2.3.1, given in Equation 2.1

X(s)
F(s)

= H(s) =
K
s

(4.93)

Proportional Control

Using proportional control we have

T (s) =
PC

1+ PC
(4.94)

=

KPK
s

1+ KPK
s

(4.95)

T (s) =
KPK

s + KPK
(4.96)

This is a nice, simple result. Proportional feedback on a pure integrator produces an ideal first order
low pass filter that can have arbitrary bandwidth set by choosing the correct KP. Note in the Bode plot
of Figure 4.7, this idealized system has 90◦ phase margin and infinite gain margin.

Perhaps the easiest open-loop system to control is an analog integrator, K/s. In the absence of
delay, it has infinite gain margin and 90◦ phase margin (PM). As plotted in Figure 4.7, we see that
the sensitivity function, S , has no peaking and the complimentary sensitivity function, T , is an ideal
low-pass filter, also with no peaking. Even the addition of a control filter is simple. With the desire
for high phase margin any filter action would be removed long before gain crossover. The most likely

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
225

Winter 2022-2023
December 31, 2022

Simple Controllers

10
1

10
2

10
3

10
4

−40

−20

0

20

40

60

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Integrator with Delay (τ = 100 us): Open Loop

Int (τ = 0 us)
Int + PI (τ = 0 us)

10
1

10
2

10
3

10
4

−200

−150

−100

−50

0
PI Zero = 50 Hz

Frequency (Hz)

P
ha

se
 (

de
g)

10
1

10
2

10
3

10
4

−30

−20

−10

0

10

20

30

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Integrator (and PI) with No Delay: Closed−Loop

T

cl
 (int)

S
cl
 (int)

T
cl
 (int + PI)

S
cl
 (int + PI)

Figure 4.7: Plot of open-loop integrator+ PI control, without time delay. Essentially, if the PI action is
far below crossover, the effects on stability can be ignored, and they usually are. Note the well behaved
closed-loop sensitivity and complimentary sensitivity, owing to the 90◦ phase margin.

controller is a lag filter where the pole may or may not be an integrator (PI control). Such a system
is usually stable even when discretized and saturated subject to any extra delay in the discretization
[125]. This explains the seeming lack of analysis done in phase-locked loop (PLL) work. Even PID
control of second-order systems can be viewed as an attempt to close the loop on an open-loop
integrator [108]. However that example also illustrates many of the difficulties involved in “turning the
open loop into an integrator”.

PI Control

Using proportional plus integral (PI) control we get

T (s) =
PC

1+ PC
(4.97)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
226

Winter 2022-2023
December 31, 2022

Simple Controllers

=

KPK
s

(

s + KIT
KP

)

1+ KPK
s

(

s + KIT
KP

) (4.98)

T (s) =
KPK

(

s + KIT
KP

)

s2 + KPKs + KKIT
(4.99)

We don’t lose much generality to assume that K, KP, and KIT are all greater than 0. If KIT is 0 we are
back to the case in Section 4.11.1.

The closed-loop zero is at s = −KIT
KP

. As KIT increases relative to KP the derivative action that usually
adds stability shows up at higher frequency. For the poles we use the quadratic formula on the
denominator:

z1,2 =
−KKP ±

√

(KKP)2 − 4KKIT

2
(4.100)

Since K and KP are both positive, the closed-loop poles are stable. They can become oscillatory
unless the term under the radical stays ≥ 0. This is guaranteed if KK2

P ≥ 4KIT . If KIT = 0 then we
have two poles at s = −KKP and at s = 0 but the latter is canceled out by the zero at s = 0.

In summary, PI control on an integrator will result in a stable closed-loop, but if the integrator gain is
too high relative to the proportional gain, that closed loop response will exhibit ringing. The plots in
Figure 4.7 confirm that so long as KIT is low enough, the effects of the integrator are gone far below
open loop crossover and the system has close to 90◦ phase margin and infinite gain margin.

We have not spent much time on systems with time delay, but it is easy enough to analyze for such a
simple physical system. Our happy results of Figure 4.7 get disturbed when we add some time delay,
as shown in Figure 4.8. It is worth the effort to look at simple delay calculations for a system whose
open loop is an integrator.

From this, pure delay, one can add the negative phase effects of delay as:

D(jω) = e− jωTD with angle ∠D(jω) = −ωTD. (4.101)

With phase margin, PM, in degrees, our open-loop phase looks like:

−ωTD + ∠
K
s
≥ (−180+ PM)

π

180
or (4.102)

ωTD = 2π f TD ≤ (90− PM)
π

180
, so (4.103)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
227

Winter 2022-2023
December 31, 2022

Simple Controllers

10
1

10
2

10
3

10
4

−40

−20

0

20

40

60

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Integrator with Delay (τ = 100 us): Open Loop

Int (τ = 100 us), Gain Adj. for PM = 60o

Int + PI (τ = 100 us), Gain Adj. for PM = 60o

10
1

10
2

10
3

10
4

−200

−150

−100

−50

0
PI Zero = 50 Hz

Frequency (Hz)

P
ha

se
 (

de
g)

10
1

10
2

10
3

10
4

−30

−20

−10

0

10

20

30

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Integrator (and PI) with Delay (τ = 100 us): Closed−Loop (PM = 60 o)

T

cl
 (int)

S
cl
 (int)

T
cl
 (int + PI)

S
cl
 (int + PI)

Figure 4.8: Plot of open-loop integrator+ PI control, with time delay. The effects of pure time delay
limit the bandwidth that can be achieved with 60◦ phase margin and add some peaking in the sensitivity
function.
e

f ≤ 90− PM
360TD

. (4.104)

In particular, for a desired phase margin, Equation 4.104 gives the highest crossover frequency for
the open-loop gain plot of the integrator, using the delay of TD. For the conservative phase margin of
60◦ we have the simple formula of

f ≤ 1
12TD

. (4.105)

In an ideal world, where the data conversions, computation, and communication are instantaneous,
if we use the average sampling delay of TD =

TS

2 , and the conservative phase margin of 60◦ we have
the simple formula of

f ≤ 1
6TS
=

fS

6
. (4.106)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
228

Winter 2022-2023
December 31, 2022

Simple Controllers

10
1

10
2

10
3

10
4

−40

−20

0

20

40

60

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Integrator with Delay (τ = 100 us): Open Loop

Gain Adjusted for PM = 60o

Gain Adjusted for PM = 30o

Gain Adjusted for PM = 15o

10
1

10
2

10
3

10
4

−200

−150

−100

−50

0

Frequency (Hz)

P
ha

se
 (

de
g)

10
1

10
2

10
3

10
4

−30

−20

−10

0

10

20

30

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Integrator with Delay (τ = 100 us): Closed−Loop

CL BW: 1.8 kHz, CL Peak: −0.0 dB at 0.0 kHz

CL BW: 3.4 kHz, CL Peak: 7.2 dB at 2.1 kHz

CL BW: 3.8 kHz, CL Peak: 13.8 dB at 2.3 kHz

Figure 4.9: Plot of open-loop integrator, with fixed time delay. This plot shows the consequence of
adjusting the open-loop gain crossover to achieve phase margins of 15◦, 30◦, and 60◦. Note the closed-
loop peaking that results from pushing the open-loop gain crossover to the point of such low phase margin.

Why spend much time on such a trivial plant? First it is a ubiquitous plant ([40, 30]). Furthermore
it gives us a representation of the best case plant that we can control and what limits it. No matter
what else we do in our controller, it will be hard to improve on the open-loop crossover frequency
limit in Equation 4.105. We can see that even with such a simple open loop, with a given TD, if we
choose bandwidth over phase margin, we are subject to the closed-loop peaking shown in Figure 4.9.
It seems unlikely that any more complicated open-loop system will do any better. Thus, if we pick the
conservative phase margin of 60◦, we then get an open-loop crossover limit based on that, and this
limits our closed-loop bandwidth, as shown in Figure 4.10.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
229

Winter 2022-2023
December 31, 2022

Simple Controllers

10
1

10
2

10
3

10
4

−40

−20

0

20

40

60

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Integrator with Varying Delays (Gains Set for PM = 60): Open Loop

τ = 10 us
τ = 50 us
τ = 100 us

10
1

10
2

10
3

10
4

−200

−150

−100

−50

0

Frequency (Hz)

P
ha

se
 (

de
g)

10
1

10
2

10
3

10
4

−30

−20

−10

0

10

20

30

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Integrator with Varying Delays (Gains Set for PM = 60): Closed−Loop

CL BW: 17.8 kHz

CL BW: 3.6 kHz

CL BW: 1.8 kHz

Figure 4.10: Plot of open-loop integrator, with varying time delay. Gain is adjusted for maximum open-
loop crossover that achieves 60◦ phase margin. The seemingly obvious result shown is that foran open-
loop response that looks like an integrator with time delay.It is the time delay that limits the closed-loop
bandwidth for a desired phase margin.

PD Control

Using proportional plus derivative (PD) control we don’t lose much generality to assume that K, KP,
KIT , and KDT are all greater than 0. If KDT is 0 we are back to the case in Section 4.11.1.

T (s) =
PC

1+ PC
(4.107)

=

KDT K
s

(

s + KP
KDT

)

1+ KDT K
s

(

s + KP
KDT

) (4.108)

=
KDT K

(

s + KP
KDT

)

s + KDT K
(

s + KP
KDT

) (4.109)

=
KDT K

(

s + KP
KDT

)

(1+ KDT K)s + KKP
(4.110)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
230

Winter 2022-2023
December 31, 2022

Simple Controllers

T (s) =
KDT K

1+KDT K

(

s + KP
KDT

)

s + KKP
1+KDT K

(4.111)

(4.112)

Now, this is first order, but has both a stable pole and a minimum phase zero. This means that the
closed-loop response will behave as a lead or a lag depending upon the relative sizes of K, KP, and
KDT . We know in fact that a pure differentiator is not realizable in the real world so in fact there must
be some roll off in our true system that we are modeling here. However, even this result indicates that
we may not want to design a system in which we have not designed the closed-loop roll off. It is not
clear that a PD controller does much good on a pure integrator.

PID Control

Using proportional plus integral plus derivative (PID) control we don’t lose much generality to assume
that K, KP, KIT , and KDT are all greater than 0. If KDT or KIT are 0 we are back to one of our prior
cases.

T (s) =
PC

1+ PC
(4.113)

=

KDT K
s2

(

s2 +
KP

KDT
s + KIT

KDT

)

1+ KDT K
s2

(

s2 +
KP

KDT
s + KIT

KDT

) (4.114)

=
KDT K

(

s2 +
KP

KDT
s + KIT

KDT

)

s2(1+ KDT K) + KKPs + KKIT
(4.115)

T (s) =
KDT K

1+KDT K

(

s2 +
KP

KDT
s + KIT

KDT

)

s2 +
KKP

1+KDT K s + KKIT
1+KDT K

(4.116)

So, with a single pole differential in the plant, the derivative term (i.e. KDT , 0) ends up making a net
0 pole-zero excess difference in the closed loop. This means that the closed-loop response does not
roll off. For simple integrator plants, P or PI control seem to be the answer.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
231

Winter 2022-2023
December 31, 2022

Simple Controllers

4.11.2 Closed Loop PID on a First Order Low Pass

In this section, we will apply various PIDs to the integrator of Section 2.3.3, given in Equation 2.5

X(s)
F(s)

=
Ka

s + a
e−sTD . (4.117)

We will simplify this by setting TD = 0, knowing full well that any significant value of TD, relative to the
time constants of the system, will make things a lot harder. Thus we have,

X(s)
F(s)

=
Ka

s + a
. (4.118)

Proportional Control

Using proportional control we get

T (s) =
PC

1+ PC
(4.119)

=

KPKa
s+a

1+ KPKa
s+a

(4.120)

=
KPKa

s + (a + KPKa)
(4.121)

T (s) =
KPKa

s + (1+ KPK)a
(4.122)

This is a nice, simple result. Proportional feedback on a first order low pass filter produces a first
order low pass filter that can have arbitrary bandwidth set by choosing the correct KP. However, the
presence of a means that the DC (s = 0) gain is always less than 1.

PI Control

Using proportional plus integral (PI) control we get

T (s) =
PC

1+ PC
(4.123)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
232

Winter 2022-2023
December 31, 2022

Simple Controllers

=

KPKa
s(s+a)

(

s + KIT
KP

)

1+ KPKa
s(s+a)

(

s + KIT
KP

) (4.124)

T (s) =
KPKa

(

s + KIT
KP

)

s(s + a) + KPKa
(

s + KIT
KP

) (4.125)

T (s) =
KPKa

(

s + KIT
KP

)

s2 + (1+ KPK)as + KKIT a
(4.126)

We don’t lose much generality to assume that K, KP, and KIT are all greater than 0. Furthermore, for
a stable low pass filter, a ≥ 0. If KIT is 0 we are back to the case in Section 4.11.2. For a = 0, we are
back to Section 4.11.1.

The closed-loop zero is at s = −KIT
KP

. As KIT increases relative to KP the derivative action that usually
adds stability shows up at higher frequency. For the poles we use the quadratic formula on the
denominator:

z1,2 =
−(1+ KKP)a ±

√

(1+ KKP)2a2 − 4KKIT a

2
(4.127)

Since a, K and KP are all positive, the closed-loop poles are stable. They can become oscillatory
unless the term under the radical stays ≥ 0. This is guaranteed if KaK2

P ≥ 4KIT . If KIT = 0 then we
have two poles, one at s = −(1+KKP)a and at s = 0 but the latter is canceled out by the zero at s = 0.

In summary, PI control on an first order low pass will result in a stable closed-loop, but if the integrator
gain is too high relative to the proportional gain, that closed loop response will exhibit ringing.

PD Control

Using proportional plus derivative (PD) control we don’t lose much generality to assume that K, KP,
KIT , and KDT are all greater than 0. If KDT is 0 we are back to the case in Section 4.11.2. For a = 0,
we are back to Section 4.11.1.

T (s) =
PC

1+ PC
(4.128)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
233

Winter 2022-2023
December 31, 2022

Simple Controllers

=

KDT Ka
s+a

(

s + KP
KDT

)

1+ KDT Ka
s+a

(

s + KP
KDT

) (4.129)

=
KDT Ka

(

s + KP
KDT

)

s + a + KDT Ka
(

s + KP
KDT

) (4.130)

=
KDT Ka

(

s + KP
KDT

)

(1+ KDT Ka)s + KKPa + a
(4.131)

T (s) =
KDT Ka

1+KDT Ka

(

s + KP
KDT

)

s + (KKP+1)a
1+KDT Ka

(4.132)

Now, this is first order, but has both a stable pole and a minimum phase zero. This means that the
closed-loop response will behave as a lead or a lag depending upon the relative sizes of a, K, KP,
and KDT . Again, we know that a pure differentiator is not realizable in the real world so there must be
some roll off in our true system that we are modeling here. Again, this result indicates that we may
not want to design a system in which we have not designed the closed-loop roll off. It is not clear that
a PD controller does much good on a first order low pass filter.

PID Control

Using proportional plus integral plus derivative (PID) control we don’t lose much generality to assume
that K, KP, KIT , and KDT are all greater than 0. If KDT or KIT are 0 we are back to one of our prior
cases.

T (s) =
PC

1+ PC
(4.133)

=

KDT Ka
s(s+a)

(

s2 +
KP

KDT
s + KIT

KDT

)

1+ KDT Ka
s(s+a)

(

s2 +
KP

KDT
s + KIT

KDT

) (4.134)

=
KDT Ka

(

s2 +
KP

KDT
s + KIT

KDT

)

s(s + a) + KDT Ka
(

s2 +
KP

KDT
s + KIT

KDT

) (4.135)

=
KDT Ka

(

s2 +
KP

KDT
s + KIT

KDT

)

s2(1+ KDT Ka) + s(a + KPKa) + KIT Ka
(4.136)

T (s) =
KDT Ka

1+KDT Ka

(

s2 +
KP

KDT
s + KIT

KDT

)

s2 + a 1+KPK
1+KDT Ka s + KIT Ka

1+KDT Ka

(4.137)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
234

Winter 2022-2023
December 31, 2022

Simple Controllers

So, with a single pole differential in the plant, the derivative term (i.e. KDT , 0) ends up making a net
0 pole-zero excess difference in the closed loop. As with PD control, this means that the closed-loop
response does not roll off. For simple integrator plants, P or PI control seem to be the answer.

4.11.3 Closed Loop PID on a Double Integrator

In this section, we will apply various PIDs to the double integrator of Section 2.3.6, given in Equation
2.16:

X(s)
F(s)

=
K
s2

e−sTD (4.138)

We will simplify this by setting TD = 0 to get:

X(s)
F(s)

=
K
s2

(4.139)

Proportional Control

Using proportional control we have

T (s) =
PC

1+ PC
(4.140)

=

KPK
s2

1+ KPK
s2

(4.141)

T (s) =
KPK

s2 + KPK
(4.142)

Proportional feedback on a pure double integrator an oscillatory closed-loop system with poles on
the jω axis. We need some lead (i.e. differentiation) to make this system stable, which doesn’t bode
well for the idea of using PI control on the double integrator.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
235

Winter 2022-2023
December 31, 2022

Simple Controllers

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

P Control: Kp = 150

Force
Position

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

P Control: Kp = 500

Force
Position

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

P Control: Kp = 1000

Force
Position

Figure 4.11: Plot of proportional control on double integrator simulation, withKP = 150 (left),KP = 500
(center), andKP = 1000 (right). As expected, it doesn’t work and results in an oscillation as predicted by
Equation4.142.

PI Control

Using proportional plus integral (PI) control we get

T (s) =
PC

1+ PC
(4.143)

=

KPK
s2

(

s + KIT
KP

)

1+ KPK
s2

(

s + KIT
KP

) (4.144)

T (s) =
KPK

(

s + KIT
KP

)

s3 + KPKs + KKIT
(4.145)

As predicted, the lack of lead doomed this controller to failure as well. The denominator roots are not
stable, since there is a missing coefficient, and Routh’s Stability Criterion [57, 56] states that all the
coefficients of the polynomial must be present and of the same sign.

PD Control

Using proportional plus derivative (PD) control we don’t lose much generality to assume that K, KP,
KIT , and KDT are all greater than 0. If KDT is 0 we are back to the case in Section 4.11.3.

T (s) =
PC

1+ PC
(4.146)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
236

Winter 2022-2023
December 31, 2022

Simple Controllers

=

KDT K
s2

(

s + KP
KDT

)

1+ KDT K
s2

(

s + KP
KDT

) (4.147)

=
KDT K

(

s + KP
KDT

)

s2 + KDT K
(

s + KP
KDT

) (4.148)

T (s) =
KDT K

(

s + KP
KDT

)

s2 + KDT Ks + KPK
(4.149)

The closed-loop zero is at s = − KP
KDT

. As KP increases relative to KDT the derivative action that
usually adds stability shows up at higher frequency. For the poles we use the quadratic formula on
the denominator:

z1,2 =
−KDT K ±

√

(KDT K)2 − 4KPK

2
(4.150)

With K, KDT , and KP all greater than 0 this is always stable, as one would expect from applying a
lead to a double integrator. (In this case PD control can be considered a lead circuit with no flattening
in the controller model Bode plot.) The poles are real so long as

K2
DT K ≥ 4KP, (4.151)

so too much KP relative to KDT and K can cause stable, but ringing behavior in the closed-loop
response.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

PD Control: f_zl = 0.1 Hz, Kd = 100000, => Kp = 7.853981634

Force
Position

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

PD Control: f_zl = 1 Hz, Kd = 100000, => Kp = 78.53981634

Force
Position

Figure 4.12: Plot of proportional+ derivative control on double integrator simulation, withKD = 100,000
andKP = 7.8531981634 (left) andKP = 78.531981634 (right). As expected, it works as predicted by
Equation4.149. IncreasingKP relative toKDT produces a faster response but ringing.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
237

Winter 2022-2023
December 31, 2022

Simple Controllers

PID Control

Using proportional plus integral plus derivative (PID) control we don’t lose much generality to assume
that K, KP, KIT , and KDT are all greater than 0. If KDT or KIT are 0 we are back to one of our prior
cases.

T (s) =
PC

1+ PC
(4.152)

=

KDT K
s3

(

s2 +
KP

KDT
s + KIT

KDT

)

1+ KDT K
s3

(

s2 +
KP

KDT
s + KIT

KDT

) (4.153)

=
KDT K

(

s2 +
KP

KDT
s + KIT

KDT

)

s3 + KDT K
(

s2 +
KP

KDT
s + KIT

KDT

) (4.154)

=
KDT K

(

s2 +
KP

KDT
s + KIT

KDT

)

s3 + KDT Ks2 + KKPs + KKIT
(4.155)

In order to check stability, we can use the Routh-Hurwitz Stability Criterion [56, 57], on the denomina-
tor polynomial. The trivial checks are that all coefficients are present and of the same sign, which we
get from our assumption that K, KDT , KP, and KIT are greater than 0. The second step is o construct
the Routh array, which ends up reducing to the following. If

P(s) = s3 + a1s2 + a2s + a3, (4.156)

then the Routh Array requires that
a1a2 − a3

a1
> 0. (4.157)

We have already checked that a1 > 0, so this becomes:

a1a2 > a3. (4.158)

In our case, this means,
KDT KPK2 > KKIT , (4.159)

or
KDT KPK > KIT . (4.160)

Put into words, the level of integral action is limited by the amount of proportional and derivative
action. Integral action is helpful with steady state response, but since the system already starts out
as a double integrator, this isn’t a major issue. Derivative action is still needed to stabilize this system.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
238

Winter 2022-2023
December 31, 2022

Simple Controllers

4.11.4 Closed Loop PID on a Simple Resonance

In this section, we will apply various PIDs to the simple resonance with no zeros of Section 2.3.8,
given in Equation 2.19:

X(s)
F(s)

= P(s) = K
ω2

d

s2 + 2ζdωd s + ω2
d

(4.161)

Note that we are using the resonance parameters to define the plant, since these seem far more
physically instructive than simply a set of generic coefficients. When we apply the full PID controller,
we can also parameterize that as an anti-resonance (in the numerator).

Proportional Control

Using proportional control we have

T (s) =
PC

1+ PC
(4.162)

=

KPKω2
d

s2+2ζdωd s+ω2
d

1+
KPKω2

d

s2+2ζdωd s+ω2
d

(4.163)

=
KPKω2

d

s2 + 2ζdωd s + ω2
d + KPKω2

d

(4.164)

T (s) =
KPKω2

d

s2 + 2ζdωd s + (1+ KPK)ω2
d

(4.165)

So, if the original resonance was stable, proportional feedback keeps the closed-loop system stable.
In fact, one can look at the denominator of Equation 4.165, and see that we have a new resonance
with undamped natural frequency,

ω̃d = ωd

√

1+ KPK. (4.166)

Since the coefficient of s in the denominator has not changed, we have

2ζdωd = 2

(

ζd√
1+ KPK

)
(

ωd

√

1+ KPK
)

(4.167)

= 2ζ̃dω̃d, where (4.168)

ζ̃d =
ζd√

1+ KPK
. (4.169)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
239

Winter 2022-2023
December 31, 2022

Simple Controllers

Proportional feedback on a simple resonance produces another simple resonance in closed-loop, with
higher resonant frequency and lower damping. This is a case when simply turning the KP knob can
cause problems.

PI Control

Using proportional plus integral (PI) control we get

T (s) =
PC

1+ PC
(4.170)

=

KPKω2
d

s2+2ζdωd s+ω2
d

(

s + KIT
KP

)

1+
KPKω2

d

s2+2ζdωd s+ω2
d

(

s + KIT
KP

) (4.171)

=
KPK

(

s + KIT
KP

)

s(s2 + 2ζdωd s + ω2
d) + KP

(

s + KIT
KP

)

Kω2
d

(4.172)

=
KPK

(

s + KIT
KP

)

s3 + 2ζdωd s2 + ω2
d(1+ KPK)s + KIT Kω2

d

(4.173)

This closed-loop has a pole-zero excess of 2 which is generally a danger sign in such a low order
system. Again, the simplest check here is to use Routh-Hurwitz. We need all the coefficients to be
present and of the same sign (in this case > 0). If we wish to use Equation 4.157, we have a1 = 2ζdωd,
so as long as we have non-zero damping in the original system and an actual resonant frequency,
then we can divide this out and go to Equation 4.158.

a1a2 > a3. (4.174)

This becomes
2ζdωdω

2
d(1+ KPK) > KIT Kω2

d, (4.175)

which can be reduced to:
2ζdωd(1+ KPK) > KIT K. (4.176)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
240

Winter 2022-2023
December 31, 2022

Simple Controllers

Now, generally, this means that the amount of integral gain, KIT , allowed is limited by the damping,
resonant frequency, and proportional gain. Once again, we have to limit integral gain relative to
other factors to not destabilize the closed-loop system. In fact, this case seems to show up a lot in
practice. Engineers apply PID controllers to mechatronic systems with simple resonances in them,
and generally set KDT = 0. They they realize that while they want to use nonzero KIT so as to have 0
steady state error to a step, they must limit the value of KIT or the system starts ringing and eventually
becomes unstable. It is reassuring to see that we can predict what we see in practice from a little bit
of algebra. In other words lag or integral control works so long as it is taken out well below the
resonance. How far below depends upon the sharpness (Q factor) of the resonance where Q = 1

2ζD
.

PD Control

Using proportional plus derivative (PD) control we don’t lose much generality to assume that K, KP,
KIT , and KDT are all greater than 0. If KDT is 0 we are back to the case in Section 4.11.4.

T (s) =
PC

1+ PC
(4.177)

=

KDT Kω2
d

s2+2ζdωd s+ω2
d

(

s + KP
KDT

)

1+
KDT Kω2

d

s2+2ζdωd s+ω2
d

(

s + KP
KDT

) (4.178)

=
KDT Kω2

d

(

s + KP
KDT

)

s2 + 2ζdωd s + ω2
d + KDT Kω2

d

(

s + KP
KDT

) (4.179)

T (s) =
KDT Kω2

d

(

s + KP
KDT

)

s2 + (2ζdωd + KDT Kω2
d)s + KPKω2

d

(4.180)

The closed-loop zero is at s = − KP
KDT

. As KP increases relative to KDT the derivative action that
usually adds stability shows up at higher frequency. For the poles we use the quadratic formula on
the denominator:

z1,2 =

−(2ζdωd + KDT Kω2
d) ±

√

(2ζdωd + KDT Kω2
d)2 − 4KPKω2

d

2
(4.181)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
241

Winter 2022-2023
December 31, 2022

Simple Controllers

With K, KDT , and KP all greater than 0 this is always stable, as one would expect from applying a
lead to a simple stable resonance. (In this case PD control can be considered a lead circuit with no
flattening in the controller model Bode plot.) The poles are real so long as

(2ζdωd + KDT Kω2
d)2 ≥ 4KPKω2

d, (4.182)

which can be reduced to
(2ζd + KDT Kωd)2 ≥ 4KPK. (4.183)

Again, too much KP relative to KDT , K, and ωd)2 can cause stable, but ringing behavior in the closed-
loop response. In frequency, if KP is high relative to KDT , the compensator lead is at too high a
frequency to damp ringing.

PID Control

Using proportional plus integral plus derivative (PID) control we don’t lose much generality to assume
that K, KP, KIT , and KDT are all greater than 0. If KDT or KIT are 0 we are back to one of our prior
cases.

T (s) =
PC

1+ PC
(4.184)

=

KDT Kω2
d

s(s2+2ζdωd s+ω2
d)

(

s2 +
KP

KDT
s + KIT

KDT

)

1+
KDT Kω2

d

s(s2+2ζdωd s+ω2
d)

(

s2 +
KP

KDT
s + KIT

KDT

) (4.185)

=
KDT Kω2

d

(

s2 +
KP

KDT
s + KIT

KDT

)

s
(

s2 + 2ζdωd s + ω2
d

)

+ KDT Ks2 + KKPs + KKIT

(4.186)

=
KDT Kω2

d

(

s2 +
KP

KDT
s + KIT

KDT

)

s3 + (2ζdωd + KDT K)s2 + (ω2
d + +KKP)s + KKIT

(4.187)

=
KDT Kω2

d

(

s2 + 2ζnωns + ω2
n

)

s
(

s2 + 2ζdωd s + ω2
d

)

+ KDT Kω2
d

(

s2 + 2ζnωns + ω2
n

) (4.188)

T (s) =
KDT Kω2

d

(

s2 + 2ζnωns + ω2
n

)

s3 + (2ζdωd + KDT Kω2
d)s2 + (ω2

d + KDT Kω2
d2ζnωn)s + KDT Kω2

dω
2
n

(4.189)

In Equation 4.188 we have made the following substitutions:

ω2
n =

KIT

KDT
and 2ζnωn =

KP

KDT
(4.190)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
242

Winter 2022-2023
December 31, 2022

Simple Controllers

Equation 4.185 becomes:

T (s) =

KDT Kω2
d

s

(
s2+2ζnωn s+ω2

n

s2+2ζdωd s+ω2
d

)

1+
KDT Kω2

d

s

(

s2+2ζnωn s+ω2
n

s2+2ζdωd s+ω2
d

) (4.191)

One very simplistic view of this is that if we perfectly match the plant denominator response with the
controller numerator response, i.e. if we explicitly set

ω2
n = ω

2
d and ζn = ζd, (4.192)

then Equation 4.191 reduces to:

T (s) =
KDT Kω2

d

s + KDT Kω2
d

. (4.193)

This is a sweet result. It tells us that if we could perfectly identify the plant resonance, we can use
our PID to cancel it out, leaving the closed-loop behavior to be that of a first order low pass filter with
unity DC gain and a bandwidth set by adjusting KDT .

More generally, if we do not have that perfect cancellation condition, we can check stability from
applying the Routh-Hurwitz Criterion to the denominator of Equation 4.189. Repeating Equation
4.156 here

P(s) = s3 + a1s2 + a2s + a3, (4.194)

then the Routh Array requires that
a1a2 − a3

a1
> 0. (4.195)

From Equation 4.189,

a1 = 2ζdωd + KDT Kω2
d, (4.196)

= ωd(2ζd + KDT Kωd), (4.197)

a2 = ω
2
d + KDT Kω2

d2ζnωn, (4.198)

= ω2
d(1+ KDT K2ζnωn), and (4.199)

a3 = KDT Kω2
dω

2
n. (4.200)

We need each of these to be > 0, and given that KDT > 0, we guarantee that a1 > 0 so that we can
use Equation 4.158,

a1a2 > a3. (4.201)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
243

Winter 2022-2023
December 31, 2022

Simple Controllers

This results in
(2ζdωd + KDT Kω2

d)ω2
d(1+ KDT Kω2

d2ζnωn)
> KDT Kω2

dω
2
n,

(4.202)

which can be reduced to

(2ζdωd + KDT Kω2
d)(1+ KDT K2ζnωn) > KDT Kω2

n. (4.203)

Now, this seems interesting, but what’s a few more pages of algebra between friends?

(2ζdωd + KDT Kω2
d)KDT K2ζnωn+

(2ζdωd + KDT Kω2
d) − KDT Kω2

n > 0,
(4.204)

or
KDT K(ω2

d − ω2
n) + 2ζdωd(1+ KDT Kω2

d)KDT K2ζnωn

+ (KDT K)2ω2
d)2ζnωn > 0

(4.205)

Now, the only way that the left hand side of Equation 4.205 can be ≤ 0 is if ωn > ωd and in fact,
because of all the other terms, it really has to be significantly higher, ωn ≫ ωd. If ωd ≥ ωn this is
always stable.

One more special case that is very useful should be discussed. Let’s say that we set ωn = ωd and
ζn ≥ ζd. Say ζn = ζd + ζr where the r subscript indicates something like “robustify”. The idea behind
this is that we might think that we can match the frequency of the resonance perfectly, but we want a
bit of width to our “notch” in case we miss slightly. Equation 4.188 becomes:

T (s) =
KDT Kω2

n

(

s2 + 2ζnωns + ω2
n

)

s
(

s2 + 2(ζn − ζr)ωd s + ω2
n

)

+ KDT Kω2
n

(

s2 + 2ζnωns + ω2
n

) (4.206)

=
KDT Kω2

n

(

s2 + 2ζnωns + ω2
n

)

s
(

s2 + 2ζnωns + ω2
n

)

+ KDT Kω2
n

(

s2 + 2ζnωns + ω2
n

) − s2ζrωn
(4.207)

=
KDT Kω2

n

s + KDT Kω2
n −

s2ζrωn

s2+2ζnωn s+ω2
n

(4.208)

(4.209)

Now, the result in Equation 4.208 shows that we have a first order closed loop, plus some parasitic
nonsense in the denominator. When s is small, it has little effect, but as s −→ ∞ we get a term that

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
244

Winter 2022-2023
December 31, 2022

Simple Controllers

goes to −ζrωn, which boosts the gain slightly by lowering the corner frequency a bit. At s = − jωn the
extra denominator term becomes:

− s2ζrωn

s2 + 2ζnωns + ω2
n

∣
∣
∣
∣
∣
∣
s= jωn

=
ζrω

3
n

2 jζnω2
n

=
− jωn

2
(4.210)

Alternately, we can look at the term:

s2 + 2(ζd + ζr)ωd s + ω2
d

s2 + 2ζdωd s + ω2
d

∣
∣
∣
∣
∣
∣
s= jωd

(4.211)

=
2(ζd + ζr) jω2

d

2ζd jω2
d

(4.212)

=
(ζd + ζr)
ζd

(4.213)

= 1+
ζr

ζd
(4.214)

which means that Equation 4.191 becomes (in the region of ωd)

T (s) ≈
KDT Kω2

d

(

1+ ζr
ζd

)

s + KDT Kω2
d

(

1+ ζr
ζd

) (4.215)

4.12 General Thoughts on Closed-Loop Analysis for Second Or-
der Models

Generally speaking, we have seen that a pole-zero excess in the closed loop model of 1 is ideal, and
usually implies stability when using positive PID coefficients.

A pole-zero excess of 0 means that we must rely on the unmodeled low pass nature of the physical
plant to achieve roll off of the closed loop response.

A pole-zero excess of two or more in the low-order closed loop is a danger sign, and usually means
possible instability, depending upon the parameters.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
245

Winter 2022-2023
December 31, 2022

Simple Controllers

As things become more complicated, we must rely on some knowledge of the frequency spacing in
order to have intuition.

• KP (proportional action) applies across all frequencies and shifts the open loop gain without
affecting the open loop phase.

• KI (integral action) is best restricted to low frequencies with low being defined by the physical
system. The more one wants to push KI the better the system model has to be.

• KD (derivative action) is best used at high frequencies (but not too high) with high being defined
by the physical system. The more one wants to push KD the better the system model has to
be and the less noise and phase due to sampling one can allow. KD working with KP can be
considered lead action and is normally applied around open loop crossover. KD offers improved
stability but too much of it amplifies noise in areas beyond the closed-loop bandwidth.

4.13 Intuitive and Manual Tuning

When your system is of sufficiently low order so as to be well modeled by one of the models in Section
2.3, then a fairly simple PID tuning method can be used that is essentially a systematic way of turning
the PID coefficient knobs. There are a variety of such schemes but probably the best well-known are
the Ziegler-Nichols tuning rules, named for its inventors in the 1940’s [126, 127]. These begin with
the basic assumption that your plant is well-behaved with an (open-loop) response that is similar the
the process curve shown in Fig. 4.13. Such models can be well-approximated by a simple first order
low-pass filter with lag, as in Equation 2.5, and it was with this model in mind the Ziegler and Nichols
designed their rules1.

The Ziegler-Nichols tuning rules use a form of the PID controller involving explicit time specification
and without differentiator filtering, namely

C(s) = KP

(

1+
1

TI s
+ TDs

)

. (4.216)

While slightly different than Equations 4.35–4.38, the gains are easily translated between the forms.
There are actually two different Ziegler-Nichols tuning rules, each relying on simple physical mea-
surements of the plant. This was especially important when digital computers did not exist and thus

1This section was co-authored with Sean Andersson[12].

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
246

Winter 2022-2023
December 31, 2022

Simple Controllers

t

K

y
(t

)

R = K/a

t
D a

Figure 4.13: Process reaction curve used by Ziegler and Nichols.

data processing methods of tuning were not available. Due to their simplicity, the rules remain useful
even today.

The first set of rules uses measurements from the open-loop step response of Figure 4.13. The
goal is to produce a closed-loop response with a transient that decays by one-quarter of its value in
one period of oscillation, corresponding to a damping of ζ = 0.21. While perhaps a bit on the low
side, Ziegler and Nichols felt this was a good trade-off between response, overshoot, and disturbance
robustness. The resulting set of tuning values are given in Table 4.2. The parameters R (reaction
rate), tD (delay time), and a (filter pole) that define the gains are all measured from the open loop step
response.

The second set of rules uses the closed loop system under a simple proportional controller. To
determine the desired controller parameters, first the proportional gain is increased until the output
exhibits sustained oscillations; this is called the ultimate gain, Ku and the period of that oscillation the
ultimate period, Pu. The controller parameters designed by the ultimate sensitivity method of Ziegler
and Nichols are then calculated from these measurements according to the formulas in Table 4.2.
Generally, this method suggests gains that are smaller than those from the step response approach.

In many cases, the Ziegler-Nichols rules provide an acceptable closed-loop response, at least as a
starting point for further tuning. Except when they don’t. Depending on your plant, measuring the
required parameters may not be practical. For example, if your process is very slow then ramping up

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
247

Winter 2022-2023
December 31, 2022

Simple Controllers

Step response Ultimate sensitivity
KP TI TD KP TI TD

P 1
RtD

- - 0.5Ku - -

PI 0.9
RtD

tD
0.3 - 0.45Ku

Pu

1.2 -

PID 1.2
RtD

2tD 0.5tD 1.6Ku 0.5Pu 0.125Pu

Table 4.2: Ziegler-Nichols tuning rules

the proportional gain until you see marginal stability may take inordinately long. And, of course, if your
system is not well-modeled by that first-order low pass filter with delay, then the rules may not work
well at all. Still, their simplicity and utility to many plants of interest make the Ziegler-Nichols tuning
rules an important tool kit for any practicing engineer.

As an example, consider the system responses shown in Fig. 4.14. No process model is given
because the point of using these tuning rules is that no actual model is needed. Shown instead are
the open loop step response (the left plot) and the closed loop response under pure proportional
control (the right plot). From the first plot we estimate that the delay is approximately 2 seconds while
the process rate is approximately 0.5 units/sec. From the second plot we measure an ultimate period
of approximately 7 seconds, found when the proportional gain was 1.56. Choosing to apply a PI
controller, we find the Ziegler-Nichols gains to be

KP = 0.919, Ti = 6.67 (4.217)

when using the step response rules and

KP = 0.702, Ti = 5.83 (4.218)

when using the ultimate gain method. The corresponding step responses are shown in Figure 4.15.
Note that the ultimate gain method yields a lower overshoot but is slightly more sluggish.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
248

Winter 2022-2023
December 31, 2022

Simple Controllers

0 5 10 15 20 25

time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

o
u
tp

u
t

0 5 10 15 20 25

time (s)

0

0.5

1

1.5

2

o
u
tp

u
t

P at ultimate gain

P at 0.8 ultimate gain

Figure 4.14: Measuring the parameters for the Ziegler-Nichols tuning rules. (left) Open response of the
system showing a delay of approximately two seconds and a process rate of approximately 0.5 units/sec.
(right) Closed-loop response under pure P control at both theultimate gain (ofKu = 1.56) and at 80% of
the ultimate for reference. The ultimate period is approximately 7 seconds.

4.14 Relay Tuning of PID Controllers

Relay tuning of PID controllers is a method proposed by Åström et. al. [115, 118] for low order plants
which are not resonant. The basic idea is to replace the PID controller in the loop with a relay action,
which will prompt a limit cycle in the closed-loop behavior that allows the designer to characterize a
few of the plant parameters. From this the PID parameters can be picked.

Will try to add more when possible.

4.15 Loop Shaping

While Ziegler-Nichols is very useful at getting a basic, low performance controller working, it really
has no hope of generating excellent closed-loop response in the absence of a more accurate system
model. Furthermore, it can have serious issues when the system has high Q dynamics close to the
system bandwidth. When one has the luxury or the need of a frequency response function (FRF)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
249

Winter 2022-2023
December 31, 2022

Simple Controllers

0 10 20 30 40 50

time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

o
u
tp

u
t

PI (Z-N step)

PI (Z-N ultimate)

Figure 4.15: Step response of the system in Figure4.14under the two different tuning rules.

Mechatronic
Plant

PID Filter

ADC

DACS
-

r yu

Figure 4.16:A mechatronic system often has more resonances and anti-resonances than can
be handled by a PID alone. In that case, a PID plus some filtering is often used.

measurement, then it is reasonable to use the filter form of the PID to generate a PID that adjusts the
open-loop shape so as to yield a desirable closed-loop response.

When the high frequency behavior of the physical system is prominent, as it might be in a mechatronic
system with rigid body behavior and high frequency resonances and anti-resonances, then simple
PID tuning rules must give way to loop shaping and extra filters. This requires a lot of pieces. In the
examples that follow, it will become obvious that the higher performance uses of PID for loop shaping
require accurate models, and this is almost always tied to identification of the physical system.

The companion tutorial for this one, [11], describes practical methods for making system measure-
ments for control, focusing on step response and frequency response function (FRF) methods. The
one by Mike Borrello [98] is more specific on the use of dynamic signal analyzers (DSAs). Generally

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
250

Winter 2022-2023
December 31, 2022

Simple Controllers

speaking, step response methods are associated with Ziegler-Nichols tuning or conservative PI con-
trol, while loop shaping points the use of FRF methods. The first author has discussed self tuning
PIDs for atomic force microscopes in Section 4.17.3 and in [108], as well as a more recent discussion
in [40, 19]. It also requires possible use of complex responses for PIDs, as discussed there. Some
related material involves the use of second order complex phase leads, which may or may not be
implemented as PIDs [123, 121]. It is useful to note that while the discussions in [40, 108, 19] discuss
discrete implementations, the discussions in [123, 121] are restricted to continuous time.

4.16 Examples of PID Code

It is useful to have some example code to understand how one might implement a PID controller on a
processor.

Table 4.3 shows a simple example of PID code. Note the simplicity of this code segment, although a
few things need to be pointed out:

• This formulation is using a backwards rule equivalent of an unfiltered analog PID with explicit
time and T = TI = TD. This means that the KP, KI, and KD are the same analog design
parameters.

• We have not added in any integrator anti-windup to this simple code example, nor have we
added in any hooks for direct feedforward from the reference input to the PID output.

• We have not added in any presaturation that limits the output of the PID to some known limit
range.

• We haven’t shown the top of the segment, which would have to take into account how to have
the prior values in the subroutine. Likewise, we haven’t discussed where the gains get passed
in. This is important because for most PIDs (as well as most filter subroutines) the gains don’t
change every iteration, if at all during the operation of the system. Remembering that most
functions/subroutines by default blank any data not passed in on the parameter list, we have a
few options for keeping around old values from previous steps.

– Use global variables. This is a very old programming practice, which is usually discour-
aged. Global variables are space efficient and fast, but since any routine can access them

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
251

Winter 2022-2023
December 31, 2022

Simple Controllers

(not just the routines who are supposed to), they can cause a lot of massive bugs, and are
best used sparingly.

– Retain the history of variables that need to be persistent outside of the routine, passing
them to the routine in the parameter list. The efficiency of such a choice depends largely
on the programming language. In a language where one passes data to and from routines
by value (e.g. in MATLAB functions) then this potentially means passing a lot of data back
and forth. In one where one can pass by reference (e.g. in C/C++/C#, etc.) then only
a reference is passed, but since these are scalar quantities, there isn’t too much savings
when passing a reference to a float compared to passing the float. This changes when we
are passing a pointer to a structure or class, as opposed to a scalar value.

– Use persistent/static variables in the routine. These variables keep their values between
calls. Doing this usually requires some sort of initialization flag, so that we know the first
time we are entering the routine, to initialize the variables. This can work when there is
only one instance of a particular routine, say when there is only one PID control block. It
becomes a mess when there are multiple loops trying to use the same piece of code, as
each would somehow have to keep track of their own persistent variables. This leads to
the logical conclusion of . . .

– Use object oriented programming (OOP), because – to paraphrase Neil Diamond – that’s
what it’s there for. We do this by creating a PID class, which has its own member data
(a.k.a. persistent data) and member methods (a.k.a. routines). Each instance of the class
has its own persistent data space, so we can store and access parameters, old values of
data, etc. This requires more memory and can be a tiny bit slower than one of the raw
methods above, but memory is a lot cheaper than it was when C was first developed and
modern compilers mean that the extra abstractions of C++ cost very little time.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
252

Winter 2022-2023
December 31, 2022

Simple Controllers

/ / −−−

/ / One s t e p o f a PID c o n t r o l l e r .
/ / We assume he r e t h a t we have t h r e e ga ins , K P , K I , and
/ / K D , p l u s an o v e r a l l gain , K .
/ / While t h i s i s an e x t r a term , i t a l l o w s us t o shape t h e
/ / PID w i t h t h e f i r s t 3 terms , and t h e n s c a l e t h e o v e r a l l ga in
/ / up and down .
/ / −−−

/ / Okay , now we s av e t h e p r e v i o u s v a l u e s .
/ / −−−

e km1 = e k ; / / Save t h e p r e v i o u s e r r o r
i km1 = i k ; / / Save t h e p r e v i o u s i n t e g r a l term
/ / −−−

/ / Compute c u r r e n t i n t e g r a l and d i f f e r e n t i a l t e r m s .
/ / −−−

i k = i km1 + e k ; / / I n t e g r a t o r
d k = e k − e km1 ; / / D i f f e r e n t i a t o r
/ / −−−

/ / Compute i n d i v i d u a l c o n t r o l b r a n c h e s .
/ / −−−

u kp = K p* e k ; / / P r o p o r t i o n a l term
u k i = K i * i k ; / / I n t e g r a l term
u kd = K d* d k ; / / D i f f e r e n t i a l t erm
/ / −−−

/ / F i n a l o u t p u t has an o v e r a l l ga in a t t a c h e d .
/ / −−−

u k = K* (u kp + u k i + u kd) ; / / O v e r a l l c o n t r o l o u t p u t .

Table 4.3: Basic PID Code Snippet in C++

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
253

Winter 2022-2023
December 31, 2022

Simple Controllers

4.17 Examples of PID Control

4.17.1 PID Controller Response Shapes

10
1

10
2

10
3

10
4

10
5

−10

0

10

20

30

40

M
ag

 (
dB

)

Freq (Hz)

Analog vs. Backwards Rule Digital PID Control Designs

K0 = 10.000

f
0
 = 0.2 kHz

Notch Q = 10.000

f
n
 = 1.0 kHz

10
1

10
2

10
3

10
4

10
5

−100

−50

0

50

100

P
ha

se
 (

de
g)

Freq (Hz)

T = 5 µS

Analog No Filter
Analog with Derivative Filter
Backwards Rule No Filter

Figure 4.17:Continuous and discrete PID controller response derived from notch filter model.
The parameters of the notch filter model are K0 = 10 at f0 = 200Hz, fn = 1 kHz, and Q = 1

2ζ = 10.
The integration time, TI, differentiation time, TD, and eventual sampling time TS are all set
equal to T = 5µS . In the case of derivative filtering, the low pass frequency is chosen as 50
kHz. The backwards rule version is based on the unfiltered continuous design.

This section shows how the one can use filter parameters to design a PID controller, and what the
frequency response functions of different versions of this controller looks like. The parameters of the
notch filter model are fn = 1 kHz and Q = 1

2ζ = 10. The parameters K0 = 10 at f0 = 200 Hz, mean
that the parameters are adjusted so that the filter has a gain of 10 at 200Hz. The integration time, TI,
differentiation time, TD, and eventual sampling time TS are all set equal to T = 5µS . In the case of
design based upon a filtered differentiator, the corner frequency is chosen to be at 50 kHz.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
254

Winter 2022-2023
December 31, 2022

Simple Controllers

10
1

10
2

10
3

10
4

10
5

−10

0

10

20

30

40

M
ag

 (
dB

)

Freq (Hz)

Filtered PID Control Designs

K0 = 10.000

f
0
 = 0.2 kHz

Notch Q = 10.000

f
n
 = 1.0 kHz

10
1

10
2

10
3

10
4

10
5

−100

−50

0

50

100

P
ha

se
 (

de
g)

Freq (Hz)

T = 5 µS

Continuous
Backwards Rect.
Trapezoidal
Prewarped Trap.

Figure 4.18:PID controller response derived from notch filter model. This version has a low
pass filter on the derivative. Note that the prewarped trapezoidal and the trapezoi dal rule
are virtually identical, as the prewarp frequency is at 1 kHz, far below the 200 kHz sample
frequency.

We can see from Figure 4.17 that the net effect of the backwards rule is to place a low pass filter
on the differentiator portion. (The pole at z = 0.) The main issue is that we do not have design
freedom with choice of this filter, but for many the simplicity of a simple translation between analog
PID parameters and digital PID parameters is worth this. The comparison in Figure 4.18 shows that
with the trapezoidal rule equivalent of a filtered analog design, we can minimize the phase penalty.
This is most useful when dynamics at higher frequency require equalization, such as with a multinotch
[54] and we do not want to be limited by our PID implementation.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
255

Winter 2022-2023
December 31, 2022

Simple Controllers

Tip/
Cantilever

Piezo
Actuator(e) (u)(r)

(d)

Optical
Sensor

PID

Tip Position
()zT

Controller
Output

Reference
Deflection

Surface
Estimate

Error

S

- C

P

Surface
Position

Cantilever
Deflection

()zC
~

Cantilever

Tip

Laser
Spot

A B

CD

Photo
Detector

Laser

Cantilever

Tip

Piezo
Actuator

(x,y,z)

Sample

Calibration
Sample

X Y
Scan

x

-y

z

Figure 4.19: An AFM Control Block Diagram. The diagram shows a scanned sample design, where the
tip and cantilever are fixed and the sample is moved under the tip by the piezo actuator. In this mode,
the controller attempts to maintain a constant level of deflection which corresponds to a constant level of
contact force. The quantity to be measured, the surface profile, comes in as an unknown disturbance to the
control loop. The deflection of the cantilever is sensed withoptical detection.

4.17.2 Atomic Force Microscopes and PI Control

The following example is largely taken from a tutorial on the control of atomic force microscopes
(AFMs) [27]. An example set of frequency response curves for the Z axis of an idealized piezo tube
actuator is shown in Figure 4.21. The piezo tube resonances shown here are around 1 kHz, which
is in the typical range of 500Hz to 20 kHz. Some experimental systems have resonances above 40
kHz [129, 130].

In Figure 4.21 a series of five models of the piezo-cantilever system are plotted with the resonant
frequency varying between 900Hz and 1.1 kHz, and the quality (Q) factors varying between 10 and
30. The uncertainty results both from variation across multiple actuators and variation of the same
actuator with varying signal amplitudes and environmental conditions. At higher frequency one sees
a nominal 300 kHz cantilever resonance with a nominal Q of 100. Again, there is variation across
different cantilevers in the same batch and different conditions for the same cantilever. All of this

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
256

Winter 2022-2023
December 31, 2022

Simple Controllers

yZeZ

uZ

rZ (=0)
S

-
CZ PZ

dZ

Tip
Position

S

Surface
Deflection

A B

CD

Photo
Detector Laser

Surface Estimate
(Topography)

Figure 4.20: Most commercial AFM controllers focus on low frequency control of thez axis, and the
controller output is considered a scale factor away from thetopography signal.

illustrates the need to do identification, whether as a preliminary calibration step or in an on-line form.

Note that these plots are idealized in that they neglect any extra dynamics – including non-minimum
phase zeros – typically present in the actuator and cantilever. Furthermore, any dynamics of the elec-
trical circuitry, such as low pass effects of the power amplifiers used to drive the piezos are neglected.
Finally, these plots show no effects of transport or computational delay. However, even when using
such an idealized model, the significant limitations and issues with AFM control are evident.

The effects of this structure on the feedback system can be immediately seen. If a feedback controller
is to include a 300 kHz resonance in the model, then a typical rule of thumb sample rate of 10-20
times the highest frequency of the dynamics of interest would imply a 3 – 6 MHz sample rate for the
control system. Obviously, such a high sample rate puts severe constraints on the signal processing
system, not just in accomplishing the needed processing between samples, but also in minimizing the
latency of the computations, signal conditioning, and data conversion.

On the other end of the spectrum are control systems that will restrict bandwidth to be safely below
the Z-piezo actuator’s resonance. For a 1 kHz resonance, this implies a sample rate of no less than
10 kHz. Thus, a typical sample rate for control on an industrial AFM is in the 50–100kHz range [131],
although newer controllers sample considerably faster – up to 500 kHz in the case of [132].

Because the piezo actuator is modeled as a second-order resonance, the lack of integrators in the
forward path necessitates the use of integral action for zero steady-state error to any steps in the
surface height. The addition of a second integrator via PII control can provide zero steady-state
error to surface slopes, which are common in many samples. Such controllers are necessarily low

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
257

Winter 2022-2023
December 31, 2022

Simple Controllers

10
−2

10
0

10
2

10
4

10
6

−150

−100

−50

0

50
Piezo Cantilever Responses

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

10
−2

10
0

10
2

10
4

10
6

−300

−200

−100

0

Frequency (Hz)

P
ha

se
 (

de
g)

10
−1

10
0

10
1

10
2

10
3

10
4

−40

−20

0

20

40

Controller Responses (f
S
 = 50 kHz)

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

10
2

10
3

10
4

−200

−100

0

100

Frequency (Hz)

P
ha

se
 (

de
g)

Cont. PI
Discr. PI
Cont. PII
Discr. PII
Cont. PID
Discr. PID

Figure 4.21: On the left is a set of “generic” AFM plants. Thisshows the combination of the Z-piezo
actuator and a 300 kHz cantilever. Note that hysteresis, creep, and nonlinearity in the piezo [128] makes
the exact modeling of a given actuator difficult, and thereby hampers the control. The cantilever properties
also vary considerably within a batch. On the right are a collection of possible PI and PII controllers that
might be applied to these plants. Note that without compensating for the high frequency resonance, we
are limited on raising the bandwidth, but even doing that depends on having some phase lead (derivative
control). The PID controller FRFs accomplish just that. Notehowever, that the high frequency boost may
present issues with the cantilever resonance at 300 kHz.

bandwidth, since the lack of phase lead means that the gain must be rolled off below the resonance
of the actuator.

A look at the configuration of Figure 4.19 shows that the fundamental feature of the Z axis control
loop is that the control system only sees the deflection (error), not the surface. As such it is an output
error loop, without direct access to any reference signal. This limits any attempt at feedforward in the
Z direction to methods that use some prior Z measurement (such as the previous scan line). It also
limits the bandwidth of any state-space controller that one may use, since the estimator error can go
away no faster than the error in the overall control loop [133]. Furthermore, as one sees from the
typical example shown in Figure 4.21, there is considerable variation in the response of the actuator
at low frequency and the cantilever at high frequency. This uncertainty means that either the control
system has to be very robust or adaptive.

The typical industrial AFM control loop, whether done in contact or dynamic mode, is a low frequency

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
258

Winter 2022-2023
December 31, 2022

Simple Controllers

10
−1

10
0

10
1

10
2

10
3

10
4

−100

−50

0

50

100

Open−Loop Responses −− PI Controller (f
S
 = 50 kHz)

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

10
2

10
3

10
4

−300

−200

−100

0

Frequency (Hz)

P
ha

se
 (

de
g)

10
−1

10
0

10
1

10
2

10
3

10
4

−80

−60

−40

−20

0

20

Closed−Loop Responses −− PI Controller (f
S
 = 50 kHz)

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

10
2

10
3

10
4

−300

−200

−100

0

Frequency (Hz)

P
ha

se
 (

de
g)

Figure 4.22: On the left: open-loop response for piezo/cantilevers of the left side of Figure4.21 with
digital PI controller from the right side of Figure4.21. On the right: the closed-loop responses.

PI or PII loop. A general form of an analog controller that admits PI, PD, PID, PII, and even PIID is:

C(s) =
(

Kp +
KIT

s
+

KIIT

s2
+ KDT s

)

E(s) (4.219)

where E(s) is the Laplace transform of the error signal e(t). For a P, PI, PII, or PID controller, one or
more of the KDT , KIT , or KIIT gains are set to zero. Note that as written the derivative term, KDT s, is
not practically implementable, but this is often rectified by having some low pass filter added to it. For
digital implementation, the backward rectangular integration rule is most often used for PID controllers
since this allows for direct translation from (4.219) [133, 134].

It is tempting to try to increase the bandwidth of the system by adding phase lead, such as with a PID
controller. However, the use of this is limited by the uncertainty in the modeling of the piezo actuator.
Furthermore, boosting the bandwidth with a PID requires lower noise in the optical measurement of
deflection, otherwise this noise will be amplified by the effects of the derivative term.

For the models on the left of Figure 4.21, a pair of controllers (PI and PII (KDT = 0) and PID (KDT > 0)
were synthesized as shown on the right side of Figure 4.21. The system was sampled at 50 kHz,
and no attempt was made to add any extra computational or transport delay. Thus, the open-loop
plots of the left side of Figures 4.22 and 4.23, representing the application of the PI and PII controller
respectively, should be considered an idealized case. What is clear in these plots is that the open-
loop crossover frequency must be substantially below the nominal resonant frequency for there to be
any gain margin. Furthermore, the low frequency gain is quite limited in the case of the PI controller.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
259

Winter 2022-2023
December 31, 2022

Simple Controllers

10
−1

10
0

10
1

10
2

10
3

10
4

−100

−50

0

50

100

Open−Loop Responses −− PII Controller (f
S
 = 50 kHz)

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

10
2

10
3

10
4

−300

−200

−100

0

Frequency (Hz)

P
ha

se
 (

de
g)

10
−1

10
0

10
1

10
2

10
3

10
4

−80

−60

−40

−20

0

20

Closed−Loop Responses −− PII Controller (f
S
 = 50 kHz)

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

10
2

10
3

10
4

−300

−200

−100

0

Frequency (Hz)

P
ha

se
 (

de
g)

Figure 4.23: On the left: open-loop response for piezo/cantilevers of the left side of Figure4.21 with
digital PII controller from the right side of Figure4.21. On the right: the closed-loop responses.

The PII controller has more gain at low frequency, at the expense of decreased phase margin. The
effects of these choices become clear in the closed-loop plots of the right sides of Figures 4.22
and 4.23, where the PI controller has significantly less bandwidth, but also less ringing than the PII
controller. The difficulty in finding a single robust controller for these varying plants which provides
both reasonable bandwidth and acceptable gain and phase margins illustrates why there is so much
hand tuning of AFM control loops by the end users of the instruments.

The PID controller seems to usually fare a little bit better, as we see from Figure 4.24. Note that
the lack of any response from the 300 kHz cantilever resonance indicates that this was notched
separately, in this case with a digital biquad filter [54]. The open loop plot on the left shows a response
that is very reminiscent of an integrator except in the area of the piezo motor resonance peak. We
can see that if the mismatch is small enough, then the open loop phase never crosses −180◦ until
after well beyond the 1 kHz piezo motor resonance. However, when the mismatch between the single
PID controller and the physical system model is great enough (green and cyan curves), then we have
terrible phase margin and possible instability. In most industrial environments, a robust controller that
will not go unstable with a small model mismatch wins out over a better performing controller that can
go unstable if the parameters are mismatched, and this probably accounts for much of the hesitance
to use anything other than KDT = 0 unless the system is well modeled by a double integrator. The
solution for the robustness and performance issue is to be able to self tune the system model and
adjust the controller parameters. Some discussion of how to do this is in [19], and an example is
shown in Section 4.17.3 and in [108]. As mentioned earlier, step response methods are associated

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
260

Winter 2022-2023
December 31, 2022

Simple Controllers

10
−1

10
0

10
1

10
2

10
3

10
4

−100

−50

0

50

100

Open−Loop Responses −− PID Controller (f
S
 = 50 kHz)

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

10
2

10
3

10
4

−300

−200

−100

0

Frequency (Hz)

P
ha

se
 (

de
g)

10
−1

10
0

10
1

10
2

10
3

10
4

−80

−60

−40

−20

0

20

Closed−Loop Responses −− PID Controller (f
S
 = 50 kHz)

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

10
2

10
3

10
4

−300

−200

−100

0

Frequency (Hz)

P
ha

se
 (

de
g)

Figure 4.24: On the left: open-loop response for piezo/cantilevers of the left side of Figure4.21 with
digital PID controller from the right side of Figure4.21. On the right: the closed-loop responses.

with conservative PI control,the example of Figure 4.24 points the use of FRF methods.

Because tube scanners often lack sensors, much of the feedback control work is done only in the
Z direction, leaving compensation of the X-Y directions to be done using open loop methods [128],
[135]-[137]. Because scanning is most often a raster scan, with a fast axis (X) and a slow axis (Y),
the compensation is often applied only to the fast axis.

Note also that the 50 kHz sample rate is only reasonable for actuators with their significant dynam-
ics below about 5 kHz. For smaller actuators - such as those being proposed in higher bandwidth
experiments - the control has to be done either with faster sampling or an analog controller [130],
[138]-[140].

These issues are fundamental to the control of an AFM. The desire for a single robust, low-order
controller is thwarted by the uncertainty in the system. The solution involves either an improved model
and/or a higher-order robust controller. Because tube scanners often lack X-Y sensors, much of the
original advanced feedback control work was done in the Z direction [141, 142], while feedforward
controllers were developed for the X-Y motions [128, 136, 137]. The advent of sensored X-Y stages
has led to feedback control methods being developed for X-Y motions as well [143, 144]. Combined
feedforward and feedback controllers have also been investigated for both the Z and X motions [145,
146, 147].

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
261

Winter 2022-2023
December 31, 2022

Simple Controllers

In demonstrations of advanced control for nanopositioning, researchers have made careful models of
a specific AFM under controlled conditions and then have been able to achieve significantly higher
closed-loop bandwidths. While robust control methods may provide practical controllers in the pres-
ence of model uncertainty, development of adaptive control methods for AFMs remains an open area
that may provide enhanced performance. Further discussion of the control problem from a multi-axis
point of view is provided in [148].

4.17.3 Loop Shaping on an AFM Actuator Using PID

10
2

10
3

10
4

10
5

−60

−40

−20

0

20

40

M
ag

 (
dB

)

Freq (Hz)

Closed−Loop Response Measurement

CL BW: 8.2 kHz

CL Peak: 6.1 dB at 4.0 kHz

10
2

10
3

10
4

10
5

−200

0

200

P
ha

se
 (

de
g)

Freq (Hz)

10
2

10
3

10
4

10
5

−60

−40

−20

0

20

40

M
ag

 (
dB

)

Freq (Hz)

Open Loop Response (extracted from closed−loop measurement)

Gain Crossover at 4.49 kHz

10
2

10
3

10
4

10
5

−300

−200

−100

0

P
ha

se
 (

de
g)

Freq (Hz)

Phase Margin: 36°

10
2

10
3

10
4

10
5

−80

−60

−40

−20

0

20

40

M
ag

 (
dB

)

Freq (Hz)

Actuator Response (extracted from closed−loop measurement)

10
2

10
3

10
4

10
5

−200

0

200

P
ha

se
 (

de
g)

Freq (Hz)

Figure 4.25: A closed-loop frequency response function (FRF) measurement of the original system is on
the left. This is followed by opening the FRF loop in the centerand then factoring out the plant model
FRF on the right, to reveal the plant FRF.

In this section, we give an example of constructing a PID for a mechatronic system measurement.
Specifically, we repeat one of the authors work from [108] in which an experimental MEMS actuator
for AFMs was identified using FFT based frequency response functions (FRF) [11]. These three steps
are shown in Figure 4.25. From the closed-loop FRF (left plot), the loop was opened (center plot),
and the controller FRF was divided out to reveal the plant FRF (right plot).

Figure 4.26 shows how, in the range that a reasonable measurement was possible, the frequency
response of the plant was fit to a simple resonance with no zeros (left plot). This was then used to
design a PID acting as a notch of the motor resonance. The PID was implemented using a discrete
backwards-rule equivalent. A biquad filter was used to notch out the plant resonance above 125
kHz. The resulting open loop frequency response looked much like that of an integrator (center plot),
and so the closed-loop bandwidth was extended by a factor of 4 while the closed-loop peaking was
dropped significantly (right plot).

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
262

Winter 2022-2023
December 31, 2022

Simple Controllers

10
2

10
3

10
4

10
5

−80

−60

−40

−20

0

20

40

M
ag

 (
dB

)

Freq (Hz)

Frequency Response Function and Curve Fit between 0.10 and 10 kHz

K = 3.817

f
n
 = 3.3 kHz

Q = 112.02

Plant Meas.
Curve Fit

10
2

10
3

10
4

10
5

−200

0

200

P
ha

se
 (

de
g)

Freq (Hz)

10
2

10
3

10
4

10
5

−80

−60

−40

−20

0

20

40

M
ag

 (
dB

)

Freq (Hz)

Frequency Response Function and Controller

Gain Crossover at 11.47 kHz

Plant Meas.
Controller
Combination

10
2

10
3

10
4

10
5

−200

0

200

P
ha

se
 (

de
g)

Freq (Hz)

Phase Margin: 57°

10
2

10
3

10
4

10
5

−40

−20

0

M
ag

 (
dB

)

Freq (Hz)

Projected New Closed−Loop Frequency Response Function

CL BW: 31.5 kHz

CL Peak: 1.9 dB at 25.0 kHz

10
2

10
3

10
4

10
5

−200

0

200

P
ha

se
 (

de
g)

Freq (Hz)

Figure 4.26: On the left is a fit to the main motor resonance, revealing the resonance parameters. In
the center, the PID is designed to create a notch for that resonance, resulting in an open loop response
that is very much like an integrator. In the right, the new closed-loop FRF is constructed revealing much
improved response and bandwidth.

In this example, only one resonance, that of the main motor resonance was shaped. That is a good
start, but a more complete answer would address both the main motor resonance and any higher
order resonances. We will see some of these in Section 5.8, but before we can do that, we need
to describe the controller elements that can successfully compensate for multiple, high frequency,
high-Q system dynamics. We will discuss these in Chapter 6.

4.18 Integrators, Saturation, and Wind-Up

There are always limits on a signal amplitude or on an amount of control saturation. The latter is often
reflected as a model of a physical system limit, where a power amplifier can only drive a finite amount
of current, a valve can only open so far, or a joint can only move through a finite range.

These saturation limits are not dealt with explicitly in many control design methodologies, but they
present a design challenge for PID controllers. This is probably because the integral action is sepa-
rated out in a way that can make for isolated analysis and remedies.

The integrator, which is there to help with steady state error, gives phase lag to the system. It is
usually the only part of a controller that is not absolutely stable. This is usually fine without saturation,
as the loop dynamics stabilize it. In saturation, the integrator keeps accumulating an error that the

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
263

Winter 2022-2023
December 31, 2022

Simple Controllers

offset

-

measured
signal

reset
anti-

windup0reference
signal

error u uscale
usat

SS
z

-1

S S

KP

KI K

KD1-z
-1

C(z)

Figure 4.27:An example of integrator anti-windup in a digital PID controller. This version i s
called a reset anti-windup. When usat , uscale, the integrator value is set to 0 until the system
comes out of saturation.

controller can’t fix, at least rapidly. Thus, the integrator sums up “old error” so that even when the
actual error is small, the “remembered error” is still inside the controller which thinks that it must be
fixed. The error is no longer present, but the integrator has “wound up”, resulting in the controller
generating errors.

Saturation can happen when the control signal is operating near the saturation limit in regulation, when
a noise spike gives a temporary large error signal, or when there is a large change in setpoint. On
a large step response, windup can result in a lot of overshoot as the integrator is trying to correct for
errors it remembers that aren’t really there anymore. Several almost heuristic methods are available
for dealing with windup.

• Ignore it. Maybe it’s not too big a deal. Intentionally or not, this is often the solution that folks
end up with. One of the main issues here is that for systems that are close to the instability
boundary, operating in closed-loop requires a certain amount of feedback gains. For certain
large errors, the system can get into an unstable region. This is one of those situations where
examining the root locus gives a lot of insight, as we can see the gain levels that cause the
closed-loop poles become unstable (if they do).

• Reset the integrator. When we hit saturation or have a huge error signal, set integrator to 0
(Figure 4.27). This seems logical for large steps up from zero input, but when the integrator
value was nonzero before saturation, instantaneously resetting the integrator will result in a
jump in the controller output. Most of the time, jumps in the controller output are frowned upon.

• Back calculation. The basic idea here is to feed back a signal that eventually has the input and

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
264

Winter 2022-2023
December 31, 2022

Simple Controllers

S-
+

KAW

offset

-

measured
signal

back
calculation

reference
signal

error u uscale
usat

SS
z

-1

z
-1

S S

KP

KI K

KD1-z
-1

C(z)

Figure 4.28:An example of integrator anti-windup in a digital PID controller. This version i s
called a back-calculation anti-windup. When usat , uscale, the negative difference is fed back
into the integrator, eventually driving the difference between usat and uscale to 0. When the
saturation is inactive, that feedback term has a 0 value.

the output of the saturation block match. The scheme in Figure 4.28. In this case, the difference
between usat and uscale is fed back through a new gain, KAW . This secondary feedback can
eventually zero out the difference between the unsaturated and saturated signals.

Note something that only becomes obvious as soon as one tries to write code: we cannot
instantly feed back KAW · (usat(k) − uscale(k)) to the integrator as this would try to instantaneously
change u(k), uscale(k), and usat(k). Instead, we use those values as inputs to the next calculation.

Theoretically can null input to integrator so that it is in a good place when control comes out
of saturation. Very popular for academic and continuous time systems(Figure 4.29), since it
can be implemented without if/then statements [115]. It appears that this is most often used
when the saturation is a result of operating near the limit, rather than a large input change.
The ability to implement it in continuous time PIDs may have made this the most common anti-
windup scheme. In every description that this we have come across using this scheme, the
base controller is a PI not a PID.

• Conditional integration or “clamping”. (Figure 4.30) Here the presence of saturation causes
the input to the integrator to be zeroed, meaning that the integrator holds at or “clamps” at
its current value. This is a safe choice, especially when the system briefly saturates but does
not stay there long. An additional integrator bleed off term that allows the integrator to decay
while it’s in saturation is sometimes added, as it helps get the integrator to play less of a role in
saturation, especially when the loop is saturated for a long time.

The integrator value is also held when the error is huge. If integrator and error have opposite
signs, allow error input to integrator. Very popular with discrete time systems, since if/then isn’t
a big deal. Very intuitively pleasing. Furthermore, it handles large reference input changes

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
265

Winter 2022-2023
December 31, 2022

Simple Controllers

S-
+

KAW

offset

-

measured
signal

back
calculation

reference
signal

error u uscale
usat

SS 1/S

S

S S

KP

KI K

KD

C(s)

Figure 4.29:An example of integrator anti-windup in an analog PID controller. This version i s
called a back-calculation anti-windup. When usat , uscale, the negative difference is fed back into
the integrator, eventually driving the difference between usat and uscale to 0. When the saturation
is inactive, that feedback term has a 0 value.

consistently as well.

4.19 Slow Applications and PWM

While it is tempting to channel our inner Ricky-Bobby and always want to go fast, there are many,
many applications for simple controllers/PIDs that are fairly slow by any reasonable computer speed
standard. Controlling the “goop” of chemical process control [28, 20], thermal, and pressure control
problems all have time constants that are 1 second or slower.

In these applications, the processors are generally much faster than the dynamics of the system (for
a more complete description of computing, see Chapter 10). Because of this, and also because such
systems often require sturdier cables and signal lines for their harsher environments, it is wasteful
to have a multi-bit Digital to Analog (DAC) converter driving a signal line. Instead, these systems
often have controller inputs that expect a pulse-width-modulated (PWM) signal. The controller signal
is modulated onto binary (0-1) levels with the value determining how much of the signal is at 0 and
how much is at 1 (Figure 10.21). The device receives this signal and does its own PWM to analog
drive signal conversion. This operation inherently assumes that the modulation is so fast compared
to the device that the only the low-pass, averaged value of the PWM signal will be seen by the device,
which will give it a reasonable value. We will discuss this more in Section 10.10.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
266

Winter 2022-2023
December 31, 2022

Simple Controllers

offset

-

measured
signal

clamping
anti-

windup

reference
signal

error u uscale
usat

SS
z

-1

S S

KP

KI K

KD1-z
-1

C(z)

Figure 4.30:An example of integrator anti-windup in a digital PID controller. This version i s
called a clamping or conditional integration anti-windup. When usat , uscale, the input to the
integrator opens up, meaning that the integrator holds its current position until the syst em
comes out of saturation.

4.20 PIDs as an Explanation

There is one more use of PID controllers that comes to mind: as a model for explaining biological
control loops. An amazing example is in the paper by Mustafa Khammash and Hana El-Samad [149].
The typical model for “Plasma Calcium Homeostasis in Mammals” uses proportional feedback. The
authors essentially say at that point, “But we are control engineers! We know that you cannot get zero
steady-state error to a step without some integrator in there.” They then show that PI control explains
the observed response and based on that insight, go about finding the biological source of the integral
term. It is an under appreciated moment in showing how having control intuition can keep one from
assuming bad models.

4.21 Conclusions

The popularity and ubiquity of PID controllers in practice begs for some common understanding from
the users. This chapter has provided some common frameworks for understanding the various pa-
rameterizations of PIDs, so that the engineer who builds them or finds them in a controller purchased
from a manufacturer has an idea how to understand the behavior and limits of their controller. We
have spent a bit of time in discussing the discretization of PID controllers, as this is a key (and often
neglected) part of understanding their behavior.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
267

Winter 2022-2023
December 31, 2022

Simple Controllers

We have also gone into some depth on how PID controllers can control most of the second order or
lower simple system models that often show up in control problems. With a properly PID controller,
we can even shape the closed-loop response at will for these problems. If it were all that simple, we
would be done here. Unfortunately (or fortunately) real control problems often have higher frequency
dynamics. While many control engineers close the loop by staying well below any resonances, this
limits the performance of these systems. If we have a little bit of Ricky-Bobby in us and we “wanna
go fast,” then we need to extend the methods. Chapter 5 starts the discussion with a generalization
of ideas on loop shaping.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
268

Winter 2022-2023
December 31, 2022

Chapter 5

Practical Loop Design, Or Why Most Open
Loops Should Be an Integrator, and How to
Get There

5.1 In This Chapter

In Chapter 4, we discussed simple controllers for simple models. The idea was that with a first or
second order linear model, we can almost always get by with a decent PID controller, and since
many, many physical control problems are reduced to first or second order models, we are there. (I
think that the British would add something about Jack being a donut or Bob being your uncle, but still.)
In fact, in Section 4.17.3, we showed that one could use the PID as an equalizing filter to compensate
for a motor resonance, resulting in an open loop response that looked for all the world like that of an
integrator (up to a certain frequency when negative phase due to delay kicked in). Doing so allowed
us to close the loop and quadruple the original closed-loop bandwidth of the system.

Two questions kind of leap up at us from here:

1) Where did this idea of turning the open-loop into an integrator come from? Did it spring
from the ocean fresh, like Botticelli’s Venus [150], or was some other line of reasoning
involved?

269

Loop Shaping

2) What happens when our simple models are not enough, say when the system has signif-
icant extra dynamics?

We will start in Section 5.2 with the answer to the first of these, by talking about how I first came
to understand that most ubiquitous of human built control systems, with a plant that was always an
integrator.

Section 5.3 discusses applying insight from the PLLs to consider turning the open-loop response,
i.e. P(s)C(s), into one that matches the response of an integrator. We argue that in lieu of any other
pressing design guidance, pushing for P(s)C(s) ≈ K/s at least until we are limited by the negative
phase due to time-delay – is a pretty reasonable design goal.

In Section 5.4, we visit Bode’s integral theorem as taught to the controls community by Gunter Stein
in his famous Bode lecture, Respect the Unstable [151, 1]. This discussion continues with some

visualization of Stein’s dirt digging analogy and the effects of sampling in Section 5.5. We

then return to one of the main limitations – time delay – and its effects on what we can

do with loop shaping in Section 5.6. Section 5.7 discusses how we can iteratively tune our

performance, once we have made that open-loop response look like an integrator.

Section 5.8 gets into how we can do loop shaping on systems with multiple resonances,

providing examples from a high speed AFM. Of course, this kind of loop shaping depends

strongly on having a precise measure of the frequency response of the plant. Section 5.9

discusses how we can still think about loop shaping when our only measurements are step

responses. Finally, the options that remain when all we have is operational data are discussed

in Section 5.10.

The simplest way to understand loop shaping is to think of it as a series of filters warping the open-
loop frequency response into something that makes the closed-loop response less sucky (technical
term). For this reason, understanding filter blocks, how they shape the loop, and what their tradeoffs
are is an important skill in servo design. We also need to understand:

a) that most of these will be discrete, either a discrete equivalent or a direct digital design
that will only be really understood by thinking of it’s continuous counterpart and

b) the phase consequences (intended or not) of the filters used.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
270

Winter 2022-2023
December 31, 2022

Loop Shaping

However, it happens we are adding a lot of extra variables (knobs, degrees of freedom) to the con-
troller, so why put in all this stuff? Realistically, to be both useful and feasible we should:

• Have a requirement to control faster. If it’s not an actual requirement, it’s not clear why one has
to control faster, why one has to add all the extra complexity.

• Have a reliable model of the higher frequency dynamics from measurements on the system
itself. In Chapter 3 we discussed ways to make these measurements more automated, more
built in to the controller, thereby minimizing the per measurement costs.

• Have the right elements to add into the loop to shape the design without loosing all track of what
is going on or trashing the numerical stability of the controller (Chapter 6).

• Have a design methodology tying the requirements, measurements, models, and compensation
elements together in an understandable way.

5.2 Phase-Locked Loops: So Much Feedback, Such Simple Anal-
ysis

S

-

s

Ko

VCO

qi

q
o

x

F(s)K sin()d

qd

Loop
Filter

Voltage
Controlled
Oscillator

VCO
Control
Voltage

Signal
Phase-Locked
to Reference

Signal
Reference

Asin(t +)w qi i

cos(tw q
o o

+)

Figure 5.1:A simple analog PLL and its baseband model. On the left is the basic loop model,
where a sinusoidal signal of known frequency but unknown phase enters the system, a nd a
voltage controlled oscillator locks to that input (reference) signal. On the right is the simpli-
fied nonlinear model of the baseband system, that is the one arrived at by looking at onl y
how the phases of the oscillatory signals, and not the signals themselves, behave. One final
approximation, of linearizing the sinusoidal phase detector, allows the phase beha vior to be
analyzed as a simple analog feedback loop. The VCO is the “plant” and it is modeled a s a
simple integrator.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
271

Winter 2022-2023
December 31, 2022

Loop Shaping

Early in my career, a fellow engineer at Ford Aerospace named Dan Witmer walked into my cubicle
and asked me how I would do nonlinear analysis for a phase-locked loop. “What’s a phase-locked
loop?” Once he patiently explained it to me, I blindly stated that I would simply use Lyapunov re-
design [152, 153]. While nonlinear analysis of phase-locked loops was an interesting subject, it was
not the main learning point of these devices. I have since then claimed that PLLs are the most ubiqui-
tous feedback loops built by humans [30], showing up in all of our smart phones, digital watches, and
every other computational device we have, and yet the feedback analysis done in textbooks is only of
the simplest type [154, 155, 156]. Discussions with PLL experts at several companies also showed
that while they knew intricacies of the circuits and the envelope behavior of the phase detector, they
generally used only very simple linear feedback analysis in their designs. They paid surprisingly little
attention to the stability of the PLL.

It took a while to understand that since most PLLs were first or second order, and for most of these one
could show that even the most basic rules of filter design led to closed-loop responses for the phase-
space where the parameters that made the linear model stable also made the nonlinear model stable
[152, 125]. (In this case phase space refers to the modulation domain or the baseband or envelope
behavior of the PLL.) These loops were simple and stable, because the “plant” to be controlled was
always an integrator, as shown in the lower drawing of Figure 5.1, and the loop filter was either a
gain or a first-order lag, which resulted in stable closed-loop behavior of the system. The Lyapunov
analysis showed that in these cases the parameters that made the second-order linear model stable
also made the second-order nonlinear model stable. For the circuit designers creating PLLs, they
knew from experience that even the simplest, dumbest controller (a.k.a. loop filter) would produce a
stable response and so they gave it no mind. Higher order PLLs failed this, and thus were harder to
analyze [157].

If our open-loop system was adequately modeled by an integrator, then feedback control of that open-
loop system would become trivial (Section 4.11.1). It is easy to show that the first and second-order
analog PLLs are always stable, even with the sinusoidal phase-detector nonlinearity [152]. Further-
more, with the right discretization, even the classical discrete-time PLL was stable [125]. What about
harmonics? Didn’t the designers need to throw in some filters to get rid of signal at the carrier fre-
quency and its harmonics? Why were these not in the textbooks? The answer came from HP/Agilent
PLL expert, Rick Karlquist, who laughed and said (more or less), “Well, no RF engineer worth their
salt wouldn’t know to put in those filters! It goes without saying. That’s why it doesn’t have to be
put in the textbooks.” In this moment I realized that any PLL that was not second order was likely
to be beaten into a form that looked second order. All those analog RF filters were there, but they
were never considered part of the analysis. A lot of work was done to make the system look like an
integrator, and then control was done from there. What kind of control was done? Both kinds, lag filter

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
272

Winter 2022-2023
December 31, 2022

Loop Shaping

and PI control.1 The designers were left to work out the more taxing PLL design problems of having
a good phase detector and an oscillator with minimal phase noise

And there it was. The most common human-built control system in existence was usually designed
with little or no stability analysis beyond what one would do with a PI controller controlling an integrator.
Sure, there were those fancy-dancy third order PLLs (used in deep space communications to track
through the Doppler Shift of the phase), but most loops were a lot simpler in their linear analysis.

Plus, beyond anything the PLL folks did, there were a lot of advantages to doing proportional, or PI
control on an integrator, as mentioned in Section 4.11.1. My inner Homer Simpson was screaming,
“Stupid open-loop. If it was only an integrator, then I could do simple loop design, too!” If I could turn
the open loop into an integrator, then:

• I could make the rest of the controller pretty simple. In fact, if we separated the problem into (a)
turn OL into an integrator and then (b) adjust controller, the (b) portion is really simple and I can
look very cool talking about automated scripts, etc.

• The system will have 0 steady state error to a step input.

• The system will have infinite gain margin and 90◦ phase margin, at least until time delay and
noise start to have major effects.

Mechatronic
Plant

PID Filter

ADC

DACS
-

r yu

Figure 5.2:A practical digital control loop for a mechatronic system. The digital controller is
often implemented as a PID like controller in series with filtering to l ower the effect of high
frequency resonances. For now, we are focusing on small mechatronic control syste ms – of a
size and cost that then cannot be adjusted by a human engineer for each device.

But there was the second problem, that occurs even though engineers had a habit of beating most
control problems into something that looks second order. Those PLL circuit jocks will keep putting in
filters to remove dynamics and harmonics until they are left with a simple second order PLL (that only
has 5 notch sub-circuits). What happens when this fails? What happens when there were dynamics

1A tip of the hat toThe Blues Brothers film.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
273

Winter 2022-2023
December 31, 2022

Loop Shaping

that we can’t ignore, or when we decide to include all those notch filters into our actual design? This
is the case for mechatronic control systems, especially when we try to push their bandwidth.

In the movie trailer, this chapter could be labeled, “when simple models go bad.” Specifically, we will
discuss system models with higher order dynamics, and what this means for control design. In many
frameworks, the first resonant mode signifies the frequency at which all control effort should stop.
The commonly used PI controllers generally stop at 1

4 the first resonant frequency. For other systems,
such as chemical process control, the performance limiting negative phase is dominated by delays in
the system.

A mechatronic system is defined as one in which mechanics and electronics are tightly coupled.
Generally, the mechatronic systems that present difficulties are ones that have resonances and anti-
resonances with low damping factors (i.e., high Q). I will simply call these high-Q systems. The
mechatronic systems that I dealt with that presented problems were small-scale mechatronic systems
that need to be manufactured in large numbers, such as disk drives, optical disks, scanning probe
microscopes, inexpensive robotics, scientific and electronic instruments, consumer products, and
the like. This scale of system cannot be individually tuned in the way that a group of engineers
might tune the control system for a multi-million dollar fighter aircraft, nuclear reactor, or cargo ship.
The controllers either have to calibrate themselves or be robust enough to operate without repeated
calibration.

A lot of practical control loops are really controlled with PI controllers, and the open loop gain crossover
is set at about 1

4 the frequency of the first resonance. Traditionally, disk drive control loops would do a
lot with the double integrator model and maybe one resonance, but would give up well before all the
flexure/sway/arm/gimbal resonances associated with the arm. At this point, some broad notch would
be used to damp the magnitude of these and the conservativeness of that notch meant that there
was no way that the phase could be accurate enough to make that portion of open loop an integrator.
The simple breaking point for all of these was the difficulty in getting high fidelity measurements and
models of these high frequency, high Q dynamics. The signal to noise in the FFT frequency domain
and the discrete-time model, time domain identification was far too low a these frequencies to even
consider this. The FFT based measurements in Figures 4.25 and 4.26 should be convincing of that.
The stepped-sine methods produce much cleaner measurements, but if there is plant to plant varia-
tion and the stepped-sine is not built into the controller itself, it may be unworkable to have to attach
expensive external instrumentation to each small device. Even with the use of stepped sine, we need
to do a curve fit to get back to a parametric model and this has its own issues, as discussed in Chapter
3, Section 3.29.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
274

Winter 2022-2023
December 31, 2022

Loop Shaping

So, what to practical designers of mechatronic systems such as these do? They divide and conquer.
Maybe they divide and survive, but they divide. Figure 5.2, shows the breakdown of a mechatronic
control loop. The PID handles the simple second-order-model part, and there is a filter block to take
care of all those annoying extra dynamics. Of course, we need a couple of things to do this.

• A way to make measurements of all those extra dynamics on top of the simple second order
ones. This is the reason for the emphasis in Chapter 3.

• A way to extract reliable parametric models from those measurements. Again: Chapter 3.

• A way to handle the low frequency/baseband/first-or-second-order behavior (Chapter 4).

• Filter sections to shape the loop once the PID has done all it can. We will go into depth in these
in Chapter 6. For now, we will assume that the filter components existence that will allow us to
add digital filter sections to equalize out dynamics of the open loop until we hit limits imposed
by delay and noise.

• A methodology for selecting the gain and bandwidth of that “integrator” open-loop. (This chap-
ter.)

• An understanding of the tradeoffs of loop shaping explained to us by Gunter Stein’s talk [151]
on Bode’s Integral Theorem and Stein’s Dirt Digging (this chapter).

• A way of characterizing noise and its effect around the loop, as well as insight on how to keep
those noise sources from entering the loop (Chapter 7).

It is worth digressing here to make a note about working with CAD tools in the frequency domain.
Most of us use the bode() function in MATLAB to generate Bode plots. MATLAB’s bode() routine
returns the convenient for plotting magnitude and phase (in degrees). However, if we stop there, we
miss a chance to make greater use of the returned data. If we convert this magnitude and phase back
into a complex number, we can then manipulate the frequency response function along with others.

• We can combine it with measured FRFs to make a composite response. If we have measured
a closed-loop response, T = PC

1+PC we can open the loop via PC = T
1−T . If we have a model

of C, we can generate an FRF for C and extract P. We can then fit a model to P for control
design. We can generate an FRF for Cnew and evaluate it both in open loop, OLnew = PCnew and
closed-loop Tnew =

PCnew

1+PCnew
.

• This allows us to sanity check designs before any implementation is done.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
275

Winter 2022-2023
December 31, 2022

Loop Shaping

• It is worth noting that we usually have a cleaner controller model, C, than we have of the plant,
P.

• On the sanity check, the original Cmodel can be compared against the measured C. This allows us
to asses both the quality of our model and any delays that are occurring between measurement
points.

• All of these can be in fairly automated scripts.

• However, none of it can handle unless the frequency axes of the measurements and the models
are the same. Thus, it is often best to use the frequency axis generated by the instrument/built-in
FRF measurement.

As with many other parts of this workshop, we are not after some optimization of a mathematical
abstraction, but a way to set design targets so that we arrive at something that it close to some
theoretically excellent result, but at the same time intuitively understandable. The latter part gets us
to that sacred ground of being able to debug our systems in the lab or the real world. So, we’ve got
that going for us, which is nice.

5.3 Making PC an Integrator

Back in Chapter 4, in Section 4.11.1, we saw that we could learn a lot about what we could achieve
with a simple PID controller simply by applying one to a pure integrator, or an integrator plus delay.
We saw there that once we have a pure integrator,

X(s)
F(s)

= H(s) =
K
s

(5.1)

proportional feedback produces an ideal first order low pass filter that can have arbitrary bandwidth
set by choosing the correct KP.

T (s) =
KPK

s + KPK
(5.2)

Note in the Bode plot of Figure 4.7, this idealized system has 90◦ phase margin and infinite gain
margin. Of course, time delay limits this, leading to loss of phase margin, which is associated with
peaking of the closed-loop response. Still, this ideal open loop response gives us one intuitive model

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
276

Winter 2022-2023
December 31, 2022

Loop Shaping

to tune towards: If we can use our filters and loop shaping to transform the open loop into an integrator,
then the closed-loop response should resemble an ideal low-pass filter. What are the tradeoffs in this
type of a design goal?

For one thing, we can do this type of controller tuning using with remeasured frequency response
functions (FRFs) and projected controller FRFs (generated from the new controller model). With this,
we can project both the open and closed-loop responses in MATLAB , giving us a estimate of how the
system will behave once implemented. We can find the maximum bandwidth subject to constraints of
gain margin, phase margin, and closed-loop peaking via relatively simple iterations.

We can also see where our push for more bandwidth results in some margin violation. Perhaps one
of the biggest advantages, though, is that a clean closed-loop response can be compartmentalized
in a hierarchy. We can employ a divide-and-conquer approach to complexity, in which the inner loops
are tuned to some clean closed-loop behavior and that is how that piece is presented to the rest of
the system.

Finally, clean open and closed-loop models are far easier to use in combination with feedforward
methods, as we will discuss in Chapter 8. In Chapter 6, we talk about using filters to equalize the
open-loop response. In particular, we described assigning a digital biquad to each resonant/anti-
resonant pair in the identified plant model. By tuning these we can equalize the input-output response
of the open loop towards that open-loop integrator behavior. This makes sense to do manually, but
generating an automated way of handling this involves some work. It can be done though [103, 19].

Suffice it to say, the loop shaping that one does depends a lot upon the system one has. If one can
only make step response measurements or work from operational data only, then loop shaping based
on precise measurements of frequency response functions (FRFs), curve fitting, etc. are off the table.
Much of this chapter deals where that is not the case; where frequency domain methods are available
and we can iterate rapidly. We might think of this as a heavily instrumented frequency response based
loop shaping. This often assumes:

1) The system is amenable to injecting test data i.e. non-operational data.

2) The designer can access sufficient test points to characterize the system (Figure 3.30).

3) Either SNR is high enough for FFT based measurements to produce good curve fits of
the needed dynamics or a stepped-sine has been implemented.

4) You like, trust, and respect your curve fitter. (This is a big if.)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
277

Winter 2022-2023
December 31, 2022

Loop Shaping

5) You have everything connected (Section 3.25).

6) The system dynamics are not changing, or if they are changing, they are changing on a
fairly long time constant so that one can make a measurement, do all this modeling and
design and apply it to largely the same system that was modeled.

If all of these things hold, then one has a chance to do relatively clean loop shaping. The steps are
roughly:

a) Get a frequency response of the key loop components. If the system is instrumented
to measure P in isolation, great. If not, then perhaps a 3-wire measurement of P or a
closed-loop FRF measurement of T is needed (Section 3.18).

b) If we have a closed-loop measurement of T , we can unwrap it to get PC via waveform
math (applying the same math operations to each ¡x,y¿ pair in the waveform):

PCmeas =
T

1− T
.

At this point, we can do waveform math to divide out C and get P, either using a C
waveform generated from a model, or a measured C frequency response function.

c) If C can be measured on the device, do so, if only to validate the generated FRF of C from
the design model.

d) If we have both closed-loop and 3-wire measurements, compare

P̂cl =

(T
1− T

) (1
C

)

and P̂3wire.

P̂cl is usually better at high frequency, while the P̂3wire is often better at low frequency,
where T ≈ 1, making 1− T close to 0.

e) Do design on extracted P, either modeling it directly (Section 4.17.3) or tuning an inverse
model to make the open loop look like an integrator (up to a certain frequency) [19, 103].
We do this by:

• Finding the residual dynamics of the system that have not yet been equalized.

• Assigning a filter section (usually a biquad) to compensate for that particular dy-
namic. Structures for this are described in Chapter 6.

• Tuning that filter section.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
278

Winter 2022-2023
December 31, 2022

Loop Shaping

• Iterating on what is left of the new residual dynamics.

f) When the open loop resembles an integrator plus delay, adjust the open loop gain to
maximize the open loop gain crossover subject to gain and phase margin constraints. In
the absence of anything else, a gain margin constraint of 2 and a phase margin constraint
of 60◦ are pretty safe. That being said, if the open loop truly looks like an integrator plus
delay, the gain margin will be infinite.

• We can also examine the projected closed-loop response by doing waveform math
to re-close the loop:

Tpr =
PmeasCnew

1+ PmeasCnew
.

This can be compared to the original measurement and to any closed-loop con-
straints.

g) If the results of the prior step seem reasonable, download the newly synthesized controller
to digital controller, and repeat measurements.

To make this at all reasonable, everything has to be hooked together. This involves a lot of pro-
gramming and wiring, but is well worth it. The ability to iterate is one of the fundamental tools of
engineering, and when we make it hard to do so – or when we fail to put in the work to make it easy
to do so – we are cutting ourselves off from one of our most basic methodologies. As a rule, control
engineers have been lax in putting in the work to connect their various lab systems. This has held us
back quite a bit.

What else do we need to consider?

• Latency, latency, latency! When everything else is done, the first main limitation is latency
(Section 4.11.1), since as Yogi Bera says, “It’s hard to make predictions, especially about the
future.” An appendix to this limitation is uncertainty or jitter in that latency. In many problems
today, the digital systems are so fast relative to the time constants of the devices being controlled
that latency can be (and often is) ignored. However, for any problem where bandwidth will be
pushed to the achievable limit, that limit is imposed by latency. Furthermore, one cannot simply
have a fast DSP chip and ignore the latency of tenth-order Butterworth filters on the inputs to
the ADCs and the outputs of the DACs. Instead, the entire loop has to be considered in the
latency calculation.

• The other main limitation is noise. We might count other disturbances into this, but these can
often be detected with a separate sensor. Injection of broadband noise into the loop must be

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
279

Winter 2022-2023
December 31, 2022

Loop Shaping

minimized at the source so that we can minimize moving around Gunter Stein’s dirt subject to
Bode’s integral theorem. Put extra effort into detection schemes (Sections 7.13, 7.19).

Up until now, we’ve described loop shaping as something that we can do at will, provided we have the
tools and are not hampered by delay. However, it is worth noting that loop shaping has a conservative
property embodied in Bode’s Integral Theorem. Basically, it is a mathematical way of stating that
sooner or later (in frequency) we pay for every good deed (namely disturbance/noise attenuation) in
a feedback loop (specifically by amplifying noise somewhere else in the frequency domain). Thus, as
we shape the loop, and specifically as we push bandwidth to get better tracking, we will get closed-
loop peaking somewhere else, and this peaking – if it shows up where there is significant noise or
disturbances – can really mess up our system’s performance.

5.4 Bode’s Theorem on Sensitivity Functions

There is is an old theorem by Bode[158] which deals with what he calls regeneration. It turns out
that this theorem has some very interesting applications to control systems. This has only recently
come to light as a tool for evaluating control systems[159]. However it is the starting point for design
methodologies such as QFT[160]. There is even a discrete time version of this theorem[161] that
gives some insight on how this theorem is affected by sample rates.

We need to understand this because our loop shaping will affect the system sensitivity and noise
amplification. This section will talk about system sensitivity, and about Bode’s Integral Theorem and
what it tells us about how far we can push a system. It also gives another reason why low pass filters
on sensors tend to be useful. Our amplification of sensitivity and noise tends to happen at higher
frequencies. By limiting the noise before it ever enters the loop, the extra amplification has a lot less
to amplify. Of course, low pass filters also affect the phase of the signals, and if they are in the loop
can give negative phase to our loop dynamics. If the filter bandwidth is low enough, those phase
effects start to affect our loop phase margins. It’s a tradeoff.

Chapter 7 will flip that around and show us how we can use that same understanding to track down
noise sources, rate their effects on our system, and then learn how to minimize them before they ever
enter the loop.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
280

Winter 2022-2023
December 31, 2022

Loop Shaping

5.4.1 Sensitivity Functions

d

ye u

w

r
S S

vS

S

-
C P

Figure 5.3:Block diagram of closed-loop system.

The block diagram for the following discussion is in Figure 5.3. The closed loop transfer function from
u1 to y2 is given by the standard form:

T =
y
u
=

PC
1+ PC

. (5.3)

The sensitivity function is also known as the disturbance rejection function. Designated S , it is given
by:

S =
e
r
=

1
1+ PC

=
y
d
= − e

d
. (5.4)

Note that

S + T =
1

1+ PC
+

PC
1+ PC

≡ 1, (5.5)

hence T is commonly called the complementary sensitivity function. Note that S = Hyd (= the transfer
function from d to y).

The sensitivity function is important because it shows how disturbances, d, go through the system
and show up at the output, y, or at the error signal e. For a unity feedback system

S
△
= Hyd = −Hed = Heu. (5.6)

Thus, the transfer function from disturbance, d, to the output, y is the same as the transfer function
from the input u1, to the error (PES), e1, and the transfer function from disturbance, d, to error (PES),
e1. In other words it is very good gage of how noise will be filtered through the system.

5.4.2 Bode’s Integral Theorem

The following statements are all different versions of the same idea:

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
281

Winter 2022-2023
December 31, 2022

Loop Shaping

• “Sooner or later, you must pay for every good deed.” (Eli Wallach in the The Magnificent Seven)
(Time Domain)

• “No good deed ever goes unpunished.” (The 285th Ferengi Rule of Acquisition) (Time Domain)

• Bode’s Integral Theorem (Frequency Domain)

area of
disturbance
rejection

area of
disturbance
amplification

ω

lo
g

 |
S

|
(d

B
)

log |S| = 0

0

usually very close
to open loop (PC) crossover

Figure 5.4:Sensitivity function.

ω ωNyquist

lo
g

 |
S

|
(d

B
)

log |S| = 0 log |S| typically
close to 0 here

0

Figure 5.5:Sensitivity function in discrete time.

While the mathematics used to prove both versions of Bode’s theorem can be fairly complicated, the
result is fairly simple and extremely powerful. We will leave the proofs to those papers[158, 159, 161]
and talk simply about the interpretation. Looking at Figure 5.4 it says simply that:

the area of
disturbance
amplification

=
the area of
disturbance

rejection
+

a non-
negative
constant.

(5.7)

Looking at Figure 5.5, we see that for discrete time the main difference is that the Nyquist frequency
limits the space we have to work with. In both cases, if we want to attenuate disturbances at one
frequency, we must amplify them at another. There is no way to get around this.

Theorem 1 (Bode’s Integral Theorem for Continuous Time, Open Loop StableSystems)For a sta-

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
282

Winter 2022-2023
December 31, 2022

Loop Shaping

lo
g

 |
S

|
(d

B
)

0

Classical Control

ω

Figure 5.6:Stein’s depiction of classical control.
lo

g
 |

S
|

(d
B

)

0

Modern Control

ω

HP Computer Chair

Figure 5.7:Stein’s depiction of modern control.

ble, rational P and C with P(s)C(s) = O(s2) (i.e. they fall off as 1
s2)

∫ ∞

0
log |S (ω)|dω = 0.

Consequences: “Sooner or later, you must answer for every good deed.” (Eli Wallach in the The

Magnificent Seven)

Translation: If you make the system less sensitive to noise at some frequencies, you then make the
system more sensitive at other frequencies.

Typical control designs attempt to spread the increased sensitivity (noise amplification) over the high
frequencies where noise and/or disturbances may be less of an issue.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
283

Winter 2022-2023
December 31, 2022

Loop Shaping

A wonderful treatment of this theorem and the importance of it was given as the Bode Lecture at
the 1989 IEEE Conference on Decision and Control (Tampa, FL)[151]. The talk, by then Honeywell
Researcher and MIT Professor, Gunter Stein, was entitled “Respect the Unstable.” Unfortunately, no
papers accompanied Bode Lectures at that time, although there is a video of the talk on YouTube
[151]. The paper based on Gunter’s legendary talk would not be published until 2003 [1]. Stein
used this theorem to show how tightly control engineers are dancing when we deal with unstable
systems. Stein described the net effect of control systems design as trying to get a certain amount
of disturbance rejection at some frequency span while trying to thinly spread the amplification over
a large frequency span. Stein referred to this as shoveling dirt. An attempt to recreate his drawing
is in Figure 5.6. The guy shoveling dirt is moving around the disturbance amplification. He is doing
classical control. He can move the dirt around, but the dirt does not go away. Even with our modern,
sophisticated control tools, in Figure 5.7, the dirt is still there.

Now, if the plant or compensator are not stable — , i.e., if P and/or C have finite number of unstable
poles — then the result generalizes to

∫ ∞

0
log |S |dω = 2π

K∑

k=1

Re(pk)

(a positive number) where K is the number of unstable poles of C and P and pk are those poles.
Thus, any unstable poles in the system only make life worse in that more of the noise would have to
be amplified.

Note that the integration is done on a linear scale even though these drawings may imply a logarithmic

frequency scaling.

5.4.3 Bode’s Integral Theorem for Discrete Time

The paper on Bode’s Integral Theorem for discrete time systems[161] uses a slightly different notation
than that used above.

Theorem 2 (Bode’s Integral Theorem for Discrete-Time Systems:)For all closed-loop stable, discrete-
time feedback systems, the sensitivity function has to satisfy the following integral constraint:

1
π

∫ π

0
ln

∣
∣
∣S (e jφ)

∣
∣
∣ dφ =

m∑

i=1

ln |βi|

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
284

Winter 2022-2023
December 31, 2022

Loop Shaping

ω ωNyquist

lo
g

 |
S

|
(d

B
)

0

Figure 5.8:Bode’s Theorem in Discrete Time

where βi are the open-loop unstable poles of the system, m is the total number of unstable poles, and

φ = ωh where h is the sample period and ω is the frequency in radians/sec.

There are some implications of this theorem dealing with discrete time systems. Basically, they say
the following:

a) With h as the sample period, the ideal upper limit of the frequency spectrum is π
h , the

Nyquist frequency. Mohtadi assumes for this discrete time theorem that there are no
frequencies in the loop above the Nyquist frequency[161]. This would imply that PC = 0
for ω > π

h = ωN and S = 1
1+PC = 1, which is in general false for a physical system.

However, typical digital control systems do assume that PC is small at or above the Nyquist
frequency. Thus, even though the exact assumptions of the theorem will not hold for most
physical systems, it is reasonable to assume that some insight can be gained from this
theorem.

Note: This interpretation does leave open the door for multirate control. With the actuator
signal going out at a higher rate than the input sensor, it might be possible to do something
(good or bad) at frequencies above the Nyquist rate, ωN , of the sensor.

b) Since we can only manipulate frequencies up to ωN =
π
h , and since |S | ≈ 1 above that fre-

quency, the theorem says that if for some frequency |S | < 1 then at some other frequency
|S | > 1. Unlike the continuous time result, though, there is not infinite bandwidth to spread
this over. Thus, the |S | > 1 all happens below the Nyquist frequency (and therefore in a
finite frequency range).

c) Loop transfer recovery (LTR), as shown in a famous paper by Doyle and Stein[162], cannot
be done. LTR attempts to asymptotically match the LQR result that says that LQR provides
|S | < 1 for all frequencies, in part because LQR uses full state feedback. LTR tries to the

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
285

Winter 2022-2023
December 31, 2022

Loop Shaping

same for frequencies up to some point. The |S | > 1 part is dumped over the infinite
frequency band above that point. The Nyquist limit eliminates the possibility of doing this.

5.4.4 What does it mean?

Looking at Figure 5.8, the discrete time version simply states that (analogous to the continuous time
theorem):

the area of
disturbance
amplification

=
the area of
disturbance

rejection
+

a non-
negative
constant,

(5.8)

and this all this must happen before the Nyquist frequency. The reason why this becomes important is
that by working to reject noise at one frequency, we will dump noise amplification at another frequency,
but now that the Nyquist frequency establishes a limit, we may end up putting noise amplification at
frequencies that we care about.

5.4.5 Effect of Sample Rate

ω ωN1

lo
g

 |
S

|
(d

B
)

0

Figure 5.9:Sensitivity function at nominal sample rate, ωN1.

If the control system is merely a process of shoveling the “disturbance amplification dirt” around, then
what does the Nyquist rate signify? It can be thought of as a retaining wall which prevents the “dirt”
from going out beyond the Nyquist frequency. Thus, the freedom to spread the dirt around is limited
by the Nyquist “retaining wall.”

Graphically it is quite easy to see what the theorem implies with sample rate. Looking at Figure 5.9,
say we have a certain amount of rejection, |S | < 1, for a compensator sampled at ωN1. This implies a

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
286

Winter 2022-2023
December 31, 2022

Loop Shaping

ω ωN1 ωN2

lo
g

 |
S

|
(d

B
)

0

Figure 5.10:Effects of doubling the sample rate (ωN2 = 2ωN1). The filtering option.

ω ωN1 ωN2

lo
g

 |
S

|
(d

B
)

0

Figure 5.11:Effects of doubling the sample rate (ωN2 = 2ωN1). The higher bandwidth option.

certain area of |S | > 1. This has to be done before the Nyquist rate retaining wall.

Now, we double the sample rate. With the extra “space,” we can either do some extra filtering but
keep the bandwidth of the closed-loop system constant (Figure 5.10) or demand more rejection at
low frequency and higher bandwidth (Figure 5.11). Note that the effect of using the extra bandwidth
to filter is essentially to spread the amplification, |S | > 1, over a broader frequency band. This shrinks
the height of any amplification hills (Figure 5.10). By pushing the closed-loop bandwidth (Figure 5.11),
better performance at low frequency may result in much worse performance at high frequency.

There are two reasons why Bode’s Integral Theorem is important in a discussion of a disk drive’s
position error signal (PES) . First of all, it gives us a very good gage on what we can and cannot
do with disturbance rejection and noise in a control system. Amazingly it comes from such an old
and simple result that is generally not well known. This result tells us that whenever we improve
with the noise rejection at one frequency we pay for it at another. If we are smart and put the noise
amplification at places where there is only a small amount of noise, then we do well. If not, we may
inadvertently be boosting much of the noise that we are trying to eliminate.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
287

Winter 2022-2023
December 31, 2022

Loop Shaping

The second reason will become apparent in the next section. It turns out that when we measure
PES from a closed loop system, we should actually open the loop and look at PES. The exact same

effects that are the point of the above theorem affect our measurement of PES. We will see that when
we measure PES that is flat in closed-loop, opening the loop (mathematically in MATLAB or on a
spectrum analyzer) will give us a PES spectrum that looks considerably different from the ones we
are accustomed to.

5.5 Once More with the Dirt

In Section 5.4, we described Gunter Stein’s famous explanation of Bode’s integral theorem [158] in
terms of dirt digging [1]. Moreover, the work of Mohtadi [161] can be interpreted as the Nyquist rate
being a retaining wall that limits where we can hide the dirt.

Why return to this now? Because how we design our filters to equalize our responses matters in the
sense of noise amplification. Bode’s Integral Theorem tells us that sooner or later, we must pay for
every good deed. The more dirt we have shoveled with our controller to equalize the response, the
more we pay for it in noise amplification, usually near the open-loop crossover frequency or at higher
frequency.

This turns into a particular decision point for sharp resonances in mechatronic systems. In the disk
drive problems, the flexible modes had all been pushed into a high frequency zone, but at that point,
they were hard to distinguish from each other and therefore hard to compensate individually. Instead,
drive designers would have low pass filters or broad notches that accounted for the envelope of
expected resonances. Such broad filters could not help but eat into the phase margin and it was this
phase margin that was often the limiting factor in control bandwidth.

Similar problems were faced in the AFM world, but if the individual resonances and anti-resonances
could be identified and equalized out, then high bandwidth could be achieved [19, 103]. One of the
fundamental keys was to have a tight notch equalizing any resonance, so that we only shoveled the
dirt needed. This cannot happen without precise models, and precise models cannot happen without
precise measurements. This is the reason for the focus on frequency response methods in Section
3.16. The Rosetta Stone measurement made by Jeff Butterworth (Figure 3.22, repeated below),
makes very clear that not just any FRF measurement will do if one wants to capture high frequency
resonances; one wants stepped-sine (Section 3.26).

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
288

Winter 2022-2023
December 31, 2022

Loop Shaping

10
2

10
3

-80

-60

-40

-20

0

10
2

10
3

-800

-600

-400

-200

0

Frequency (Hz)

M
a
g
n
it
u
d
e
 (

d
B

)
P

h
a
s
e
 (

d
e
g
)

nPoint Stage Direction Frequency Response Function (FRF)x

FFT Based

Stepped-Sine

Figure 5.12: Comparison of stepped-sine and FFT based FRF measurements. (Courtesy: Jeff Butter-
worth).

5.6 The Effects of Time Delay on Loop Shaping

Time delay is a subject that might very well find itself in Chapter 3 on System Models and Charac-

terizing Them with Measurements modeling section. Certainly, this is where one might first look
to find some characterization. However, the characterization of delay often does not motivate us to
learn more. It is when we try to build a controller on some system, and the benefits are dramatically
limited by the effects of time delay that we are motivated.

For that reason, we will return to the effects of pure time delay on a closed-loop system – brought
up previously in Chapter 4 in Section 4.11.1 on closed-loop PID on an integrator. In that section,
the simplicity of the integrator allowed us to directly consider the effects of the phase-lag due to delay
on the resulting closed-loop response. While a main theme of this chapter is to advocate to shape
the open-loop response to resemble an integrator (thereby allowing the intuition of Section 4.11.1),
there is more that we can say about time delay in general, and how it limits our ability to push the loop
shapes we might want.

As noted above, if we have no significant time delay, then by successfully tuning each heater gain
and time constant (and in our case we have active heating and passive cooling time constants and an
offset temperature), we can have a “perfect” PI control as described in Section 4.11.1. It is time delay
(also known as dead time or transport delay) that ruins all of our fun. In different problems, what gives

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
289

Winter 2022-2023
December 31, 2022

Loop Shaping

us the relative time delay is different. For example, in a lot of high-speed mechatronic systems, the
real delay is in data conversion and computation, while the mechanics themselves are quite fast. In
chemical process control, bioprocess, thermal, and pressure control systems, the time constants of
the physical process are absurdly slow compared to the computation and so it is the physical transport
lag (the time it takes a signal to propagate through fluids, etc.) that give us the delay. We have to be
aware that it exists, and it limits us. Even for our best-case scenario of having the open-loop transfer
function as an integrator, the addition of time delay limits our achievable responses [19].

Frequency (Hz)

-40

-30

-20

-10

0

M
a

g
n

it
u

d
e

 (
d

B
)

Bode Plot of Time Delay vs. Nyquist Frequency

fNY,1

fNY,1

fNY,2

fNY,2

fNY,3

fNY,3

fNY,4

fNY,4

Frequency (Hz)

-150

-180

-100

-50

0

P
h

a
s

e
 (

d
e

g
)

Figure 5.13:Frequency response of pure time delay versus increasing Nyquist frequencies. Increasing
the sample frequency, and therefore the Nyquist frequency, does nothing to the time delay, but leaves
more “frequency room” in which to add phase lead.

Looked at from a frequency response view, time delay (latency) adds negative phase related to the
length of the delay. For a delay of ∆ seconds, we can plot the frequency response of e−s∆ as shown in
Figure 5.13. We can very broadly classify the components of delay in a control as being due to:

• physical properties of the system,

• sensor/actuator effects,

• conversion delays, and

• computational and sample rate delays.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
290

Winter 2022-2023
December 31, 2022

Loop Shaping

For our purposes here, we will group the sensor and actuator delays in with the physical ones. At the
very least we thing of these as an analog grouping, which would require some redesign of the physical
system to improve. Conversion delays were discussed at some length in Chapter 10 on computation
for real-time control systems.

Computational delays may be minimized to some respect by faster sampling coupled with stream-
lining processing to minimize latency. For this we are in the domain of hard-real-time programming
discussed in Chapter 10. Avoiding computationally expensive operations, e.g. replacing division
with fixed divisors into multiplication by a precomputed inverse and/or using look up tables (LUTs)
and interpolation for the evaluation of transcendental functions, make us better able to complete our
controller calculations in a single sample period. Using pre-calculation [15, 54] can further minimize
the time between when a input sample is received and the output signal is returned. None of these
computational/conversion fixes have any effect on the physical delay, so without any wholesale plan-
t/sensor/actuator redesign, we will come to some minimum time delay, ∆s, with its Laplace transform
of e−s∆.

5.6.1 Time Delay and the Pad é Approximation

The problem with modeling a time delay of ∆ seconds is that its Laplace transform is e−s∆, and this is
not in the form of a rational transfer function. This really makes it hard to do typical control systems
analysis. Most often, when we try to model this in a transfer function or state space, we often end up
using a Padé approximant or Padé approximation [106], which generally introduces one or more NMP
zeros. This can be seen as follows. Padd́ approximants are most accurate for relatively small values
of s∆ in the e−s∆ expression.

There are many forms of this, but for here I’ll stick with three different first order versions. If we have
ex, we can approximate it as:

ex = 1+
x
1!
+

x2

2!
+

x3

3!
+, (5.9)

e−x = 1− x
1!
+

x2

2!
− x3

3!
+, (5.10)

ex ≈ 1
1− x

, (5.11)

ex ≈
1+ x

2

1− x
2

. (5.12)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
291

Winter 2022-2023
December 31, 2022

Loop Shaping

This means that we can approximate e−s∆ with:

e−s∆ ≈ 1− s∆, (5.13)

e−s∆ ≈ 1
1+ s∆

=

1
∆

1
∆
+ s
, (5.14)

e−s∆ ≈
1− s∆

2

1+ s∆
2

=

2
∆
− s

2
∆
+ s
. (5.15)

(5.16)

This approximation is diagrammed in Figure 5.14, where we see the stable pole and non-minimum
phase (NMP) zero reflected across the jω-axis.

s PlaneRe{s} < 0 Re{s} > 0

2

Δ

2

Δ

Figure 5.14:The first order Padé approximant for the delay of ∆ seconds ends up with a stable pole
and non-minimum phase (NMP) zero reflected across the jω-axis. The higher the value of the delay,
∆, the closer these get to the jω-axis, making compensation harder.

Note that the approximations get worse as s∆ gets larger. We can improve the approximations by
using higher order polynomials in the numerator and denominator, but there’s a tradeoff between
accuracy and usability. For many control problems it’s really a choice between the approximation in
(5.14) and the more accurate approximation of (5.15). The improved accuracy of (5.15) comes with
one major downside: a non-minimum phase zero (i.e. the root of the numerator is in the right half
of the s − plane). This means that most “equalization/compensation” methods that assume one can
invert the response (or close to it) are not available. This is not just a mathematical abstraction: to
be able to perfectly invert time delay means achieving what Cher sang about, turning back time, or
equivalently exactly predicting the future. In the latter case, Yogi Berra has already pointed out that
this is a hard problem.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
292

Winter 2022-2023
December 31, 2022

Loop Shaping

So, there are two paths here: One is to use the analog approximation up to a point to guide an analog
PID design and then discretize that analog PID design. The other is to go through the discretization of
this approximation to see how far we can push it. Both are instructive, but eventually, we will probably
design using the first choice. For these, and for a situation where the negative phase of the time delay
does not dominate the negative phase of the first order system, we will be able to add a bit of lead to
the controller to compensate a bit.

Z Plane

|z| = 1

z = 1

T + δ

T - δ

T - δ

T + δ

Re{z} = 0

Im{z} = 0

Figure 5.15:The first order Padé approximant for the delay of ∆ seconds modeled in discrete time.
Using Equations 5.17 and 5.18, we have M unmatched poles at z = 0 and one reciprocal pair of a
stable pole and NMP zero. This means at least M closed loop poles will head to |z| = ∞, which is
– to be obvious – outside the unit circle. Even the reciprocal pair will result in an extra closed-loop
pole going outside the unit circle. As δ −→ T the zero will head towards z = −∞ while the pole will
approach z = 0.

For digital modeling of time delay, it is useful to frame the problem as follows. Say ∆ > T .

e−s∆ = e−s(MT+δ), (5.17)

where ∆ = MT + δ and 0 ≤ δ < T . Put this way,

e−sMT = e(−sT)M = z−M, (5.18)

so we have M poles at z = 0. If we sample faster, M gets larger but ∆ doesn’t change. ∆ is a physical
constant, related to the delay in the physical system. M is a consequence of the relation between
that physical constant and the sample period. As we attempt to model ∆, sampling faster makes T
smaller, meaning that M has to get larger to keep pace. This means more poles at z = 0 as the
sample rate goes up. Our intuition indicates that sampling faster should help, but more poles at z = 0

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
293

Winter 2022-2023
December 31, 2022

Loop Shaping

means that we have more zeros at z = ∞, as diagrammed in Figure 5.15. That’s not too big an issue
until we close the loop and our knowledge of root locus tells us that the open-loop poles go to the
open-loop zeros as the feedback gain gets higher. Thus, the extra zeros at z = ∞ put a real limit on
how far we can push the feedback. This actually models what happens in the physical world. Time
delay does limit how hard we can push the feedback system.

What good is it then to sample faster? We can see this in Figure 5.13, where the Nyquist frequency,
the frequency above which a digital (computer based) compensator can do no more, moves further
to the right as we sample faster. This, in turn, leaves more “frequency room” in which to add more
phase lead. The higher the sample frequency, the higher the frequency at which we roll off the lead.
Put another way, more samples faster allows us to do a better job of predicting what will come next.

What about the last bit, the e−sδ portion of the delay? We have already limited it to being less than our
sample period, T . We will look at a couple of different discretizations of the two different useful Padé
models of delay, limiting ourselves to the fractional portion of the the delay, 0 ≤ δ < T . For δ = 0 we
have exactly M poles at z = 0 and for δ = 1 we have exactly M + 1. It makes sense then that the best
time delay approximation would approach these as δ gets close to one end of the span or the other.
If we use the approximation of (5.14) and discretize with a backwards rule, we get:

e−sδ ≈ 1
1+ sδ

BR−→
T

T+δz

z − δ
T+δ

, for 0 ≤ δ < T. (5.19)

In this approximation, using the backwards rectangular rule, we see that

e−sδ ≈ 1
1+ sδ

BR−→
1
2z

z − 1
2

, as δ −→ T, and (5.20)

e−sδ ≈ 1
1+ sδ

BR−→ 1
z − 1

, as δ −→ 0. (5.21)

If we discretize with a trapezoidal rule, we get:

e−sδ ≈ 1
1+ sδ

TR−→
T

T+2δ(z + 1)

z − 2δ−T
2δ+T

, for 0 ≤ δ < T. (5.22)

In this approximation, using the trapezoidal rule, we see that

e−sδ ≈ 1
1+ sδ

TR−→ 1
3

z + 1

z − 1
3

 , as δ −→ T, and (5.23)

e−sδ ≈ 1
1+ sδ

TR−→ z + 1
z + 1

= 1, as δ −→ 0. (5.24)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
294

Winter 2022-2023
December 31, 2022

Loop Shaping

If we use the approximation of (5.15) and discretize with a backwards rule, we get:

e−sδ ≈
2
∆
− s

2
∆
+ s

BR−→
(

2T − δ
2T + δ

)

z + δ
2T+δ

z − δ
2T+δ

 , for 0 ≤ δ < T. (5.25)

In this approximation, using the backwards rectangular rule, we see that

e−sδ ≈
2
∆
− s

2
∆
+ s

BR−→ 1
3

z + 1

z − 1
3

 , as δ −→ T, and (5.26)

e−sδ ≈
2
∆
− s

2
∆
+ s

BR−→ 1
(z
z

)

= 1, as δ −→ 0. (5.27)

If we discretize with a trapezoidal rule, we get:

e−sδ ≈
2
∆
− s

2
∆
+ s

TR−→ (T − δ)z + T + δ
(T + δ)z + T − δ, for 0 ≤ δ < T. (5.28)

In this approximation, using the trapezoidal rule, we see that

e−sδ ≈
2
δ
− s

2
δ
+ s

TR−→ 1
z
= z−1, as δ −→ T, and (5.29)

e−sδ ≈
2
δ
− s

2
δ
+ s

TR−→ Tz + T
Tz + T

= 1, as δ −→ 0. (5.30)

It is the bilinear Padé approximation, discretized with the trapezoidal rule, that results in the most
logical digital approximation of e−sδ.

e−sδ ≈
1− sδ

2

1+ sδ
2

=

2
δ
− s

2
δ
+ s

TR−→
(T − δ
T + δ

)

z + T+δ
T−δ

z + T−δ
T+δ

 . for 0 ≤ δ < T. (5.31)

This is the one that we should use as it matches the endpoints precisely. This will help our modeling
when we choose to model delay in discrete time. The unmatched poles at z = 0 result in NMP zeros
at z = ∞. In summary, for discrete modeling,

e−s∆ = e−s(MT+δ) = z−Me−sδ, (5.32)

and discretize e−sδ using Equation 5.31 for 0 ≤ δ < T .

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
295

Winter 2022-2023
December 31, 2022

Loop Shaping

To sum up, time delay imposes limits on what we can do with our controller. As we base

controller design on manipulation of plant models, the most usable analytical models for time

delay show us that it will add one or more NMP zeros to the system, in both continuous and

discrete time. Fast sampling cannot remove the effects of physical system delay, but it can

buy us frequency space in which to add phase lead and mitigate some portion of the delay

at lower frequencies.

5.7 Iteratively Tuning the Integrator Response

Once we have shaped the open-loop response to look like an integrator, we still want to adjust the gain
of our controller. If we are making that adjustment to maximize performance one could argue that an
excellent way to do this is to adjust the controller gain to maximize bandwidth, subject to constraints
on:

• gain margin,

• phase margin, and

• closed-loop peaking.

5.8 Loop Shaping on Systems with Multiple Resonances

In Chapter 4 on Simple Controllers for Simple Models (or why so many controllers are PIDs),
we spent some effort to show how – when the plant model was second order or less – a PID could be
tuned to make the open loop look like an integrator. More generally, when the system has dynamics
beyond second order, we will try to add filtering into the controller to equalize those out. The specific
forms of filters recommended will be discussed in Chapter 6 on Resonances, Anti-Resonances,

Filtering, and Equalization. Starting in Section 6.14, it will introduces the multinotch filter structure
[54, 33]. What we need to emphasize here is that the equalizing filter we choose will need to provide

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
296

Winter 2022-2023
December 31, 2022

Loop Shaping

a series of notches, resonances, leads, and lags in order to neutralize the effects of the dynamic
features of the plant. It will need to do this accurately enough to equalize the phase as well, and this
relies not only on a high fidelity system model, but on a computational structure that is insensitive to
small parameter changes.

5.8.1 Example: Loop Shaping on an AFM with Multiple Resonances

10
1

10
2

10
3

10
4

−60

−40

−20

0

20

40

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Open−loop x response: sweep_2011_04_25__15_27_58

OL 0 dB cross = 133.3 Hz
OL PM = 61.7 degrees

10
1

10
2

10
3

10
4

−300

−200

−100

0

P
ha

se
 (

de
gr

ee
s)

Frequency (Hz)

Plant
PID*multi−notch
Plant * PID * multi−notch

10
1

10
2

10
3

10
4

−60

−40

−20

0

Frequency (Hz)
M

ag
ni

tu
de

 (
dB

)

Closed−loop x response: sweep_2011_04_25__15_27_58

T_cl −3 dB point = 308 Hz
T_cl Peak = 0.1 dB at 43.7 Hz

10
1

10
2

10
3

10
4

−600

−400

−200

0

P
ha

se
 (

de
gr

ee
s)

Frequency (Hz)

Measured

Figure 5.16:On the left: Measured plant, compensator (PID+multinotch), and generated open-loop
frequency response for AFM x-axis actuator. The PID and multinotch [54, 33] are automatically tuned
to generate an open-loop response that looks like an integrator over the frequency range of interest,
allowing the open-loop crossover to be set subject to phase-margin constraints. On the right: The
measured closed-loop response from this design. Note the nice, low-pass look of the closed-loop
response and the minimal peaking. The closed-loop bandwidth can be adjusted from open-loop
constraints or closed-loop peaking constraints.

As the dynamics get more complicated, it becomes much harder to use a PID and a single filter to
shape the loop. An example was presented in [19], in which the author used their invention of the low
latency, high numerical fidelity multinotch [54, 33] along with the PID tuning [108, 110] to self tune the
combined PID and multinotch responses.

As discussed earlier, control of an integrator can easily be optimized by hand in closed-form, but
on real systems which have to be shaped to resemble an integrator generally require evaluation
by computer. We can use the integrator guidance to build software that searches real measured

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
297

Winter 2022-2023
December 31, 2022

Loop Shaping

responses (and projected designs on those measured responses) to find our limits. For a mechatronic
system with many high Q resonances and anti-resonances, the combination of PID and multinotch
[54, 33], guided by the tuning described in [110], yields results such as those shown in Figure 5.16.
Note on the left side of Figure 5.16 that the open loop has indeed been shaped into the form of an
integrator. The limiting factor for bandwidth is the phase margin requirement of 60◦. This does result
in the closed-loop response of the right side of Figure 5.16 which has 308 Hz bandwidth and virtually
no peaking.

Beating the open-loop response into an integrator is certainly not a unique concept, but a brilliant
example of this is described in [163] for adjusting the dynamics of the room sized NASA Vertical
Motion Simulator.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
298

Winter 2022-2023
December 31, 2022

Loop Shaping

5.9 When All We Have is Step Response

We have concentrated on systems for which we can run high precision frequency responses, generate
curve fits, and do loop shaping. However, many problems simply cannot take this kind of identification.
For a good laugh, go down to your local chemical plant and suggest a stepped sine on their chemical
reactors.

Instead, we are often left with step response, and as we have discussed in Chapter 3, this can only
give us a handful of parameters, and these only if we have guessed the correct model from our
understanding of the process. In this case, the tuning process looks something like:

a) Assume one of the simple models of Section 2.3.

b) Track the input and output of the system.

c) Trigger a step response measurement with each step.

d) Scale, align, and average the step input data and use that scaling and alignment to adjust
the output data.

e) Extract parameters from averaged step response.

f) Apply a simple controller of Chapter 4.

g) Look at the operational behavior of the system under closed-loop. Specifically, a well
behaved system in closed-loop would have a closed-loop step response that to first order
seems like a well damped second order system.

5.10 When All We Have is Operational Data

Can’t drive input signal.

Can still do FFT on input/output data, but it has been argued that these methods do not yield much
more than time-domain methods because there is no improved signal richness in FFT methods (Sec-
tion 3.24). That being said, even with FFT methods, frequency domain techniques often yield a better
physical understanding of behavior than discrete-time time domain methods.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
299

Winter 2022-2023
December 31, 2022

Loop Shaping

May have to use discrete time model, time domain ID.

5.11 Chapter Summary and Context

This chapter has been all about loop shaping: what measurements we need in order to attempt it and
what shape we want to have once we can shape the loop. We have argued that – barring any other
constraint – the best shape for the open-loop response is that of an integrator. We also showed how
one might adjust the gain, subject to margin and peaking constraints, once we have achieved that.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
300

Winter 2022-2023
December 31, 2022

Chapter 6

Resonances, Anti-Resonances, Filtering,
and Equalization

6.1 In This Chapter

Chapter 4 started us along the path of what loop shaping could be done with a simple PID controller
and hinted that we would use filters to shape dynamics above the rigid body behavior. Chapter 5
pushed the idea that the open-loop frequency response should look like an integrator up to the point
in which the phase lag caused by time delay became significant. In this chapter we will talk about the
filters themselves, the forms that they take and notes on how to implement and debug them. We will
also discuss some of the most useful filters for feedback control systems.

6.2 Chapter Ethos

Almost any linear, time-invariant model can be cast as a combination of polynomial filters in the
frequency domain.

• Most, but not all analog filters are modeled as an infinite impulse response (IIR) filter.

301

Filters for Loop Shaping

• Some old finite impulse response (FIR) type filters are implemented using an analogy tapped
delay line, where distance down the line indicates delay.

• Digital filtering – or the more general term digital signal processing (DSP) – made FIR filters
practical (and ubiquitous, except in feedback systems).

• Digital IIR filters frighten many signal processing/machines learning types. Given that many,
many of their problems are insensitive to latency, they have often ignored digital IIR filters for
the slow safety of digital FIR implementations. (The chip makers are not blind to this and
consequently there are many more built in tools and structures for FIR than for IIR filters.)

• There are plenty of tools to help you design a filter (pick the order and coefficients) given that
you decide you need one, such as:

– Matlab’s Signal Processing Toolbox and DSP System Toolbox,

– Octave’s Signal Package, and

– Python SciPy package.

The reader knows all that. What we can help with here is to give intuition about when and how
to use specific filter styles in a feedback system. We can describe most filter behavior with a low-
order (usually second-order) model. Higher orders are used to add more features or behaviors,
or to increase a particular feature or behavior. We can start by describing most behaviors using
analog second-order filters. This will help in understanding the transfer functions and effects of the
analog circuitry that connects any digital controller to the real world. Moreover, it provides a more
intuitive platform for understanding the filter behavior. We can then map these to either a circuit
implementation or to a digital equivalent.

Assuming that the filters are part of the controller, the single time step delay needed to discretize
most physical models (e.g. with a Zero-Order Hold (ZOH) Equivalent) is not needed here. Generally,
for digital controllers, we should understand the effects of different discretization methods, so that
when we do employ one of the design toolboxes/packages, we have an idea what choices it made
for us. Moreover, we should know the consequences of filter uses inside (and in the external inputs
to) a feedback loop. Mostly, as the DSP and circuit folks often ignore phase and/or delay, we cannot.
Finally, we will explain a couple of specialty filters, including the outlier removal (a.k.a. median) filter
and the Cascaded Integrator Comb (CIC) filter [164] that are only made possible by analog thinking
and digital implementation.

With Chapter 5 as prelude, we will discuss filters in the context of loop design and loop shaping. Filters
also serve the task of signal conditioning, of noise attenuation, but we will discussed in Chapter 7. In

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
302

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

using filters for loop shaping, it is helpful to consider a few filter “Lego ” blocks. We will do that in
Section 6.6.

At that point, we should talk about filter implementation. We will discuss the two basic linear filter
shapes, Finite Impulse Response (FIR) and Infinite Impulse Response (IIR). As with most of this
material, we will be speaking of digital implementation of filter shapes. The most straightforward of
these and what we would generate to analyze in MATLAB is the polynomial form digital filter, by which
we mean digital filters as transfer functions in z, z−1, or q−1, where the numerator (for FIR and IIR
filters) and the denominator (for IIR filters) are polynomials. We will discuss these in Section 6.3. In
this section, we will also bring up the subject of precomputation, a subject that most folks learn in their
digital control class and promptly forget afterwards. We will also provide some generic FIR and IIR C
code blocks in Section 6.4, along with some tips on programming and debugging.

Polynomial filters are easy to analyze in MATLAB and compact, but for anything higher than a second
order filter, the designer looses the physical understanding of what the coefficients mean. Further-
more, they can have severe numerical issues, particularly when they are filtering high frequency, high
Q dynamics, and when the operations are in fixed point. A fix to this is proposed in Section 6.11. Fi-
nally, we will discuss the mostly beneficial, sometimes nefarious situation of high sample rates, specif-
ically those that are several orders of magnitude higher than the dynamics being shaped/filtered. This
has led to a slight modification of the multinotch called ∆ coefficients (Section 6.19). Some large ∆
small δ confusion in a paper review led me to take a look at the classic δ parameterization (Section
6.24), and has generated some interesting comparisons in recent years [165, 166].

Finally, we will close this chapter with some common sense filters-in-control-loops dos and don’ts
(Section 6.25). Filters can also be used as prefilters on reference inputs to do things like prevent
overshoot. This type of filter can be put under the umbrella of the close-loop-input feedforward block
in Chapter 8. If we can get to it, repetitive feedforward controllers (which often look like particular
forms of FIR filters) and and auxiliary sensor controllers (which also look like filters) will be discussed
there.

6.3 Basic Digital Filter Ideas

Just as the radio frequency (RF) engineers do with phase-locked loops (PLLs), many scientists and
engineers add independent filters to the signal path of their system. For an analog circuit designer,

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
303

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

these filters are typically combinations of first or second-order op amp circuit blocks dropped into the
signal path to “clean things up”. While the designer will note how the filter improves the signals they
see on the scope, few tie any phase effects into things they might see in the overall loop response.
When filtering is done on the digital side, it can range anywhere from an average of the last N samples
to a cascade of M first-order digital filters to an nth order discrete filter based on an analog Butterworth
filter prototype [167, 168]. Depending upon the point in the signal path, the phase effects of these
filters may or may not be significant, but it is often the case that this is not considered from an overall
system view.

FIR filters are rarely used to shape loop dynamics, because the number of delays (taps) needed
to produce the same response as an IIR filter is much larger, and this impacts latency. That being
said, programmers and scientists often make the mistake of adding in functions that average the last
N ADC samples or stringing together M first-order low-pass filters (which they easily understand),
rather than generating a more effective Lth order filter, where L < M.

TSH
TADC

TDACTCOMP

TS

TLATENCY

No Precalculation

TSH
TADC

TDAC

TPRECALCTFC

TS

TLATENCY

With Precalculation

Figure 6.1: Input and output timing in a digital control system. The top drawing is without precalculation;
the bottom drawing is with. Note that precalculation can be started as soon as the output has been sent
to the DAC and therefore is in parallel with the DAC conversion time. The computation time,TCOMP, of
the top diagram is now split intoTPRECALC + TFC whereTPRECALC is the computation time needed for the
precalculation andTFC is the time needed for the final calculation after the input sample. Modulo some
small programming overhead, the split time should equal thetotal computation time. HereTS H, TADC, and
TDAC represent the sample and hold, ADC conversion, and DAC conversion times, respectively.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
304

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

S S

S S

-

u(k)

z
-1

a1

d(k) y(k)

b1

S S

z
-1

an-1

d(k-1)

d(k-n+1)

d(k-n)

bn-1

an bn

b0

Figure 6.2: An nth order polynomial filter in Direct Form II configuration [167].

For feedback systems, we are critically concerned with phase, and filters affect the phase not only by
the shape of the response, but by the delay inherent in the processing. Figure 6.1 shows a timing dia-
gram for two mathematically equivalent filter implementations: the normal way without precalculation
and the lower latency method with precalculation.

The advent of high speed floating point on DSP chips has made it possible to implement high-order
polynomial filters of the form shown in Figure 6.2 in real-time. This allowed the BMW system of [76]
to take controller designs from MATLAB and implement them with little modification in real-time DSP
on the TMS-320C30.

Single-Input, Single-Output (SISO) digital filters, as shown in Figure 6.2, can be represented as trans-
fer functions in the Z transform operator, z:

Y(z)
U(z)

=
b0zn + b1zn−1 + b2zn−2 + . . . + bn

zn + a1zn−1 + a2zn−2 + . . . + an
(6.1)

or equivalently in the unit delay operator, z−1 which lends itself readily to real-time implementation in
assembly [169] or a high level language:

Y(z−1)
U(z−1)

=
b0 + b1z−1 + b2z−2 + . . . + bnz−n

1+ a1z−1 + a2z−2 + . . . + anz−n
(6.2)

The transfer function in(6.2) is not unique but has an advantage in that the coefficient of the current
output term, y(k), is 1, so the filter implementation is:

y(k) = −a1y(k − 1)− a2y(k − 2)− . . . − any(k − n)

+b0u(k) + b1u(k − 1)+ . . . + bnu(k − n). (6.3)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
305

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

Looking at (6.3), we see that y(k) depends mostly on previous inputs and outputs. The only current
value needed is u(k) and this is only multiplied by b0. So we can break this up into [15]:

y(k) = b0u(k) + prec(k), where (6.4)

prec(k) = −a1y(k − 1)− . . . − any(k − n)

+b1u(k − 1)+ . . . + bnu(k − n), (6.5)

and prec(k) depends only on previous values of y(k) and u(k). This means that prec(k) can be com-
puted for step k immediately after the filter has produced the output for time index, k − 1 [16]. When
the input at time step k, u(k), comes into the filter, it needs merely be multiplied by b0 and added to
prec(k) to produce the filter output. Thus, the delay between the input of u(k) and the output of y(k) is
small and independent of the filter length. The precalculation for the next step can then be computed.

6.4 Programming Our SISO Digital Filter

Most textbooks will go into a ton of theory here before showing you how to actually code the filter.
This isn’t a textbook, so I do not feel bound by this convention. It’s worth remembering that there are
reasons for doing various things, but I’m skipping over a lot of them to get you to a practical result.

One does not need to know how we got the various filter coefficients have been determined to program
them efficiently. Linear, digital filters, are full of operations that multiply and add, which is why a Digital
Signal Processor (DSP) chip is often defined as a processor that has a built in Multiply and Add or
Multiply and ACcumulate (MAC) instruction. Generally, for an FIR filter, we think of two vectors of
numbers. here,

y(k) = b0u(k) + b1u(k − 1)+ b2u(k − 2)+ b3u(k − 3)+ b4u(k − 4)+ . . . + bmu(k − m) (6.6)

we can rewrite this as

y(k) =
[

b0 b1 b2 · · · bm

]

u(k)
u(k − 1)
u(k − 2)
...

u(k − m)

(6.7)

The first vector has the b j coefficients. The second vector has the current and past inputs. We are
essentially forming the output, y(k) at each time step by taking the dot product of these two vectors.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
306

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

The coefficient vector does not change at each time step, but our vector of current and past inputs
does move back once in time with each step.

We can do this via brute force, or we can show some elegance. What constitutes each of these
options depends upon which kind of processing we are using. For example, in a CPU or DSP, one
can loop through the filter index to do the multiplication one step at a time. The simplest conceptual
way to do this is shown in Table 6.1. Note that if I knew that I only had very small filters, say 4-5
taps, I might use this kind of code since the number of wasted operations is still pretty small. Another
case where this might be useful is implementation on an FPGA, where the filter delays might be in the
fabric, not in a memory block. However, this code is pretty wasteful otherwise, as there is an entire
loop dedicated simply to shifting data backwards in an array before the new data value is entered.

As with the PID code displayed in Section 4.16 a something needs to be pointed out about the code
segments that follow, namely that we haven’t shown the top of the segment, which would have to take
into account how to have the prior values in the subroutine. Likewise, we haven’t discussed where the
gains get passed in. This is important because for most filter subroutines the gains don’t change every
iteration, if at all during the operation of the system. Remembering that most functions/subroutines by
default blank any data not passed in on the parameter list, we have a few options for keeping around
old values from previous steps. As in Section 4.16, the options are:

• Use global variables. This is a very old programming practice, which is usually discouraged.
Global variables are space efficient and fast, but since any routine can access them (not just
the routines who are supposed to), they can cause a lot of massive bugs, and are best used
sparingly.

• Retain the history of variables that need to be persistent outside of the routine, passing them
to the routine in the parameter list. The efficiency of such a choice depends largely on the
programming language. In a language where one passes data to and from routines by value
(e.g. in MATLAB functions) then this potentially means passing a lot of data back and forth. In
one where one can pass by reference (e.g. in C/C++/C#, etc.) then only a reference is passed,
but since these are scalar quantities, there isn’t too much savings when passing a reference to a
float compared to passing the float. This changes when we are passing a pointer to a structure
or class, as opposed to a scalar value.

• Use persistent/static variables in the routine. These variables keep their values between calls.
Doing this usually requires some sort of initialization flag, so that we know the first time we are
entering the routine, to initialize the variables. This can work when there is only one instance
of a particular routine, say when there is only one PID control block. It becomes a mess when

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
307

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

there are multiple loops trying to use the same piece of code, as each would somehow have to
keep track of their own persistent variables. This leads to the logical conclusion of . . .

• Use object oriented programming (OOP), because – again paraphrasing Neil Diamond (and
you’ve had a couple of chapters in which to Google this reference) – that’s what it’s there for.
We do this by creating a filter class, which has its own member data (a.k.a. persistent data)
and member methods (a.k.a. routines). Each instance of the class has its own persistent data
space, so we can store and access parameters, old values of data, etc. This requires more
memory and can be a tiny bit slower than one of the raw methods above, but memory is a lot
cheaper than it was when C was first developed and modern compilers mean that the extra
abstractions of C++ cost very little time.

/ / −−−

/ / One s t e p o f an FIR f i l t e r . The a c c u m u l a t i o n i s done i n a
/ / q u a n t i t y c a l l e d sum2 . The o r d e r o f t h e f i l t e r i s l o a d e d i n t o
/ / t h e v a r i a b l e N . There i s no c o m p u t a t i o n a l e l e g a n c e here , so
/ / t h e code w a s t e s some o p p o r t u n i t i e s .
/ / −−−

N = o r d e r ;
f o r (k = 0 ; k < N; k++){

d e l a y s [N+1−k] = d e l a y s [N−k] ; / / d e l a y s (j) = d e l a y s (j −1)
}

d e l a y s [0] = xIn ; / / Load t h e c u r r e n t i n p u t
sum2 = 0 . 0 ; / / Blank t h e sum

f o r (k = 0 ; k <= N; k++){ / / sum2 += b [k]* d e l a y s (k)
sum2 = sum2 + coe f [k]* d e l a y s [k] ;

}

yOut = sum2 ; / / S t o r e t h e o u t p u t

Table 6.1: Brute Force FIR Filter Code Snippet in C++

The same filter can be implemented in the mode shown in Table 6.2. In this case, we have gotten rid
of the giant shift block by using an index into the delay array, which is shifted at each step. Thus, our
past values of input do not move; rather the last value is replaced with the current input once it has
served its purpose in the multiply. Note that I also changed the indexing into the delay array, so that
it now moves forward as the indexing of the coefficients moves backwards. This is because the last

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
308

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

/ / −−−

/ / One s t e p o f an FIR f i l t e r . The a c c u m u l a t i o n i s done i n a
/ / q u a n t i t y c a l l e d sum2 . The o r d e r o f t h e f i l t e r i s l o a d e d i n t o
/ / t h e v a r i a b l e N . Note t h a t t h e i n d e x i n g goes forward i n t h e
/ / d e l a y v e c t o r and backwards i n t h e c o e f f i c i e n t v e c t o r . The i n p u t ,
/ / xIn , i s l o a d e d i n t o t h e d e l a y v e c t o r l a s t , and m u l t i p l i e d by
/ / t h e f i r s t e n t r y i n t h e c o e f f i c i e n t v e c t o r , c o e f [0] , which
/ / c o r r e s p o n d s t o b [0] .
/ / −−−

sum2 = 0 . 0 ; / / Blank t h e sum
N = o r d e r ;
f o r (k = 0 ; k < N; k++){

/ / sum2 += b [N−k]* d e l a y s (n−(N−k))
sum2 = sum2 + coe f [N−k] * d e l a y s [d e l i n d] ;
d e l i n d = (d e l i n d + 1) % N; / / I n c r e m e n t i n d e x mod N

}
d e l a y s [d e l i n d] = xIn ; / / S t o r e c u r r e n t s t a t e
sum2 = sum2 + coe f [0]* d e l a y s [d e l i n d] ;
d e l i n d = (d e l i n d + 1) % N; / / I n c r e m e n t i n d e x mod N
yOut = sum2 ; / / S t o r e t h e o u t p u t

Table 6.2: More Efficient FIR Filter Code Snippet in C++

multiply is by b0, which has to use the most current input. Only after all the other multiplies have been
done does this input replace the oldest of the delay values.

Now, one thing that should be discussed are subroutines/functions (or methods in an object oriented
world) and persistence of the data. Typically, a filter routine is invoked and passed the most recent
input, producing the newest output. This means that the routine must have a memory of coefficient
values and prior data values. They must be persistent or static, so that they are around even after
the routine exits. Barring that, they could be global variables, but this solution has is a really bad
programming practice in general, and limits the scalability of the program. However, for real-time
code, a lot of minimalist programming methods are used to save space and execution time. At the
other end of the spectrum, the filter coefficients and previous values can be passed to the routine
each time it is called. However, this is a lot of overhead in each filter call. For filters that are not in
a real-time environment, object oriented code really shines here because each filter class can have
individual instances of the class for each needed filter, and those instances can hold all the static
memory of each filter.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
309

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

Using what we have learned in this FIR filter, we can now efficiently implement an IIR filter of Equation
6.3 as shown in Table 6.3. We now have a coefficient vector that holds 2N + 1 coefficients, where N
is the order of the filter. We make our indexing efficient by computing both the denominator sum and
the numerator sum in the same loop. And we have done a trick with our delays, creating an internal
set of signals that are analogous to internal states of the system. More on why this is so good in later
sections, but this little loop does all the filtering for our IIR filter. Of course, we know how to program
these now, but we haven’t said anything about what the coefficient values should be. (There should
be a drum roll here.)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
310

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

/ / −−−

/ / One s t e p o f an I I R f i l t e r . The a c c u m u l a t i o n i s done i n two
/ / s e p a r a t e sums , sum1 and sum2 . The i n d e x i n g i s made more e f f i c i e n t
/ / by i n d e x i n g t h e same d e l a y e l e m e n t f o r two m u l t i p l i c a t i o n s a t
/ / each s t e p . Thus , t h e numera tor and denomina tor c o e f f i c i e n t s
/ / are p a i r e d t o g e t h e r w i t h t h e e x c e p t i o n o f t h e b0 c o e f f i c i e n t
/ / t h a t i s m u l t i p l i e d o u t s i d e o f t h e loop .
/ / Because t h i s i s an I I R f i l t e r , we assume c o e f f i c i e n t s o f
/ / numera tor and denomina tor are s e t by t h e h i g h e s t o r d e r o f
/ / e i t h e r (we can have z e r o c o e f f i c i e n t s t o g e t around t h i s)
/ / and so we have 2N+1 c o e f f i c i e n t s and N+1 d e l a y e l e m e n t s f o r
/ / an Nth o r d e r f i l t e r . However , by f i r s t u s i n g d e l a y e l e m e n t s
/ / f rom p r i o r s t e p s , we can a c t u a l l y o n l y keep N d e l a y e l e m e n t s .
/ / As w i t h t h e FIR , t h e o r d e r o f t h e f i l t e r i s l o a d e d i n t o
/ / t h e v a r i a b l e N . Note t h a t t h e i n d e x i n g goes forward i n t h e
/ / d e l a y v e c t o r and backwards i n t h e c o e f f i c i e n t v e c t o r . The i n p u t ,
/ / xIn , i s l o a d e d i n t o t h e d e l a y v e c t o r l a s t , and m u l t i p l i e d by
/ / t h e f i r s t e n t r y i n t h e c o e f f i c i e n t v e c t o r , c o e f [0] , which
/ / c o r r e s p o n d s t o b [0] .
/ / −−−

sum1 = 0 . 0 ; / / Blank t h e denomina tor sum
sum2 = 0 . 0 ; / / Blank t h e numera tor sum
N = o r d e r ; / / B e t t e r f o r l o o p i n g

f o r (k = 0 ; k < N; k++){
/ / sum1 −= a [N−k]* d e l a y s (n−(N−k))

sum1 = sum1 − coe f [2* (N−k)] * d e l a y s [d e l i n d] ;
/ / sum2 += b [N−k]* d e l a y s (n−(N−k))

sum2 = sum2 + coe f [2* (N−k) − 1]* d e l a y s [d e l i n d] ;
d e l i n d = (d e l i n d + 1) % N; / / I n c r e m e n t i n d e x mod N

}
d e l a y s [d e l i n d] = sum1 + xIn ; / / S t o r e c u r r e n t s t a t e
sum2 = sum2 + coe f [0]* d e l a y s [d e l i n d] ; / /

d e l i n d = (d e l i n d + 1) % N; / / I n c r e m e n t i n d e x mod N
Out = sum2 ; / / S t o r e t h e o u t p u t

Table 6.3: IIR Filter Code Snippet in C++

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
311

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

6.4.1 Filter Programming Tips

The simplest filter on the planet lent it’s name to a great HBO series, The Wire. A wire filter is exactly
what you think it should be: the output should exactly match the input. This seems trivial enough
until one tries to make a digital filter subroutine out of it. Most likely it will fail, and when it’s a wire,
i.e. b0 = 1, everything else (ai, bi) = 0, it’s not because of numerical issues, or some poor choice
of coefficients. Thus, the wire should be the first set of filter coefficients used in any of your filter
routines. Until you can see the output mirror the input, the rest of your code isn’t right.

The next filters raise the complexity by setting a1 =
1
2, a0 = 1 for an IIR filter test and b0 = b1 =

1
2 for an

FIR test. These simple tricks and nonsense will save you hours of debugging time on more complex
filters.

In signal processing, it is reasonable to batch filter all the data in many applications. After all, time
delay doesn’t matter. Unless the filtered data is being streamed to another output right away, batch
filtering is okay. However, in batch filtering we enter the subroutine, filter all the data and exit. The
variables don’t go out of context; they aren’t zeroed out. On the other hand, real-time filtering (used
in control) essentially enters the routine, does one time step of the processing, and exits. This means
that the data has to be static in memory between calls to the subroutine. Different languages have
different words for this (static in the C/C++/C# world, persistent in MATLAB), but it is important to
have these.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
312

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

6.5 Generating Filter Coefficients

This is the question that all parents anticipate and get nervous about: when your child comes up to
you and says, “Mom/Dad, where do filter coefficients come from?” “(Cough) Well, um, you see, when
a numerator and a denominator love each other very much . . . ”

Given that we have shown how to write simple subroutines that perform IIR or FIR filtering efficiently,
what is left is the generation of those coefficients, i.e. filter design. The sections that follow will
give some general filter shapes and what they do, also describing if they can be implemented in
analog and/or digital forms, or if they can only be implemented using digital means. We won’t go too
deeply into this, since there are many, many excellent books, papers, and tutorials about any specific,
complex filter shape. Instead, in this section and the ones that follow, we are after intuition for what
certain filters will do and how to implement them without doing something foolish (as that happens as
well). Our goal here is to have an intuitive understanding before ceding all control to the machines.

Whether we are using filters to limit the noise coming into a loop, as part of the loop compensator, or
to post process the measured or estimated signals from a loop, there are a handful of characteristics
that they can exhibit, depending upon the structure and the coefficients. It is also worth having this
intuitive explanation when one is discussing a topic like filtering with coworkers who often do not have
an engineering background.

Most of the filtering we do (including the IIR and FIR code above) is linear filtering. FIR filters perform
a weighted average of some number of the past inputs. FIR averagers do this with the weights all
being equal. The effect of any filter can be considered to either smear or sharpen a signal response, in
a particular frequency range, based on the coefficients. If all the coefficients of an FIR have the same
sign, the filter can only smear the signal. For them to sharpen any signal, there must be some sign
changes somewhere, which represent digital approximations to derivative action. IIR filters perform a
weighted average of some number of past inputs and past outputs. Because of the action of poles,
the sharpening available in an IIR filter has much more “bang for the coefficient” than FIR filters.

FIR filters have really hit their stride in the digital world. Often, this means that folks who work with
digital FIR filters have lost track of the physical signals on which they operate. Furthermore, the lack
of an equivalent analog circuit often means that there isn’t an accompanying analog prototype to
consider. In our experience, it is best to retain some knowledge of the actions of different parts of
the filter. This might mean having a cascaded analog prototype for initial design. As we will likely

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
313

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

implement these filters digitally, we should pay attention to the effects of discretization on these sub-
sections. However, we should be aware that there is a large set of problems for which the dynamics
are so well damped, the latency constraints so minimal, and the need to extract physical signals so
unnecessary, that some high order polynomial form FIR or IIR filter works just fine. We do not ignore
these problems, but believe very strongly that we should be certain we are in one of those problems
before abandoning the physical intuition.

6.6 Basic Filter Types & Understanding

If we consider a feedback controller as having a PID portion for low frequency behavior and a set of
filters for high frequency behavior, we can view these filters as equalizers that allow a complex system
model to be simplified to one that can be controlled with a PID. That complicated filter generally can
be considered to be composed of smaller blocks whose behavior we can often understand with first
or second order models. FIR filters are rarer in feedback systems because for the same loop shaping
they require many, many more taps. We will discuss mostly IIR filters, with a few exceptions.

6.6.1 First Order Digital Low Pass

Consider the first order, low pass, digital filter, in the frequency domain form:

F(z) =
1− α

1− αz−1
(6.8)

This has a pole (a root of the denominator polynomial) at z = α and has a DC gain (gain to a constant
input) of 1. The time domain version of this (what we would actually program in a computer to filter
signals) looks like

y(k) − αy(k − 1) = (1− α)u(k) (6.9)

y(k) = αy(k − 1)+ (1− α)u(k). (6.10)

We have our digital filter. The response is shown diagrammatically in Figure 6.3. Actually, the diagram
in Figure 6.3 is what our low pass filter strives to be. In real life, there are tradeoffs. We don’t have to
go through tons of analysis on these tradeoffs, but it is good to have an idea about them so that we

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
314

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

M
a

g
n

it
u

d
e

 (
d

B
)

“Corner Frequency”

No peaking

No ripple

Minimal Phase Lag
Below Corner Frequency

Flat in “pass band”

Smooth drop off
above corner frequency

0 dB

100 Hz 1 kHz 10 kHz

log Frequency

P
h

a
s

e
 (

d
e

g
)

0

-180
100 Hz 1 kHz 10 kHz

Figure 6.3: A diagram of an ideal low pass filter response. Frequencies in the pass band go through
unchanged, while frequencies in the stop band are attenuated. The filter bandwidth is typically determined
by the so called corner frequency, at which the log of the magnitude of the response turns downward.

can make smart design choices. A couple of things about the diagram: we see that the filter response
that we most care about is the magnitude, that is we compute the magnitude of the complex filter
response at each frequency and plot it. Also, we plot the magnitude in decibels (dB), which for a filter
response is 20 log|F(z)|. Note that 20 log 1= 0, so the filter gain of 1 at low frequency shows up as
0dB in our plot. Our first order filter will be more rounded than the filter in our diagram, but the general
idea is that low pass filters have responses that look like this.

How do we pick α? Well, let’s consider an analog low pass filter with the frequency domain form

F(s) =
a

s + a
. (6.11)

This filter might be implemented with electrical circuits, mechanics, pneumatics, whatever, but would
have this same model. This filter has a pole at s = −a. (In case you are wondering, the analog filter
is described by differential equations in time and Laplace Transforms in frequency. The digital filter is
described by difference equations in time and Z Transforms in frequency. What we’re doing is drawing
some connections between continuous and discrete time and frequency stuff.)

For this filter, we can generate what we diagrammed in Figure 6.3. This actually tells us how this filter

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
315

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

10
−1

10
0

10
1

10
2

−35

−30

−25

−20

−15

−10

−5

0

5

Frequency (Hz)

M
ag

 (
dB

)
First Order Low Pass Filter (f_c = 10 Hz)

Analog Implementation
Pole Zero Matching (fs = 1 kHz)
Trapezoidal Rule (fs = 1 kHz)

10
−1

10
0

10
1

10
2

−200

−150

−100

−50

0

Frequency (Hz)

P
ha

se
 (

de
g)

Figure 6.4: Three versions of a first order low pass filter withcorner frequency at 10 Hz. Thebluecurve
shows the continuous time (analog) version of the filter thatone might build with circuits. Thegreenand
magentacurves are digital equivalents which could be implemented on a computer.Add backwards rule
version.

would respond to sinusoids of various frequencies. For the analog filter of Equation 6.11 we get the
blue plot of Figure 6.4. This is called a Bode plot, in honor of a famous Bell Labs engineer, Henryk
Bode, and it breaks apart the magnitude (top curve) and phase (bottom curve) responses. Further-
more, not only is the magnitude is plotted in dB, but the frequency axis is also logarithmic. Anyone
who has looked at audio equipment specifications has seen curves such as these. They indicate that
signals at frequencies well below the corner frequency will pass through the filter unaltered, while
signals at frequencies above the corner frequency will be attenuated. Hence, this is a “low pass” filter
as low frequencies will pass.

The lower “phase” plot is a lot less familiar. Basically, it shows how signals of different frequencies

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
316

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

are delayed by different amounts. Low frequency signals experience almost no delay, while high
frequency signals experience up to 90 degrees of delay.

We can also see that the green and magenta curves which represent two digital filter approximations
of the analog filter do not match all the way. In particular, we see that there is “extra” negative phase,
which is entirely due to the digital approximation. This distortion can be reduced by raising the sample
frequency (lowering the time between successive samples), but it never completely goes away.

A way to understand the frequency at which the low pass filter acts is to use a special version of the
frequency, where s = jω = j2π f . Our pole at s = −a means that in terms of f we have a pole when
f = − ja

2π . Usually, we drop the − j, but we know that if we want a low pass filter that lets things pass at
frequencies below fc and attenuates them at frequencies above fc, then we set a = 2π fc.

Now, you have my to trust me here, but we map poles in continuous time to poles in discrete time with
the relationship:

z = e−aTS (6.12)

where TS is the sample period (the time between successive samples) of our digital filter. Since our
digital filter of (6.8) has a pole at z = α we set

α = e−aTS . (6.13)

Equation 6.8 now becomes

F(z) =
1− e−aTS

1− e−aTS z−1
=

b0z
z + a1

, (6.14)

where b0 = 1− e−αTS and a1 = −e−αTS . This filter corresponds to the green curve in Figure 6.4.

Another way go from (6.11) to (6.8) is to know from our study of differential equations and Laplace
Transforms (pretend that you’ve had these already) that the s in Equation 6.11 represents differenti-
ation in the time domain (it does). Since we are going to the discrete domain, one thing we would
want to do is to approximate differentiation. There are a lot of ways to do this, some more dubious
than others, but let’s choose one that is halfway decent most of the time, the trapezoidal rule (TR)
equivalent or Tustin’s rule [15]:

s −→ T
2

z − 1
z + 1

. (6.15)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
317

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

(The simplest explanation of this rule is that it is what you use when you want to approximate an
integration period by a linear fit to the two endpoints. The area that approximates the slice being
integrated is a trapezoid (hence the name), but rather than using this relationship to integrate we are
using the inverse of the relationship to differentiate.)

Now, we start with (6.11) and substitute in Equation 6.15.

FT (z) =
a

T
2

z−1
z+1 + a

=

a2
T

z−1
z+1 +

aT
2

. (6.16)

FT (z) =

a2
T

1+ aT
2

(z + 1)

z − 1− aT
2

1+ aT
2

=
b0z + b1

z + a1
, (6.17)

where b0 = b1 =
a2
T

1+ aT
2

and a1 = −
1− aT

2

1+ aT
2

. If we want to check the DC gain (response to a constant signal),

we set z = 1 (trust me here, this is the digital version of DC)

FT (1) =

a2
T

1+ aT
2

(2)

1− 1− aT
2

1+ aT
2

=
aT

2aT
2

= 1 (6.18)

This filter corresponds to the magenta curve in Figure 6.4.

Hmm. What just happened here? I used two different methods to go from the analog filter to the
digital filter. The DC gains are the same (1), but the filters aren’t the same. Well, it turns out that we
can approximate e−aT by

e−aT ≈
1− aT

2

1+ aT
2

. (6.19)

This means that the denominators actually are pretty close. In fact, as T −→ 0 this approximation
becomes increasingly accurate. If T is our sample period, TS then we see how fast sampling makes
all our discrete models more accurate.

The numerator is a different story. The two methods yield slightly different digital numerators. For
now, let me just say that the differences involve different digital design philosophies. The results in
the Bode plot look the same for these first order filters, but will diverge for higher order filters (filters
defined by more complicated polynomials).

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
318

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

The morals of this exercise:

1) We can design/understand physical properties and behavior of filters using analog con-
cepts.

2) We can map these analog designs to digital (computer) designs by digital approximations
to derivatives/integrals over a time step or by using pole/zero mapping methods (the α =
e−aT thing).

3) There is generally a trade off between mathematical exactitude of the approximation and
retaining any physical intuition.

4) Good design involves understanding the analog (physical world) and the digital (computer
world).

5) We can do things that produce exact digital results, but most physical intuition is lost.

Note that a lot of the IIR digital filters one sees in programs are these simple first order filters. They
work, but not that well, especially when we are trying to knock down noise and interference. Later
sections will give examples of higher order filters that give better bang for the buck. Mostly, these
can be composed of combinations of second order filters. From these, we can get low pass (lets low
frequency signals pass), high pass (lets high frequency signals pass and keeps out bias), band pass
(lets frequencies in a specified band go through), and notch (takes out signals at a single frequency
out). First, we’ll go the other way and describe a very common FIR filter, the averaging filter.

6.7 Averaging Filter

It’s often the case that signals are simply averaged. We take a running average of say the last 7
samples and produce a filtered output. We can describe this as an FIR filter. A diagram for this is in
Figure 6.5. Say

y(k) =
1
N

[u(k) + u(k − 1)+ . . . + u(k − N + 1)] . (6.20)

This is an N-tap averager. It averages the last N values. We can look at the discrete frequency domain
polynomial by applying z−1 for each time delay so that

F(z) =
1
N

[

1+ z−1 + z−2 + . . . + z−N+1
]

=
1− z−N

1− z−1
(6.21)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
319

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

Time Samples

Timet = 0 T = 1/fS S

Figure 6.5: An N-sample averaging filter. N samples are summed, and then the result is divided by N.

=
zN−1

NzN−1

[

1+ z−1 + z−2 + . . . + z−N+1
]

(6.22)

F(z) =
1
N

(

zN−1 + zN−2 + . . . z1 + 1
zN−1

)

(6.23)

So, an N-tap averager is an FIR filter of order N-1. It is called an all zeros filter because it can be
defined as in Equation 6.21 as a polynomial in z−1. However, it really is a filter that is a rational function
of polynomials in z, where the numerator defines the behavior of the filter, but the denominator is N-1
roots at z = 0. As for the roots of the numerator? Well it turns out that a N − 1th order polynomial
with all coefficients equal to 1, has N − 1 complex roots of radius 1. That is, if we draw a circle of
radius 1 on the complex z plane, all the roots of this polynomial will be on that circle, and all the roots
of the denominator will be at the center of the circle. (Include a diagram.) (This circle is significant
enough in digital filter work to be known as the “unit circle” and where the roots of the numerator and
denominator are – relative to the circle – tell us a lot about the filter.)

Another interpretation comes from the far right side of Equation 6.21, where we see that this N tap
FIR filter can be implemented as an integrator that subtracts off a delayed version of the input. Thus,
an averager is the same as an IIR filter that is an integrator, but that subtracts off the input from
N samples in the past. In other words, this IIR filter performs an FIR operation. This is known as
a Cascaded Integrator Comb (CIC) filter [164]. It can be used to dramatically lower the number of

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
320

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

TI
Timet = 0

Figure 6.6: An analog finite integrator filter, also called integrate and dump. The integration takes place
over a length of time,TI, and the result is usually divided by that to get an average value.

computations needed to average N samples (see the integrator in the low latency, high fidelity AFM
demodulator of Section 7.19), but – and this is really important – being an integrator one has to be
very careful that even small differences in subtracting off an input can lead to an integrated error that
overflows the registers very quickly.

The averaging filter is almost always associated with digital filters. The analog equivalent would be
something called an integrator working over finite time:

y(t) =
1
TI

∫ TI

0
u(t)dt. (6.24)

This is diagrammed in Figure 6.6. If we set TI = TS we see part of the Zero Order Hold Equivalent.

The frequency domain version of this (you just have to trust me until you take the classes) looks like:

Y(s) =

(

1
s
− 1

s
e−sTI

)

U(s) or equivalently (6.25)

Y(s)
U(s)

=
1− e−sTI

s
. (6.26)

The weirdness is the e−sTI , which isn’t a rational function of polynomials. There are ways to approxi-

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
321

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

mate this with rational polynomials (called a Padé approximation, which has its own issues). My point
was not that we would ever use the finite time analog integrator, but that there really is an analog
version of this common digital filter.

6.7.1 Mini Summary

Okay, there was a lot of stuff about IIR and FIR filters here. How do I know which one to use?

FIR Filter: • Always stable.

• Can have linear phase (technical but sometimes important).

• Easy to multiplex (useful for filter banks).

• Computationally easy.

• BUT . . . lots of taps for a given filtering action.

IIR Filter: • A lot less phase per tap, but more complicated.

• Can be unstable if we don’t pick coefficients the right way.

• BUT few taps for filtering.

• USE this when delay matters.

6.8 Two Simple Methods to Remove Outliers

For a variety of reasons, sensor data may be corrupted by really large noise values. This is hard to
remove with linear filtering, which essentially is a weighted average of past inputs (FIR) or past inputs
and outputs (IIR). Large outliers skew the results of such filters. At some point, one has to decide if
those large deviations are so far out of the model that we should throw them out. For example:

• A twos complement ADC or DAC will – when crossing an analog 0 value, go from all digital all
1s to digital all 0s (or the other way) and cause a large noise spike in the digital circuitry. Even
an offset binary format can go from almost all 1s to all 0s with a MSB (most significant bit) 1

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
322

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

when crossing analog 0. While it may not be enough to flip bits that transient can radiate to
other analog signal lines.

• A signal may overflow a fixed-point number, causing it to go from its maximum possible positive
value to its minimum possible negative value (or vice-versa). This can be prevented with proper
embedded software or firmware design, but many systems exhibit this.

• Noise on the digital supply rails may cause some signal to go from a normal value to its maxi-
mum or minimum digital value and back.

• In systems with electronics near high voltage components of the system, arcing in the high
voltage sections, or large signal noise in actuators, motors, etc. can manifest itself in the digital
section as “pops” and dropouts.

None of these digital “jumps” or “pops” are part of our normal system theory. They are not linear,
they are not happening on a predictable schedule, and they provide no useful information to our
measurements and our algorithms. Removing them can only minimally touch the data processing
inequality [170] because their appearance in our signal cannot be considered part of the same Markov
process. The question then is how to remove such useless, parasitic signals if we cannot use linear
filtering.

k-1 k k+1

delay memory (order = 2)

After value at k+1 read in.

k-1 k k+1

delay memory (order = 2)

After value at k+1 read in.

Figure 6.7: Simple filter memory and indexing for outlier removal.

If we consider a run of data and think about the last N + 1 samples, including the current one. For
simplicity, we make N even. If we look at the point in the center, there are N/2 samples on either side.
In the examples of Figure 6.7, N is either 2 or 4, meaning that the center point is has either one or
two points on either side.

• A median filter computes the median (center value in a ranked order of the values in the buffer)
and replaces the sample at time index k with that median of the N + 1 points in the buffer. The
median of the group usually will remove the outlier in this nonlinear way, but when we do not
have an outlier it can lower the quality of the data compared to linear filtering. (A mean is an
unbiased estimate, while a median is not.)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
323

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

• An outlier removal filter estimates the value at time index k using the other N points. If N+1 = 3,
then the point at index k is the average of the values at k − 1 and k + 1, a linear estimate. If the
measured value at time k is outside some predetermined bounds from the estimate, we replace
the measurement by the estimate. For larger values of N, more sophisticated estimators can
be used, but the basic idea is the same.

This section should be expanded, but we can make a couple of points right away:

• The longer filters provide more checking, but incur more delay. Our DSP friends don’t care, but
we in feedback should.

• A median filter is always on, always replacing. Requires a sort (O(N2)) to get median. An outlier
removal filter only replaces a value that is way out of bounds. Requires a simple fit (O(N)) and
a few comparisons (essentially a case statement).

6.9 Some Useful Filters

This section will give some classic filters and explain how to put them into computer code.

Filter Computer Version
Integrate and dump FIR Averager

First Order Analog Low Pass First Order Digital Low Pass
Second Order Analog Low PassSecond Order Digital Low Pass

Biquad Notch Biquad Notch
Second Order Analog High PassSecond Order Digital High Pass

Table 6.4: Some useful filters.

The first order filters were already presented. For this section, I will focus on the second order re-
sponses that are useful as filters, and in particular how to generate useful second order digital filters
from the analog values.

F(s) =
b0s2 + b1s + b2

s2 + a1s + a2
, (6.27)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
324

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

F(s) = b0F̃(s)

= b0

(

s2 + b̃1s + b̃2

s2 + a1s + a2

)

. (6.28)

Alternately, we can define these coefficients in terms of things that mean something to dynamic re-
sponse. If we consider the second order polynomials of the numerator and denominator to have
possibly complex roots, then we can define the parameters that would make things oscillate. Consid-
ering only the denominator polynomial,

D(s) = s2 + 2ζωs + ω2 (6.29)

we have the roots at

s =
−2ζω ±

√

4ζ2ω2 − 4ω2

2
(6.30)

=
−2ζω ± 2ω

√

ζ2 − 1

2
(6.31)

= −ζω ± ω
√

ζ2 − 1 (6.32)

If ζ > 1 then the roots are real and distinct. If ζ < 1 then the roots are a complex pair. If ζ = 1 then
the roots are real and equal. One of the major advantages of using a second order filter over a pair
of first order filters strung together is that we can use the complex pair to get much, much sharper
responses than we could from a real pair.

fN Center frequency of numerator (Hz)
ωN = 2π fN Center frequency of numerator (rad/s)
QN Quality factor of numerator
ζN =

1
2QN

Damping factor of numerator

fD Center frequency of denominator (Hz)
ωD = 2π fD Center frequency of denominator (rad/s)
QD Quality factor of denominator
ζD =

1
2QD

Damping factor of denominator

KF Filter gain

Table 6.5: Parameters that define a second order filter.

Okay, so if we have numerator and denominator, we need to do the bookkeeping and label our quan-
tities with N and D subscripts so that we can keep them straight:

F(s) = KF F̃(s) = KF
s2 + 2ζNωN s + ω2

N

s2 + 2ζDωDs + ω2
D

(6.33)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
325

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

The numerator and denominator are second order and thus we easily find the roots via the quadratic
equation. By adjusting KF we can set the gain at a single point. For example, it is common to set the
gain to a steady input, the DC gain, to 1. For this we set

KF =
ω2

D

ω2
N

, (6.34)

which means that when the input signal is constant/steady/unchanging (s = 0) then we get F(s) = 1.

6.9.1 Second Order Low Pass Filter

M
a

g
n

it
u

d
e

 (
d

B
)

Pole Natural Frequency

-40 dB/decade slope

0 dB

100 Hz 1 kHz 10 kHz

log Frequency

P
h

a
s

e
 (

d
e

g
)

0

-180
100 Hz 1 kHz 10 kHz

Figure 6.8: Schematic response of a low pass filter implemented with a simple second order section.

Low pass filters can and do show up as both analog and digital filters. We generally think of low pass
filters as being constructed with analog circuitry, but most physical systems in the universe exhibit low

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
326

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

pass behavior. Thus, the low pass filter is a great metaphor for understanding the behavior of most
real world systems. Eventually, most physical things stop responding to higher frequency inputs. As
Professor Bob Grey of Stanford used to say, “Pure white noise is an abstraction. It means that there
is a possibility of things moving infinitely fast over infinitesimal intervals, which requires the release
of infinite energy and makes the universe blow up.” In the same way, infinite bandwidth is also an
abstraction and so everything either blows up or has finite bandwidth.

If we take a special case of Equation 6.27 and set b0 = b1 = 0 and b2 = ω
2
D. This filter is in the form

of a simple second order resonance,

F(s) =
ω2

D

s2 + 2ζDωDs + ω2
D

(6.35)

and is shown schematically in Figure 6.8. Equation 6.35 can describe a lot of physical phenomena, but
in order to describe a good filter, we want to adjust ζD so that it neither provides too much damping
(resulting in a larger negative phase earlier and a less distinct corner in magnitude) nor too little
damping (resulting in ringing). Generally, this means that 0.5 ≤ ζD ≤ 1. With ζD = 1 we arrive at
critical damping, where the roots of the denominator are real and equal. However, this is often a bit
overdamped from the perspective of filtering and we can afford to drop the damping to ζD =

√
2

2 ≈
0.707. Even damping factors of 0.6 result in very little peaking of the filter response. The “corner
frequency” is set by fD where ωD = 2π fD. We need ωD for the equations, but it is easier to think in
terms of Hertz (cycles/second) rather than radians/second, so I like to start with fD and compute the
rest.

This is an effective low pass filter. After the corner frequency the gain drops off at −40dB/decade, or in
non-logarithmic terms, for every factor of 10 in frequency that one goes out past the corner frequency,
the signal is attenuated by a factor of 100 (which corresponds to -40 dB). The other thing to note is
that this filter is far more efficient in filtering than a pair of first order low pass filters, provided that we
constrain ζD as above. The best a cascade of two first order filters can do is to have the poles be real
and matched (so the same as our ζD = 1 critically damped case. However, by allowing for complex
conjugate roots, we get a sharper filter response with minimal peaking. The key to this is intelligently
picking ζD.

If we go out even further in frequency, the attenuation is truly impressive. However, we have taken a
phase hit to do this and at high frequency our phase is −180◦. We can create a filter with programmed
attenuation, but where the phase returns to 0 by having a numerator with two zeros as well, and this
is described in Section 6.9.3. However, before we go there, it’s worth taking a look at the dual of our
two pole filter, which is the two zero filter.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
327

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

6.9.2 Second Order High Pass Filter

M
a

g
n

it
u

d
e

 (
d

B
)

Zero Natural Frequency 40 dB/decade slope

Keeps going up forever

0 dB

100 Hz 1 kHz 10 kHz

log Frequency

P
h

a
s

e
 (

d
e

g
)

0

180

100 Hz 1 kHz 10 kHz

Figure 6.9: Schematic response of a high pass filter implemented with a simple second order section and
all zeros. This is not physically realizable.

If we take a special case of Equation 6.27 and set a0 = a1 = 0 and a2 = ω
2
N . This filter a weird kind of

filter, which could never be implemented in the real world

F(s) =
s2 + 2ζNωN s + ω2

N

ω2
N

(6.36)

and is shown schematically in Figure 6.9.

Equation 6.36 describes this “all zeros analog filter” which isn’t really something we could build be-
cause it has pure differentiation in it with no frequency limits. We see that the gain curve in Figure 6.9
keeps rising with frequency, so this corresponds to having infinite gain at infinite frequency, which is
generally bad unless you want another Big Bang. Still, this shows us conceptual form, that we could,

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
328

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

at least for some low frequencies, increase the gain and give positive phase (which is really akin to
predicting the future). In the physical world, though, we need to roll this off at some frequency. The
other detail to remember is that we can generate all zeros filters in the digital domain. This is what
FIR filters are. Remember, though, that FIR filters actually do have poles, they are just at z = 0.

As with the low pass, we would want to adjust ζN so that it neither provides too much damping (re-
sulting in a larger positive phase earlier and a less distinct corner in magnitude) nor too little damping
(resulting in ringing). Generally, this means that 0.5 ≤ ζN ≤ 1. The math is pretty much analogous to
the filter in Section 6.9.1, except that it doesn’t describe something physical.

6.9.3 Biquad Low Pass Filter

M
a

g
n

it
u

d
e

 (
d

B
)

Pole Natural Frequency

Zero Natural Frequency-40 dB/decade slope

0 dB

100 Hz 1 kHz 10 kHz

log Frequency

P
h

a
s

e
 (

d
e

g
)

0

-180
100 Hz 1 kHz 10 kHz

Figure 6.10: Schematic response of a low pass filter implemented with a biquad.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
329

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

For a biquad low pass filter, we want fD < fN or from Equation 6.33, ωD < ωN . Typically, we value
flat response with no peaking in a low pass filter, so ζD and ζN are generally greater than 0.5 or
0.7. Because the filtering effect goes away when we are beyond fN the amount of filtering we get is
determined by the separation between fD and fN . Of course, the lower fD the less bandwidth in the
filter.

6.9.4 Biquad High Pass Filter

M
a

g
n

it
u

d
e

 (
d

B
)

Pole Natural Frequency

Zero Natural Frequency

40 dB/decade slope

0 dB

100 Hz 1 kHz 10 kHz

log Frequency

P
h

a
s

e
 (

d
e

g
)

0

-180
100 Hz 1 kHz 10 kHz

Figure 6.11: Schematic response of a high pass filter implemented with a biquad.

The biquad high pass filter is the opposite of the biquad low pass filter. In this case, fN < fD or from
Equation 6.33, ωN < ωD. Typically, we value flat response with no peaking in a high pass filter, so
ζD and ζN are generally greater than 0.5 or 0.7. Because the filtering effect goes away when we are
beyond fD the amount of filtering we get is determined by the separation between fD and fN . Of

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
330

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

course, the higher fD the higher the frequency at which the filter’s pass band applies.

6.9.5 Two Biquad Band Pass Filter

M
a

g
n

it
u

d
e

 (
d

B
)

0 dB

100 Hz 1 kHz 10 kHz

log Frequency

P
h

a
s

e
 (

d
e

g
)

0

-180
100 Hz 1 kHz 10 kHz

Figure 6.12: Schematic response of a band pass filter implemented with a pair of biquads, one low pass
and one high pass.

The two biquad bandpass filter is implemented with a high pass filter cascaded with a low pass filter.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
331

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

M
a

g
n

it
u

d
e

 (
d

B
)

0 dB

100 Hz 1 kHz 10 kHz

log Frequency

Figure 6.13: Schematic response of a notch filter implemented with a single biquad. The resonant frequen-
cies of numerator and denominator are the same, but the numerator has a much smaller damping factor,
resulting in a strong dip at the notch frequency.Is there a reason to include phase?

6.9.6 Biquad Notch Filter

There are times when we want to kill a single frequency of signal without affecting much around
it. This is where a notch filter becomes useful. This implementation uses the same frequencies in
numerator and denominator fD = fN , but ζN << ζD. This results in a response similar to Figure 6.13.
By raising both ζN and ζD in proportion, we can get the same filtering effect but over a much narrower
span. This is useful when the desired notch frequency is known very well. If it moves, or if there is
any uncertainty, the notch must be made wider, which results in larger effects in nearby frequencies.

6.9.7 Biquad Peak Filter

More rare than the notch are the times when we specifically want to highly amplify one frequency,
but they exist. This implementation also uses the same frequencies in numerator and denominator
fD = fN , but ζN >> ζD. This results in a response similar to Figure 6.14. By raising both ζN and ζD in
proportion, we can get the same filtering effect but over a much narrower span. This is useful when
the desired peak frequency is known very well. If it moves, or if there is any uncertainty, the notch
must be made wider, which results in larger effects in nearby frequencies.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
332

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

M
a

g
n

it
u

d
e

 (
d

B
)

0 dB

100 Hz 1 kHz 10 kHz

log Frequency

Figure 6.14: Schematic response of a peak filter implementedwith a single biquad. The resonant frequen-
cies of numerator and denominator are the same, but the denominator has a much smaller damping factor,
resulting in a strong rise at the peak frequency.Is there a reason to include phase?

6.10 Filter Summary

A simple but effective filter design procedure can now be summarized here:

• Pick out a physical response that we want to adjust.

• Pick the correct filter form.

• Pick the analog (physical world) coefficients.

• Convert to digital (computer) form. (Section 3.6)

• Drop into filter blocks.

• Bazinga!

Understanding these basic shapes (and a few others), we are now in a position to drop them into a
controller to reshape portions of the open loop frequency response. Of course, our standard poly-
nomial design methods want us to multiply them all out, which will cause us to lose a physical un-
derstanding of what is going on. Instead, of that Brand X, I’m going to suggest we learn about The
Multinotch as a vehicle for housing these pieces.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
333

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

6.11 The Multinotch

The Multinotch was created specifically for loop shaping on lightly damped, high frequency dynamics
in a system that could not tolerate much time delay. The original control system was in programmable
logic (FPGA) and the math was fixed point. The idea was to have both the positive numerical stability
properties of biquad chains without giving up on the ability to do precalculation. The resulting system
had a lot of other positive attributes. The filter blocks were compact, with roughly the same number
of free parameters as polynomial form or canonical realizations. The representational accuracy re-
mained high in converting from continuous to discrete models and from floating point to fixed point
– although I had to put in a bunch of tweaks to take care of some extreme cases. Under duress, I
had to find a state space form that could be used on lightly damped mechatronic systems, and so
I converted The Multinotch to state space with the Biquad State Space (BSS) form (Section 9.15).
That had its own benefits that I couldn’t have anticipated. The bookkeeping in these forms is tedious,
but they have a lot of advantages that seem intuitively obvious the first time one runs through them.
The next few sections will go through some of the papers published on this, hopefully pulling the work
together in an understandable way.

Control of lightly damped mechatronic systems is often accomplished in practice with a PID-like con-
troller in series with a filter to limit the effects of high frequency resonances as diagrammed in Fig-
ure 6.15. The high frequency filtering is often limited by an inability to precisely match multiple lightly
damped resonances with a digital filter, and by the extra computational delay of the such filters. The
multinotch is a filter topology that addresses these issues, allowing for precise matches to many lightly
damped resonances and anti-resonances, while maintaining a small and fixed computational delay.

Two issues that must be addressed when using digital filtering in a feedback loop are numerical issues
and computational latency. Numerical issues typically come from the implementation of algorithms
and filters in finite word length arithmetic. In particular, high order polynomial filters lose both physical
intuition and numerical sensitivity because of how physical parameters get compressed into coeffi-
cients.

The phase lag due to latency in a feedback loop erodes stability and performance characteristics. For
a causal filter, the latency is in part determined by the filter length. In particular, for a symmetric tap
finite impulse response (FIR) filter with N taps and a sample period of TS , the average latency through
the filter will be N

2 TS if N is even, and N−1
2 TS if N is odd. Infinite Impulse Response (IIR) filters are

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
334

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

Mechatronic
Plant

PID Filter

ADC

DACS
-

r yu

Figure 6.15: A practical digital control loop for a mechatronic system. The digital controller is often im-
plemented as a PID like controller in series with filtering tolower the effect of high frequency resonances.

usually favored over FIR filters in feedback loops, as they can achieve similar bandwidth shaping with
considerably smaller average delay (find reference).

The second source of latency is simply the time required to compute the filter equations between
the time that a new sample comes into the filter and the filter produces its output. This delay is
generally - but not necessarily - less than one sample period, but it is complicated by the fact that
it can change with the number of taps in a filter. That is, a second order filter obviously takes fewer
computation steps than a tenth order filter. This variable latency can cause unexpected problems with
the control loop. A standard technique to minimize this variable latency is to compute everything that
does not depend upon the most recent sample ahead of time in a precalculation [16], diagrammed in
Figure 6.1. Once the most recent sample arrives, the last few calculations are performed and the filter
output is produced. This has the benefit of not only minimizing the computational latency, but also of
making it independent of filter length.

However, doing a precalculation usually involves using a form of the digital filter that can have numer-
ical issues with finite word length. The structure of the multinotch allows it to minimize the compu-
tational latency using precalculation, while still preserving the numerical properties needed for finite
word length arithmetic.

This helps mitigate a third common, but hard to quantify source of latency, which is overly conservative
filter design because of the designers lack of confidence in the ability of the implemented digital filter
to perform as desired (cite some disk drive, mechatronic papers). This lack of confidence means that
rather than implementing a sharp notch filter, designers opt for more conservative low pass filters
to more indiscriminately damp out any dynamics at higher frequency. The filters are “low Q”, that
is overly broad compared to the actual dynamics, and therefore more robust to parameter changes
caused by finite wordlength effects. By the same token, broadening the width of the filter means
that the negative phase effects reach far beyond the dynamics they were meant to cancel, especially
affecting the lower frequency dynamics where the nominal control action is being performed. These
filters are commonly employed in mechatronic systems, but the phase lag due to such filters puts

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
335

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

a severe limit on the achievable closed-loop bandwidth. The use of precisely matched notch and
resonant filters to equalize a dynamic response can be used to achieve significantly higher bandwidth
[19].

6.12 Digital Filter Equations and Biquads

The problem with polynomial filters is that the elements that generate discrete filter coefficients can
become extremely sensitive, particularly when they relate to high Q elements near the unit circle.
Essentially, as the coefficients of the simple poles and zeros or complex pairs get convolved together
to form the polynomial coefficients, small physical parameter changes get distributed across many
polynomial coefficients. Not only is physical intuition completely lost, but relatively large changes in
a physical value may be only a few bits of any one polynomial coefficient value. This is particularly
true with fixed point arithmetic used in many DSP and FPGA (Field Programmable Gate Array) imple-
mentations. Thus, what we would like to do is implement the filter of (6.2) as a series of second order
filters, known as biquads, but still maintain the ability to do final calculations in the form of (6.4) [169].

6.13 Biquads

S S

S S

-

u (k)0

z
-1

z
-1

a0,1

d (k)0 y (k)0

b0,1

a0,2 b0,2

d (k-1)0

d (k-2)0

b0,0

Figure 6.16: A second order polynomial filter in Direct Form II, known as a digital biquad filter.

Biquads are second order polynomial filter sections that typically are numerically well behaved. For

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
336

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

example, if we implement a tenth order filter using five biquads, coefficient quantization issues that
we might get with a tenth order polynomial filter are localized to each biquad and therefore limited.
The latter might be something that we would do if we had a floating point DSP chip, but would not
be advisable for fixed point calculations such as the ones that we do on the FPGA. Furthermore,
assigning the poles and zeros of the filter so that the biquad poles and zeros are close to each other
in the z plane implies that the numerator and denominator will tend to compensate for each other so
that at frequencies far from those of the biquad, the section has a minimal effect on the response. So,
the biquad of Figure 6.16 would look like:

Y0(z)
U0(z)

= N0(z) =
b0,0 + b0,1z−1 + b0,2z−2

1+ a0,1z−1 + a0,2z−2
(6.37)

which gets implemented in the time domain as:

y0(k) = −a0,1y0(k − 1)− a0,2y0(k − 2)+ b0,0u0(k)

+b0,1u0(k − 1)+ b0,2u0(k − 2) (6.38)

It turns out that it is easier to implement this using the delay format [169] which resembles a controller
canonical form [171] in control or a direct form II IIR filter [167, 172, 173]:

d0(k) = −a0,1d0(k − 1)− a0,2d0(k − 2)+ u0(k) (6.39)

y0(k) = b0,0d0(k) + b0,1d0(k − 1)+ b0,2d0(k − 2) (6.40)

Biquads are nice because the growth in values can be limited by the short nature of the filter. Thus,
finite word length problems are minimized as the sums from the numerator and denominator can
balance each other out for a well designed filter [169].

As with (6.3), only one part of the filter actually depends upon the current input, u(k), and that is the
calculation in (6.38). Likewise, in (6.39) only one part of the sum is due to u(k), and there is only
one multiply involving d(k) in (6.40). Everything else can be calculated ahead of time. So, we can
generate the precalculation for this form of the biquad as:

d0(k) = prec0,1(k) + u0(k) and (6.41)

y0(k) = b0,0d0(k) + prec0,2(k) where (6.42)

prec0,1(k) =−a0,1d0(k − 1)− a0,2d0(k − 2) and (6.43)

prec0,2(k) = b0,1d0(k − 1)+ b0,2d0(k − 2). (6.44)

As before, we see that prec0,1(k) and prec0,2(k) depend only on prior values of the filter input and
output and can be computed ahead of time.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
337

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

6.14 Higher Order Filters as a Series of Biquads

N (z)0 N (z)1 N (z)N

input

u(k)

output

y(k)

Figure 6.17: Series connection of multiple filters. In our case, these filters are each a second order digital
transfer function (biquad).

S SS S

S SS S

- -

u(k)

z
-1

z
-1

z
-1

z
-1

a0,1 a1,1

d (k)0 y (k)0 y (k)1d (k)1

b0,1

b0,0

b1,1

b1,0

a0,2 a1,2b0,2 b1,2

S SS S

S SS S

- -
z

-1
z

-1

z
-1

z
-1

an-1,1 an,1

d (k)n-1 y (k)n-1 y (k)n y(k)d (k)n

bn-1,1

bn-1,0

bn,1

bn,0

an-1,2 an,2bn-1,2 bn,2

Figure 6.18: An expanded realization view of the serial biquad chain from Figure6.17.

If we wish to stack individual blocks of biquads together to filter out multiple resonances and/or anti-
resonances, we can simply do a serial cascade of blocks as shown in Figure 6.17, which could be
represented internally as shown in Figure 6.18. The problem here is that in this form it is not possible
to do precalculation of anything but the first block, because the downstream blocks all depend upon
the output of the previous blocks. Consider the example of the two biquad case (Figure 6.19), where
in we augment Equations 6.37–6.40 with:

Y1(z)
U1(z)

= N1(z) =
b1,0 + b1,1z−1 + b1,2z−2

1+ a1,1z−1 + a1,2z−2
(6.45)

which gets implemented in the time domain as:

y1(k) = −a1,1y1(k − 1)− a1,2y1(k − 2)+ b1,0u1(k)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
338

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

b1.0
b0,1S SS S

S SS S

- -

u (k)0

z
-1

z
-1

z
-1

z
-1

a0,1 a1,1

d (k)0 y (k)0 y (k)1d (k)1

b1,1

a0,2 a1,2b0,2 b1,2

b0,1

Figure 6.19: A two biquad cascade.

+b1,1u1(k − 1)+ b1,2u1(k − 2) (6.46)

The delay forms are:

d1(k) = −a1,1d1(k − 1)− a1,2d1(k − 2)+ u1(k) (6.47)

y1(k) = b1,0d1(k) + b1,1d1(k − 1)+ b1,2d1(k − 2) (6.48)

with precalcs implemented as:

d1(k) = prec1,1(k) + u1(k) and (6.49)

y1(k) = b1,0d1(k) + prec1,2(k) where (6.50)

prec1,1(k) =−a1,1d1(k − 1)− a1,2d1(k − 2) and (6.51)

prec1,2(k) = b1,1d1(k − 1)+ b1,2d1(k − 2). (6.52)

Furthermore, they are stitched in series by letting the overall input go into biquad 0, the overall output
come from biquad 1 and using the output of biquad 0 as the input to biquad 1. That is

u0(k) = u(k), y(k) = y1(k), and u1(k) = y0(k). (6.53)

We see that y1(k) depends on b1,0d1(k), which depends on u1(k) = y0(k), which depends on b0,0d0(k),
which depends upon u0(k). This is obvious if we try to chain these together:

d1(k) = prec1,1(k) + u1(k) = prec1,1(k) + y0(k) (6.54)

= prec1,1(k) + b0,0d0(k) + prec0,2(k) (6.55)

= prec1,1(k) + b0,0
[

prec0,1(k) + u0(k)
]

+ prec0,2(k) (6.56)

d1(k) = prec1,1(k) + prec0,2(k) + b0,0
[

prec0,1(k)
]

+ b0,0u0(k) (6.57)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
339

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

The output, y1(k) is obtained via:

y1(k) = b1,0d1(k) + prec1,2(k) (6.58)

= prec1,2(k) + b1,0
[

prec1,1(k) + prec0,2(k) + b0,0prec0,1(k) + b0,0u0(k)
]

(6.59)

y1(k) = prec1,2(k) + b1,0
[

prec1,1(k) + prec0,2(k)
]

+ b1,0b0,0prec0,1(k) + b1,0b0,0u0(k) (6.60)

We can add in a third biquad:

d2(k) = prec2,1(k) + u2(k) = prec2,1(k) + y1(k) (6.61)

= prec2,1(k) + prec1,2(k) + b1,0
[

prec1,1(k) + prec0,2(k)
]

+b1,0b0,0
[

prec0,1(k)
]

+ b1,0b0,0u(k) (6.62)

and likewise we get y2(k) via

y2(k) = b2,0d2(k) + prec2,2(k) (6.63)

y2(k) = prec2,2(k) + b2,0
[

prec2,1(k) + prec1,2(k)
]

+b2,0b1,0
[

prec1,1(k) + prec0,2(k)
]

(6.64)

+b2,0b1,0b0,0prec0,1(k) + b2,0b1,0b0,0u0(k).

Several things start to emerge about this recursion. First, there is a definite pattern. Next, we see that
we can still precompute our original precalc sections, but each one is scaled by some concatenation
of bi,0 terms to update the most recent di(k) and yi(k) values. This means that the more biquad
sections we add, the more multiplications are required to generate the current di and yi terms once
the u(k) input is available. The further down the chain we go, the more multiplies need to be computed
once the current For the ith biquad, counting from 0, di(k) requires i multiplies and yi(k) requires i + 1
multiples (after u(k) is available). This means that the computational latency grows with filter length.

6.15 An Improved Structure

A look at Equations 6.62 and 6.64 reveals that the problem lies with the bi,0 terms. If these terms
were only 1, then our problem would be solved. Remembering third grade mathematics, we note that
multiplication is associative, and thus we can factor out the bi,0 terms from our filters, ending up with
an equivalent cascade of biquads:

Y(z)
U(z)

= Nn(z)Nn−1(z) · · · N1(z)N0(z) (6.65)

= bn,0 · · · b1,0b0,0Ñn(z) · · · Ñ1(z)Ñ0(z) (6.66)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
340

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

S SS S

S SS S

- -

u(k)

z
-1

z
-1

z
-1

z
-1

a0,1 a1,1

d (k)0 y (k)0 y (k)1d (k)1

a0,2 a1,2

~ ~ ~~

S SS S

S SS S

- -
z

-1
z

-1

z
-1

z
-1

an-1,1 an,1

d (k)n-1 y (k)n-1 y (k)n y(k)d (k)n

b

an-1,2 an,2

~ ~ ~~

b0,1

~

bn-1,1

~

b1,1

~

bn,1

~

b0,2

~

bn-1,2

~

b1,2

~

bn,2

~

Figure 6.20: The updated biquad cascade, with factored outb0 terms.

where

Ñi(z) =
1+ b̃i,1z−1 + b̃i,2z−2

1+ ai,1z−1 + ai,2z−2
(6.67)

b̃i,1 =
bi,1

bi,0
, and b̃i,2 =

bi,2

bi,0
. (6.68)

The direct feedthrough gains are concatenated together as:

b̄ = bn,0bn−1,0 · · · b1,0b0,0. (6.69)

This structure, shown in Figure 6.20 has the advantage that:

• It retains the biquad form with the same poles and zeros as the original filter of Figure 6.18.

• d̃i(k) and ỹi(k) can be computed from summing precalculated terms with the current input, u(k).

• Once u(k) is available, the computation of y(k) involves two additions of precalculated terms and
one multiplication by b̄. This means that the computational latency between the measurement
input and the filter output is very small and independent of filter length.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
341

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

• The coefficients of individual biquad sections are computed independently, retaining most of the
physical intuition in the filter, even after discretization.

• Picking complex pole-zero pairs that are close to each other generally limits the signal growth
in any biquad block, which is helpful for fixed point math.

• Such a structure can be implemented in such a way that different biquad sections can be turned
on or off. In this case only the aggregate direct feedthrough gain, b̄ needs to be adjusted when
a biquad block is activated or deactivated in a real time controller.

Looking at the structure, we see that:

d̃0(k) = DP,0(k − 1)+ u(k), (6.70)

d̃i(k) =
i∑

j=0

DP, j(k − 1)+
i−1∑

j=0

FP, j(k − 1)+ u(k), (6.71)

for i ≥ 1, and

ỹi(k) =
i∑

j=0

DP, j(k − 1)+
i∑

j=0

FP, j(k − 1)+ u(k), (6.72)

for i ≥ 0, where the delay precalculations are

DP, j(k − 1) = −a j,1d̃ j(k − 1)− a j,2d̃ j(k − 2) (6.73)

and the output precalculations are

FP, j(k − 1) = b̃ j,1d̃ j(k − 1)+ b̃ j,2d̃ j(k − 2). (6.74)

Note that as the signal moves through biquad stages, sums get added to the precalculation. However,
because these are all scaled the same, the sums that have already been computed can be reused.
The final output, y(k) is obtained from the last biquad output using b̄ from Equation 6.69 as

y(k) = b̄ỹn(k). (6.75)

6.16 Multinotch Filter Coefficients

Because this filter is a digital biquad, there are no excess poles or zeros. Furthermore, using this
form where we have factored the bi,0 gain out of each numerator means that all the biquads will have

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
342

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

fN,i Center frequency of numerator (Hz)
ωN,i Center frequency of numerator (rad/s)
QN,i Quality factor of numerator
ζN,i =

1
QN,i

Damping factor of numerator

fD,i Center frequency of denominator (Hz)
ωD,i Center frequency of denominator (rad/s)
QD,i Quality factor of denominator
ζD,i =

1
QD,i

Damping factor of denominator

Table 6.6: Physical coefficients used to specify a biquad section. Note that some of these are redundant,
so that the choice ofζ versusQ or f versusω is simply a user preference.

a uniform structure. Taking our design from an analog response of a ratio of a second order numerator
and denominator, we can discretize the poles and zeros using matched pole-zero mapping [15]. This
allows us to parametrize each biquad section using very physical parameters, as shown in Table 6.6.
The factored out gain, bi,0, can be used as is, or can be altered so that, for example, the DC gain of
the biquad section will be 1.

Assuming a complex pair of poles (or zeros), mapping via z = esTS , and recombining the results yields
some straightforward formulas. For ai,2 and b̃i,2 we have

ai,2 = e−2ωD,iTS ζD,i (6.76)

b̃i,2 = e−2ωN,iTS ζN,i (6.77)

Whether the poles (or zeros) are a complex pair depends upon
∣
∣
∣ζD,i

∣
∣
∣ (

∣
∣
∣ζN,i

∣
∣
∣). For

∣
∣
∣ζD,i

∣
∣
∣ < 1 we have a

complex pair of poles and so

ai,1 = −2e−ωD,iTS ζD,i cos
(

ωD,iTS

√

1− ζ2
D,i

)

. (6.78)

If
∣
∣
∣ζN,i

∣
∣
∣ < 1 we have a complex pair of zeros and so

b̃i,1 = −2e−ωN,iTS ζN,i cos
(

ωN,iTS

√

1− ζ2
N,i

)

. (6.79)

While these two cases represent cases when the desired filters have very sharp peaks or notches
(for example to equalize a response with very sharp notches or peaks), there are other possibilities.
For example setting

∣
∣
∣ζD,i

∣
∣
∣ = 1 (

∣
∣
∣ζN,i

∣
∣
∣ = 1) means that the poles (zeros) are real and equal, so ai,1 (b̃i,1)

are given by:

ai,1 = −2e−ωD,iTS ζD,i (6.80)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
343

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

and
b̃i,1 = −2e−ωN,iTS ζN,i . (6.81)

Finally, if
∣
∣
∣ζD,i

∣
∣
∣ > 1 (

∣
∣
∣ζN,i

∣
∣
∣ > 1) means that the poles (zeros) are real and distinct, so ai,1 (b̃i,1) are given

by using the cosh relation:

ai,1 = −2e−ωD,iTS ζD,i cosh
(

ωD,iTS

√

ζ2
D,i − 1

)

(6.82)

and
b̃i,1 = −2e−ωN,iTS ζD,i cosh

(

ωN,iTS

√

ζ2
N,i − 1

)

. (6.83)

The entire conversion routine, which turns the physical parameters of Table 6.6 into discrete filter
coefficients can be implemented in a short MATLAB or Octave function.

6.17 Multinotch Examples

Example 1
Biquad # fN,n (Hz) Qn fN,d (Hz) Qd

1 200 10 400 10
2 1000 5 2000 5

Example 2
Biquad # fN,n (Hz) Qn fN,d (Hz) Qd

1 200 10 400 10
2 1000 5 2000 5
3 10,000 10 20,000 10
4 8000 10 4000 10

Table 6.7: Filter parameters for both examples.

In order to compare filters, a set of filter parameters was chosen in the form of sets of analog biquad
parameters, such as those in Table 6.7. These parameters were then translated into an analog
polynomial filter, which was discretized via Matlab’s c2d function. The coefficients of the digital filter
were then scaled up by a quantization factor, say 216 − 1 for an s2.16 quantization. The scaled up
coefficients were then fixed (fractional portion removed) and scaled down by the same quantization
factor. Thus, floating point numbers were made to represent fixed point coefficients. Frequency
responses were computed for the analog, digital polynomial, and various quantized digital polynomial
filters.

To compare against the multinotch, the same analog biquad parameters were converted into individual
digital biquads as described in Section 6.16. Since the biquads act serially on data, the frequency
responses of each digital biquad was multiplied with those that were previously computed to form

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
344

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

the overall response of the filter. In the case where quantization was applied, the individual biquad
parameters were scaled up by the quantization factor, fixed, and scaled back down. As the direct
feedthrough gain is applied afterwards, this was separately scaled up, fixed, and scaled down to
compute the individual quantized biquad complex responses. Again, these responses were multiplied
to that of the previous sections to give an overall biquad frequency response.

The filter parameters were set according to Table 6.7. Both examples use a sample rate of 100 kHz
for discretization. The results for the first example are in Figure 6.21. In this simple fourth order filter,
the effects of quantization are only evident for the polynomial digital filter quantized at s2.16, although
we can see that the discretized polynomial filter never fully matches the analog response.

In the second example, there are far more biquads and they have higher Q values. The results
on the left of Figure 6.22 show that the polynomial digital filter fails to match the analog response
even without quantization. With quantization, only the highest number of bits, s2.30, matches the
unquantized digital polynomial filter. On the other hand, the multinotch on the right side of Figure 6.22
match the analog response, even with the coarsest s2.16 quantization.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
345

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

10
0

10
1

10
2

10
3

10
4

−20

−10

0

10

20

30

40

50

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Quantization in Polynomial Filters (notch_2014_02_22__011)

10
0

10
1

10
2

10
3

10
4

−400

−300

−200

−100

0

100

200

Frequency (Hz)

P
ha

se
 (

de
g)

Polynomial Analog Filter
Polynomial Digital Filter
Polynomial Digital Filter (s2.16)
Polynomial Digital Filter (s2.23)
Polynomial Digital Filter (s2.30)

10
0

10
1

10
2

10
3

10
4

−20

−10

0

10

20

30

40

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Multinotch Comparison (notch_2014_02_22__011)

10
0

10
1

10
2

10
3

10
4

0

20

40

60

80

100

120

140

160

180

Frequency (Hz)

P
ha

se
 (

de
g)

Polynomial Analog Filter
Polynomial Digital Filter
Digital Multinotch
Digital Multinotch (s2.16)

Figure 6.21: On the left: Effects of quantization on polynomial filter in the first exampleof Table6.7.
Quantization in the polynomial filters shows severe effects for the s2.16 and s2.23 cases. For this case,
the s2.30 quantization is able to represent the unquantizeddigital polynomial filter, but this still does not
match the analog response. The effect is only pronounced for the s2.16 quantization. On the right: A
comparison of the quantized multinotch to unquantized filters for the first example of Table6.7. It is clear
that even at the extreme case of s2.16 coefficients, the multinotch still produces an accurate representation
of the analog response. The curves are practically identical.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
346

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

10
0

10
1

10
2

10
3

10
4

−50

0

50

100

150

200

250

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Quantization in Polynomial Filters (notch_2014_02_22__010)

10
0

10
1

10
2

10
3

10
4

−600

−500

−400

−300

−200

−100

0

100

200

Frequency (Hz)

P
ha

se
 (

de
g)

Polynomial Analog Filter
Polynomial Digital Filter
Polynomial Digital Filter (s2.16)
Polynomial Digital Filter (s2.23)
Polynomial Digital Filter (s2.30)

10
0

10
1

10
2

10
3

10
4

−20

−10

0

10

20

30

40

50

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Multinotch Comparison (notch_2014_02_22__010)

10
0

10
1

10
2

10
3

10
4

−400

−300

−200

−100

0

100

200

Frequency (Hz)

P
ha

se
 (

de
g)

Polynomial Analog Filter
Polynomial Digital Filter
Digital Multinotch
Digital Multinotch (s2.16)

Figure 6.22: On the left: Quantization in the polynomial filters of the second example of Table6.7shows
severe effects for the s2.16 and s2.23 cases. For this example, the s2.30 quantization is able to represent
the unquantized digital polynomial filter, but this still does not match the analog response. On the right:
A comparison of the quantized multinotch to unquantized filters in the second example of Table6.7. Note
that even without quantization, the discrete polynomial filter no longer matches the analog response. The
multinotch, with even the coarsest quantization considered in these tests, s2.16, still matches the analog
response.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
347

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

6.18 Effects of a Relatively Small TS

A significant problem can arise when ωD,iTS or ωN,iTS get very small. Equations 6.76 and 6.77 imply

lim
ωD,iTS→0

ai,2 = 1 and lim
ωN,iTS→0

b̃i,2 = 1. (6.84)

Similarly, since cos(0)= cosh(0)= 1, we can see from Equations 6.78, 6.80, and 6.82 (and 6.79, 6.81,
and 6.83) that

lim
ωD,iTS→0

ai,1 = −2, and lim
ωN,iTS→0

b̃i,1 = −2. (6.85)

fS Quantization z1,2 p1,2 k
10 kHz Float 9.972435e-001± 6.273633e-002 9.902495e-001± 6.181130e-002 1
10 kHz s2.16 9.972381e-001± 6.280493e-002 9.902495e-001± 6.173522e-002 1
10 kHz s2.23 9.972435e-001± 6.273632e-002 9.902495e-001± 6.181097e-002 1
10 kHz ∆ s2.16 9.972436e-001± 6.273490e-002 9.902496e-001± 6.181050e-002 1

fS Quantization z1,2 p1,2 k
100 kHz Float 9.999017e-001± 6.282160e-003 9.991955e-001± 6.228970e-003 1
100 kHz s2.16 9.999008e-001± 5.523423e-003 9.991913e-001± 6.717367e-003 1
100 kHz s2.23 9.999017e-001± 6.280814e-003 9.991955e-001± 6.229847e-003 1
100 kHz ∆ s2.16 9.999017e-001± 6.282048e-003 9.991955e-001± 6.228704e-003 1

fS Quantization z1,2 p1,2 k
1 MHz Float 9.999919e-001± 6.282645e-004 9.999213e-001± 6.233415e-004 1
1 MHz s2.16 0.999999999999995, 0.9999694819562120.999999999999971, 0.9998321507591661
1 MHz s2.23 9.999919e-001± 6.904864e-004 9.999213e-001± 5.928139e-004 1
1 MHz ∆ s2.16 9.999919e-001± 6.283486e-004 9.999213e-001± 6.234487e-004 1

Table 6.8: Filter poles and zeros under quantization at different sample frequencies. Notch design param-
eters: fN = 100, QN = 40, fD = 100, QD = 4.

This means that in the limit, both the numerator and denominator approach P(z) = z2 − 2z + 1, which
has two roots at z = 1. The effect of increased sample rate relative to a given feature frequency is to
push that feature closer and closer to z = 1 on the z plane. While it is difficult to see on a z-plane plot,
Tables 6.8 and 6.9 show two examples of the effect of sample rate on the quantized coefficients, by
translating those back into poles and zeros. The details of how the quantized values are obtained are
in Section 6.17, but for now we see that Tables 6.8 and 6.9 demonstrate that features in continuous
time wind up as extremely small perturbations around z = 1 in discrete time. We can see from both
tables that for the lower sample rate, the poles and zeros are relatively consistent despite quantization.
As the sample rate goes higher, the poles and zeros corresponding to quantized values vary slightly,
but these result in significant performance differences. Only the ∆ Coefficients, to be introduced in
Section 6.19, result in poles and zeros near the ones from the unquantized filters.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
348

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

fS Quantization z1,2 p1,2 k
10 kHz Float 9.676381e-001± 5.270507e-002 9.335457e-001± 1.019989e-001 1
10 kHz s2.16 9.676356e-001± 5.274999e-002 9.335393e-001± 1.020527e-001 1
10 kHz s2.23 9.676381e-001± 5.270573e-002 9.335457e-001± 1.019985e-001 1
10 kHz ∆ s2.16 9.676385e-001± 5.271557e-002 9.335460e-001± 1.020009e-001 1

fS Quantization z1,2 p1,2 k
100 kHz Float 9.968486e-001± 5.424303e-003 9.936777e-001± 1.081442e-002 1
100 kHz s2.16 9.968414e-001± 5.983327e-003 9.936751e-001± 1.061067e-002 1
100 kHz s2.23 9.968485e-001± 5.433827e-003 9.936776e-001± 1.081786e-002 1
100 kHz ∆ s2.16 9.968486e-001± 5.422943e-003 9.936777e-001± 1.081251e-002 1

fS Quantization z1,2 p1,2 k
1 MHz Float 9.996857e-001± 5.439689e-004 9.993713e-001± 1.087596e-003 1
1 MHz s2.16 1.000000000000061, 0.9993591210802771.000000000000042, 0.9987335011825321
1 MHz s2.23 9.996857e-001± 5.087695e-004 9.993712e-001± 1.128530e-003 1
1 MHz ∆ s2.16 9.996857e-001± 5.509819e-004 9.993713e-001± 1.088241e-003 1

Table 6.9: Filter poles and zeros under quantization at different sample frequencies. Lead design parame-
ters: fN = 100, QN = 1, fD = 200, QD = 1.

We will see in Section 6.17 that these minor variations due to fixed point math give significant perfor-
mance issues, as demonstrated by generating frequency responses of the different filters.

6.19 ∆ Coefficients

Fixing this problem in fixed point math might be attempted with adding extra bits to the fractional
portion. We will see in the examples of Section 6.20 that this has limited positive effect, unless the
number of added bits gets significant. If we add enough bits to achieve numerical accuracy, we risk
making our multiplicands too wide to fit into the hardware multiplier blocks of the desired real-time
processor or FPGA. For example, Xilinx FPGA multiplier blocks in Virtex Generations 4–6, and in
all Xilinx FPGAs in Generation 7, multiply a pair of twos-compliment numbers that are 25 bits by 18
bits [88]. Earlier generations, such as the Xilinx Spartan line, featured multiplies of two 18 bit twos
compliment numbers [174], while the more expensive Virtex line had 25 × 18-bit twos compliment
multiplies [175]. The point is that in FPGAs and fixed point DSPs, it is necessary to implement
multiply and accumulate (MAC) operations with relatively narrow fixed point numbers. It is certainly
possible to extend the width of multiplies using extra multiplier blocks in an FPGA or extra code in a
DSP, but at the cost of extra delay [176]. Minimizing delay, especially in feedback systems, should be
a high priority. (also include Altera info)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
349

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

Another option is to convert all the signals in the system away from a Z Transform and to a δ operator
form [177, 178, 179, 180]. In [181], the filter is also broken into biquad sections and these are
transformed using the δ operator. However, this method adds some complexity to the filter operation.
The method proposed below simply restores accuracy to the discrete coefficients without changing
the basic math operations. Some further comparison will be done in Section 6.21. The method here
borrows the basic inspiration from δ operator methods but note that we are not concerning ourselves
with the z terms per se being clustered around z = 1, but the roots of the biquad polynomials. In other
words, only the coefficients and not the signal space are modified. As we saw in Section 6.18, the ai,1

and b̃i,1 terms go to −2 while the ai,2 and b̃i,2 terms go to 1. With this understanding, we can define:

ai,1 = −2+ ai,1∆ so ai,1∆ = ai,1 + 2, (6.86)

ai,2 = 1+ ai,2∆ so ai,2∆ = ai,1 − 1, (6.87)

b̃i,1 = −2+ b̃i,1∆ so b̃i,1∆ = b̃i,1 + 2, and (6.88)

b̃i,2 = 1+ b̃i,2∆ so b̃i,2∆ = b̃i,1 − 1. (6.89)

Now, ai,1∆, ai,2∆, b̃i,1∆, and b̃i,2∆ are small numbers. The smaller ωD,iTS gets, the smaller ai,1∆ and ai,2∆

get. Likewise the smaller ωN,iTS gets, the smaller b̃i,1∆ and b̃i,2∆ get. However, we can split up the
signal multiplications

ai,1di(k − 1) = −2di(k − 1)+ ai,1∆di(k − 1), (6.90)

b̃i,1di(k − 1) = −2di(k − 1)+ b̃i,1∆di(k − 1), (6.91)

ai,2di(k − 2) = di(k − 2)+ ai,2∆di(k − 2), (6.92)

and
b̃i,2di(k − 2) = di(k − 2)+ b̃i,2∆di(k − 2). (6.93)

In each of these, the first multiplication on the right is either a trivial multiply by 2, accomplished with
a shift to the left by one bit, or it is a more trivial multiply by 1, accomplished by doing nothing. We
can now concentrate on making the second multiply more accurate. In real numbers,

ai,1∆di(k − 1) = (2Eai,1∆)di(k − 1)2−E. (6.94)

If we scale up ai,1∆ by a number to maximize the number of significant digits in the fixed point repre-
sentation, our multiplication will have the maximum accuracy. We can scale the product down by that
same number for adding into the precalc sum. Likewise, we can do the same thing for the other ∆
Coefficients:

b̃i,1∆di(k − 1) = (2Eb̃i,1∆)di(k − 1)2−E, (6.95)

ai,2∆di(k − 2) = (2Eai,2∆)di(k − 2)2−E, (6.96)

and
b̃i,2∆di(k − 2) = (2Eb̃i,2∆)di(k − 2)2−E. (6.97)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
350

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

6.19.1 Computing Scaling

How do we compute the scaling factor, 2−E? Consider a coefficient, ci:

log2 |ci| = xi means 2xi = |ci|. (6.98)

Let’s say we want to do multiplies with a coefficient that has a magnitude between 1 and 2. In this
case we want

1 ≤ 2−Ei |ci| < 2 or (6.99)

0 ≤ log2 2−Ei |ci| < 1 which means (6.100)

0 ≤ xi − Ei < 1. (6.101)

Ei represents the integer part of log2 |ci| so,

floor(log2 |ci|) will give us Ei. (6.102)

If we divide by 2Ei , it is equivalent to multiplying by 2−Ei . What is the effect of this operation? If Ei is
positive, then we are shrinking the magnitude of the coefficient by a power of 2. If Ei is negative, then
we are raising the magnitude of the coefficient by a power of 2.

Now, for each of the floating point versions of ai,1∆, ai,2∆, b̃i,1∆, and b̃i,2∆ we could have a separate
value of Ei. However, experience has shown that if the multinotch poles and zeros are grouped so
that biquads have poles and zeros that are as close as possible to each other, a single value of 2−Ei

can be used for each biquad. If we pick

Ei = max(Ei,a1, Ei,a2, Ei,b1, Ei,b2), (6.103)

that is we pick the maximum of the negative exponents for the ∆ Coefficients, then we will be multi-
plying by the minimum 2−Ei .

6.19.2 Implementing ∆ Coefficients

Implementing ∆ Coefficients is mostly a matter of restructuring the filter calculations (or precalcula-
tions) slightly. We start by rewriting (6.73)

DP,i(k − 1) = −ai,1d̃i(k − 1)− ai,2d̃i(k − 2) (6.104)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
351

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

= (2− ai,1∆)d̃i(k − 1)

−(1+ ai,2∆)d̃i(k − 2) (6.105)

= 2d̃i(k − 1)− d̃i(k − 2)− ai,1∆d̃i(k − 1)

−ai,2∆d̃i(k − 2) (6.106)

= DPW,i((k − 1)+ DPF,i((k − 1) (6.107)

where

DPW,i(k − 1)= 2d̃i(k − 1)− d̃i(k − 2) and (6.108)

DPF,i(k − 1)=−ai,1∆d̃i(k − 1)− ai,2∆d̃i(k − 2). (6.109)

The fractional precalc can be done in two steps as:

DPFL,i(k − 1) = −(2−Eiai,1∆)d̃i(k − 1)

−(2−Eiai,2∆)d̃i(k − 2). (6.110)

DPF,i(k − 1) = 2Ei DPFL,i(k − 1). (6.111)

The coefficients in (6.110) are computed from the floating point numbers, 2−Eiai,1∆, and 2−Eiai,2∆, before
being converted to fixed point. Once the multiplication has been done with high precision, the product
is shifted back in (6.111) for addition with DPW,i(k − 1). If the scaled down product is insignificant
compared to DPW,i(k − 1). However, the high precision multiplication means that if the product is
significant, it is also accurate.

We repeat the process with the output precalcs. Rewriting (6.74)

FP,i(k − 1) = b̃i,1d̃i(k − 1)+ b̃i,2d̃i(k − 2) (6.112)

= (2− b̃i,1∆)d̃i(k − 1)

−(1+ b̃i,2∆)d̃i(k − 2) (6.113)

= 2d̃i(k − 1)− d̃i(k − 2)

−b̃i,1∆d̃i(k − 1)− b̃i,2∆d̃i(k − 2) (6.114)

= FPW,i((k − 1)+ FPF,i((k − 1) (6.115)

where

FPW,i(k − 1)= 2d̃i(k − 1)− d̃i(k − 2) and (6.116)

FPF,i(k − 1)=−b̃i,1∆d̃i(k − 1)− b̃i,2∆d̃i(k − 2). (6.117)

The fractional precalc can be done in two steps as:

FPFL,i(k − 1) = −(2−Ei b̃i,1∆)d̃i(k − 1)

−(2−Ei b̃i,2∆)d̃i(k − 2). (6.118)

FPF,i(k − 1) = 2Ei FPFL,i(k − 1). (6.119)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
352

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

The equations above illustrate one of the beauties of the ∆ Coefficient approach. While there are a few
extra additions and right shifts of multiplied values in the precalculation portion of the filter, there are no
extra multiplies. Instead many of the existing multiplies have been made far more accurate. Additions
and shifts are extremely easy operations in digital hardware, and therefore the added computational
burden of this extra accuracy in very small.

6.20 ∆ Coefficient Examples

Example 1
Biquad # fN,n (Hz) Qn fN,d (Hz) Qd

1 100 40 100 4
Example 2

Biquad # fN,n (Hz) Qn fN,d (Hz) Qd

1 100 1 200 1

Table 6.10: Filter parameters for both examples.

In order to compare filters, a set of filter parameters was chosen in the form of sets of analog biquad
parameters, such as those in Table 6.10. Unlike the examples in Section 6.17, only a single biquad
was needed to demonstrate the desired effects. For a given set of biquad parameters, the sample
frequency was varied between 10 kHz, 100 kHz, and 1 MHz. In the first example from Table 6.10,
a high Q notch filter was chosen, centered at 100 Hz. In the second example, a lead-lag filter was
implemented where the lead natural frequency was set to 100Hz and the lag natural frequency was
set to 200Hz. The poles and zeros from these examples have already been presented in Tables 6.8
and 6.9 Section 6.18.

The filter design parameters are specified by Table 6.10. These parameters were then translated
into digital filter in the form of a single biquad, essentially a single notch in the same form as the
filters in Figure 6.16. The coefficients of the digital filter were then scaled up by a quantization factor,
say 216 − 1 for an s2.16 quantization. The scaled up coefficients were then fixed (fractional portion
removed) and scaled down by the same quantization factor. Thus, floating point numbers were made
to represent fixed point coefficients. Frequency responses were computed for the filters with floating
point coefficients and with quantized coefficients. The same original filter specifications were used
to show the variation with sample frequency. Finally, these were compared to a quantized biquad
implemented with ∆ Coefficients. The three sample rates of fS = 10 kHz, 100kHz, and 1 MHz were
adequate to demonstrate the result.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
353

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

10
0

10
1

10
2

10
3

−20

−15

−10

−5

0

Frequency (Hz)

M
ag

. (
dB

)

Notch with Floating Point Coefficients

fs = 10.000 kHz
fs = 100.000 kHz
fs = 1.000 MHz

10
0

10
1

10
2

10
3

−60

−40

−20

0

20

40

60

Frequency (Hz)

P
ha

se
 (

de
g)

Notch, fs = 10kHz, 100kHz, and 1 MHz, f_Num = 100.00 Hz, Q_Num = 40, f_Den = 100.00 Hz, and Q_Den = 4.0

10
0

10
1

10
2

10
3

−25

−20

−15

−10

−5

0

5

10

Frequency (Hz)

M
ag

. (
dB

)

Notch with s2.16 Coefficients

No Quantization, fs = 1.000 MHz
fs = 10.000 kHz
fs = 100.000 kHz
fs = 1.000 MHz

10
0

10
1

10
2

10
3

−100

−50

0

50

100

150

Frequency (Hz)

P
ha

se
 (

de
g)

Notch, fs = 10kHz, 100kHz, and 1 MHz, f_Num = 100.00 Hz, Q_Num = 40, f_Den = 100.00 Hz, and Q_Den = 4.0

Figure 6.23: Notch withfn and fd at 100Hz, Qn = 40, Qd = 4. On the left: no quantization. On the right:
quantized to s2.16. Sample frequencies arefS = 10 kHz, 100 kHz, and1 MHz. With no quantization,
there is effectively no difference.

With floating point coefficients, we can see from the left sides of Figures 6.23 and 6.25 that the filters
are essentially unaffected by the change in sample frequency. Quantizing the filter coefficients to
a s2.16 format, as shown on the right side of Figures 6.23 and 6.25. These show that while the
quantized filter is accurate at fS = 10 kHz, it becomes inaccurate at fS = 100kHz. With fS = 1 MHz,
the plot is off scale. The situation improves some by adding more bits to a s2.23 format, as shown
on the left of Figures 6.24 and 6.26, however none of these are at all accurate. In fact, both figures
demonstrate one of the dangers of quantizing such parameter values, the nonlinear degradation. In
both examples the filter response at fS = 1 MHz is more accurate than that at fS = 100 kHz. The
success of the ∆ Coefficients is demonstrated on the right of Figures 6.24 and 6.26. Using only s2.16
∆ Coefficients, we have essentially restored the filter accuracy for all three sample frequencies.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
354

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

10
0

10
1

10
2

10
3

−30

−25

−20

−15

−10

−5

0

5

Frequency (Hz)

M
ag

. (
dB

)

Notch with s2.23 Coefficients

No Quantization, fs = 1.000 MHz
fs = 10.000 kHz
fs = 100.000 kHz
fs = 1.000 MHz

10
0

10
1

10
2

10
3

−150

−100

−50

0

50

100

Frequency (Hz)

P
ha

se
 (

de
g)

Notch, fs = 10kHz, 100kHz, and 1 MHz, f_Num = 100.00 Hz, Q_Num = 40, f_Den = 100.00 Hz, and Q_Den = 4.0

10
0

10
1

10
2

10
3

−20

−15

−10

−5

0

5

Frequency (Hz)

M
ag

. (
dB

)

Notch with s2.16 ∆ Coefficients

No Quantization, fs = 1.000 MHz
fs = 10.000 kHz
fs = 100.000 kHz
fs = 1.000 MHz

10
0

10
1

10
2

10
3

−60

−40

−20

0

20

40

60
Notch, fs = 10kHz, 100kHz, and 1 MHz, f_Num = 100.00 Hz, Q_Num = 40, f_Den = 100.00 Hz, and Q_Den = 4.0

Frequency (Hz)

P
ha

se
 (

de
g)

Figure 6.24: Notch withfn and fd at 100 Hz, Qn = 40, Qd = 4. On the left: quantized to s2.23. On
the right: using∆ Coefficients, quantized to s2.16. Sample frequencies arefS = 10 kHz, 100kHz, and1
MHz.

10
0

10
1

10
2

10
3

−5

0

5

10

15

Frequency (Hz)

M
ag

. (
dB

)

Notch with Floating Point Coefficients

fs = 10.000 kHz
fs = 100.000 kHz
fs = 1.000 MHz

10
0

10
1

10
2

10
3

0

20

40

60

80

Frequency (Hz)

P
ha

se
 (

de
g)

Notch, fs = 10kHz, 100kHz, and 1 MHz, f_Num = 100.00 Hz, Q_Num = 1.0, f_Den = 200.00 Hz, and Q_Den = 1.0

10
0

10
1

10
2

10
3

−5

0

5

10

15

Frequency (Hz)

M
ag

. (
dB

)

Notch with s2.16 Coefficients

No Quantization, fs = 1.000 MHz
fs = 10.000 kHz
fs = 100.000 kHz
fs = 1.000 MHz

10
0

10
1

10
2

10
3

0

20

40

60

80

Frequency (Hz)

P
ha

se
 (

de
g)

Notch, fs = 10kHz, 100kHz, and 1 MHz, f_Num = 100.00 Hz, Q_Num = 1.0, f_Den = 200.00 Hz, and Q_Den = 1.0

Figure 6.25: Lead withfn at 100 Hz and fd at 200 Hz, Qn = 1, Qd = 1. On the left: no quantization.
On the right: quantized to s2.16. Sample frequencies arefS = 10 kHz, 100 kHz, and1 MHz. With no
quantization, there is effectively no difference.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
355

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

10
0

10
1

10
2

10
3

−5

0

5

10

15

Frequency (Hz)

M
ag

. (
dB

)

Notch with s2.23 Coefficients

No Quantization, fs = 1.000 MHz
fs = 10.000 kHz
fs = 100.000 kHz
fs = 1.000 MHz

10
0

10
1

10
2

10
3

0

20

40

60

80

Frequency (Hz)

P
ha

se
 (

de
g)

Notch, fs = 10kHz, 100kHz, and 1 MHz, f_Num = 100.00 Hz, Q_Num = 1.0, f_Den = 200.00 Hz, and Q_Den = 1.0

10
0

10
1

10
2

10
3

−5

0

5

10

15

Frequency (Hz)

M
ag

. (
dB

)

Notch with s2.16 ∆ Coefficients

No Quantization, fs = 1.000 MHz
fs = 10.000 kHz
fs = 100.000 kHz
fs = 1.000 MHz

10
0

10
1

10
2

10
3

0

20

40

60

80
Notch, fs = 10kHz, 100kHz, and 1 MHz, f_Num = 100.00 Hz, Q_Num = 1.0, f_Den = 200.00 Hz, and Q_Den = 1.0

Frequency (Hz)

P
ha

se
 (

de
g)

Figure 6.26: Lead withfn at 100Hz and fd at 200Hz, Qn = 1, Qd = 1. On the left: quantized to s2.23.
On the right: using∆ Coefficients, quantized to s2.16.fS = 10kHz, 100kHz, and1 MHz.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
356

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

6.21 ∆ Coefficients Versus δ Parameterization and Floating Point

The two most natural comparisons to make with ∆ Coefficients are to the δ parameterization [177,
178, 179, 180] and to floating point operations.

In contrast with the ∆ Coefficients which maintain the delay form (z−1) of the discrete filter while improv-
ing the coefficient accuracy, the δ parameterization [177, 178, 179, 180] pushes the discrete parame-
ters closer to the the continuous time parameters and the filter calculation are transformed from step
form to a differential form. Most similar to the method here is [181] which breaks the filter into biquads
as well and then applies the δ parameterization to each biquads. The assumption when using this
is that the filter has been somehow discretized already and then is reparameterized using a forward
rectangular rule integration approximation. In the ∆ Coefficient formulation, each biquad is discretized
individually and the matched pole-zero method provides excellent agreement to continuous frequency
responses for biquads. Further comparisons will be made in [165]. The ∆ Coefficients approximate
floating point coefficients in a computationally inexpensive way. The filter computations are done us-
ing the delay form, which is slightly less complicated than the differential form of δ parameterization,
where the δ−1 block of [181] is an inner loop digital integrator. Finally, the δ parameterization is useful
primarily when the sample rate is high relative to the dynamics being filtered, when ω0TS = 2π f0/ fS

gets very small. The forward rectangular rule becomes much more inaccurate for slow sample rates.
Mechatronic systems are known for having a wide spread in dynamics, and so the δ parameterization
could have some issues not present in the ∆ coefficients [165].

In minimal latency control of a mechatronic system, the original inspiration for the multinotch [54],
floating point computations may take too long. A native mode 25-bit × 18-bit floating point multiply
and add in a Xilinx DSP48E will have a latency of 4 clock cycles [88]. Single precision floating
point multiplies take 8 clock cycles, but the additions must be made separately and take 11 clock
cycles [176]. (Altera?)

6.22 Multinotch Summary

The multinotch represents a new way of structuring digital filters so as combine physical intuition,
numerical stability, and low, fixed latency into a single architecture [54, 33, 110, 182]. It lends itself
extremely well to real time implementation, and is especially effective in fixed point environments,
such as FPGA or DSP code. Furthermore, the regular, recursive structure of the filter allows it to be

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
357

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

programmed easily. It combines for the first time two extremely desirable features in a real time filter:
small, fixed computational latency and high numerical fidelity.

However, even the multinotch can degrade severely when the sample frequency is several orders of
magnitude higher than the frequencies of filter features. In order to correct this while still maintaining
fixed point math, suitable for high speed, real time implementation on an FPGA or a DSP, the ∆
Coefficient parameterization has been presented. This restores the performance of the multinotch,
while adding only a few extra precalculations and no extra bits. The ∆ Coefficients extend the range
and accuracy of the multinotch without affecting the physical intuition of the analog parameters in the
digital filter implementation, which is extremely helpful in debugging physical systems.

On it’s own, the multinotch is extremely useful in the control of low latency, mechatronic control sys-
tems (and other systems with high-Q resonances and anti-resonances. However, it also can be used
to generate a state space structure that preserves both these numerical properties and physical intu-
ition [3]. In particular, the discretization method described earlier allows direct comparison of analog
and digital states [4]. We believe that this Biquad State Space (BSS) structure will be very useful in
applying modern control methods to lightly damped systems [183, 184].

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
358

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

6.23 Filters without Direct Feedthrough

The multinotch [54, 33] was originally created specifically for loop shaping on a high speed AFM with
lots of high frequency, high Q dynamics. The needed filter was going to have direct feedthrough in
order to have minimum latency. However, there are cases where one simply needs something like
a low pass filter, either for low pass or to include in a system state space model such as the Biquad
State Space (BSS) (Section 9.15). One of my recent efforts is to put that component in place [166].
Continuous time low pass filters are an example of filters with no direct feedthrough (Section 9.27).
Depending upon the discretization choices made, the discrete-time low pass may or may not have
direct feed through. We will focus on low pass filters here, and in the state space structures in Section
9.27.

6.24 The δ Parameterization

δ Parameterization: when it helps, when it hurts

6.25 Filters for Loop Shaping: Do’s and Don’ts

This chapter has presented a lot of building blocks for extra components in a digital controller. Unlike
some sort “global model” state space design, we can work on the individual pieces independently, but
at some point we need to sanity check how they work in the whole.

There is nothing that stops us from taking these individually designed components and combining
them back into a polynomial form filter for analysis in MATLAB . Generating Bode plots of the whole
controller and the open loop, combining these with the plant FRF and mathematically “closing the
loop” are all pieces of the checkout. From the same combined model, one can generate the dis-
crete root locus. The thing that stops most engineers is the tedium of transferring between models.
That’s why, (as we advocated in Section 3.25) building the software pipes to transfer models and
measurements between different design/analysis stages is critical. When checking different forms
of a model/design take an afternoon, people avoid it. When it only takes a few keystokes or button

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
359

Winter 2022-2023
December 31, 2022

Filters for Loop Shaping

pushes, it gets done 15 times a day. Taking the time to build the tools allows us to iterate rapidly, and
this is at the core of engineering.

6.26 Chapter Summary and Context

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
360

Winter 2022-2023
December 31, 2022

Chapter 7

Signal Detection, Sensors, Sample Rates,
and Noise (Oh My)

7.1 In This Chapter

In this chapter we will focus on characterizing the noise that comes into feedback loops with more
detail than is typically discussed. Of issue is identifying the components of noises that enter the loop
and their effect on different measurement points around the loop. The fundamental method for this
is called PES Pareto, which – under certain assumptions – allows us to build up the strata of noises
at different measurement points in the frequency domain. Because Bode’s integral theorem teaches
us that we can only use our loop filtering to shape where noise is amplified and attenuated in the
frequency domain, we then discuss how to limit the effects of noise sources before they get into the
feedback loop. Of particular interest are the phase effects of anti-alias filters.

As many sensor signals are modulated, we also discuss the subject of signal demodulation. It turns
out that coherent demodulation can not only limit the noise entering the loop through a particular
sensor, but can also considerably cut the time delay incurred via non-coherent demodulation methods.

None of this creates a good feedback control algorithm. Instead, the methods in this chapter help us
keep from messing up good feedback control algorithms due to inattention to noise and delay.

361

Signals & Noise

7.2 Motivation: Why Talk About Signals, Sensors, and Noise?

We have tried to emphasize the idea that when all other design methods have been done as well as
possible, what remains as the final limits of performance – even for a system that can be fairly accu-
rately modeled as being linear and time-invariant – are time delay and noise. Time delay eventually
wipes out phase margin and noise at some point just gets passed by the closed-loop through to some
critical signal limiting accuracy. Bode’s Integral Theorem shows us that we cannot escape the effects
of noise that has entered the loop; we can only diminish our sensitivity to it at some set of frequen-
cies with the consequence of increasing our sensitivity to noise at a different set. While Chapter 6
described filtering from the context of how we shape our loop response to achieve bandwidth and
performance goals, that same loop shaping is applied to noise and disturbance signals entering the
loop with one glaring exception: the entry points for noise inputs are scattered all along the loop and
so each of these noises has its own filter to traverse before showing up in one of our other measured
signals.

This chapter has two main themes, and they generally follow the outlines of the tutorials in [2, 185].
The first portion will explain the methodology of noise analysis known as PES Pareto [34, 35, 36, 37].
This method aims to tackle the propagation of noise from different sources around the feedback loop.
A combination of a few theoretical constructs and a measurement methodology, PES Pareto allows
the engineer to construct the strata of the noise spectra from different sources around the loop and
with that in hand, to model the effects of changing one of those input noise sources. The second
theme is that of improving the signal detection used in feedback loops as a means of limiting noise
before it enters the loop. The other consequence of learning about modern demodulation methods
is that they usually allow a considerable decrease in the time needed to detect a change in a signal.
In other words, modern demodulation can limit latency in a measured signal, thereby keeping that
latency out of our loop.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
362

Winter 2022-2023
December 31, 2022

Signals & Noise

d

ye u

w

r
S S

vS

S

-
C P

Figure 7.1:A classic linear feedback loop, including “both kinds” of noise, process and sensor,
for our state-space formulation.

SensorADCS S

d

y

z

e u wcwd

vd

r
S

vc

SSS

-
C

Physical
System

Power
Amp

DAC
Noise

PA
Noise

Phys. Sys.
Noise

ADC
Noise

Sensor
Noise

DAC

Figure 7.2:Unbundling the C and P to reveal the components that generate the noise. Further-
more, we normally think of process and measurement noise as either continuous or disc rete,
but this has implications for where these noises show up in the loop. The process (w) and
sensor (v) noises are really abstractions of different noises from the loop components. The
effects of these true blue noises shows up in the measured loop signals.

Earlier we stated that when everything else has been done correctly, when the system is in its linear
range, when the compensator is using an accurate model of the physical system, when the design
equalizes out the unacceptable dynamics, the limiting factors will be time delay and noise. While that
all makes sense, there was little stated about how to actually characterize and deal with these issues.
The first fallacy about noise is the idea that it can be treated as a single entity. We should really be
talking about noises in the system. The issues with noises are now to measure them, how to trace
them back to their sources, how to quantify their effects on our control loops, and how to minimize
the effects of those noises on our loops. Our goal is not some esoteric wholly unusable mathematical
construct. Instead, we want a practical methodology that gives us insight and directs us where to put
our effort. For that we will introduce a method called PES Pareto (named for its historical roots).

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
363

Winter 2022-2023
December 31, 2022

Signals & Noise

“But wait!” you say. “All those block diagrams used to justify state-space methods e.g. Figure 7.1
clearly show noise, both kinds: process and sensor, as the Blues Brothers would say. Well, yes, but
the idea that noise enters into the loop at two distinct spots is a nice mathematical abstraction that
has made several optimization methods practical, but it tells us very little about the noise itself. It is,
however, “actionable” and “tractable”, in that if we really knew the noises as if they entered at those
two spots, we could apply our optimization methods, e.g. H2,H∞, or something else. What we need
is a way to measure different noises, to get to them as a source, and to see how those noise sources
affect our system at different points of interest for our design.

If we expand our view of the block diagram to that of Figure 7.2 we gave opened up some of the
groupings of the C and P blocks to show some underlying structure. Ignoring for a moment the
individual block noises, we see something else: that we have to choose whether to consider sensor
and/or process noise to be digital (discrete time) or analog (continuous time). That choice moves the
noise to either the computer side of the ADC and DAC (wd and vd) or to the physical system side (wc

and vc). It is almost universal that engineers will pick both of these noises to be in the same domain,
but one thing that often gets forgotten is that we want the continuous time and discrete time noises to
have the same frequency domain representation, which implies integrating the continuous time noise
over the sample interval. It is also worth being fully aware that disturbances into the system, in this
case the red d term, are treated somewhat different from noise in that engineers usually assume that
we know something about the characteristics of d, that it might have predictable or even repeatable
components, and that it might be sensed using an auxiliary sensor. Returning to the noises, for the
sake of having any of our modeling tools work, we will pick either the digital representation of noise,
wd, vd or the analog representation of noise, wc, vc.

However, before we get there, we have to try to understand the noise sources that we wish to amal-
gamate into our w, v terms. These are the individual block noises in Figure 7.2, denoted in true blue.
We would like a way to isolate each of these as a noise source, that is as an input to the loop prior
to being filtered by the loop dynamics. If we can do this, we would then like to see what the effect
of each of these is on our loop measurement points, e.g. how does ADC noise show up at the error
signal, e, the control signal, u, or the system output, y.

Let me say right here that this involves a lot of assumptions and approximation to make the character-
ization problem at all tractable. We have to assume that we can isolate components of the loop and
that their behavior and noise properties will be the same as when they are connected. We have to as-
sume that the system is “mostly linear” so that we can filter the noise properties back and forth. Only
one type of noise gracefully passes through linear filters in a way that we can characterize it, and that
is additive, white, Gaussian noise (AWGN), so we have to assume that our measured noises can be
beat into a form to call them AWGN. We have to assume some time invariance in our systems, so that

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
364

Winter 2022-2023
December 31, 2022

Signals & Noise

a measurement made when the loop is open is still meaningful an hour later when the loop is closed.
However, these assumptions are really pretty mild compared to the abstractions and assumptions
needed to make almost any theoretical optimization problem tractable, so we will proceed where we
can. We will find that if we are willing to make those assumptions, we are rewarded with some really
insightful and practically useful characterization. This allows us to isolate and attack certain noises at
the source (before they enter the loop).

We will have to make a special exception when handling ADC and DAC quantization, which is often
modeled as additive, white, uniform, noise (AWUN) using the Widrow model [38]. It turns out that only
AWGN is guaranteed to remain AWGN when passed through a linear filter, but we will see below and
in Section 7.6.3 that this doesn’t present a real problem to PES Pareto.

Once again, we draw inspiration and guidance from Bode’s integral theorem , because that gives
us a mathematical limit on the idealizes “best we can do” and provides guidance on how we must
shape our control loops so as not to amplify noises unnecessarily. We will focus on signals that we
can measure in the lab, while occasionally having to solve the problem in the other direction when
accurate measurements cannot be made. We will follow the guidance of Sherlock Holmes [186],
who taught us that, “Once you have removed all that is impossible, whatever remains, no matter how
improbable, must be the truth.”

The estimates we can get are sometimes rough, but they are more complete than many other mea-
surements that are practical to implement. We rely on an assumption that the system is “mostly linear”
so that we can apply frequency domain methods. We make frequency response function measure-
ments to get usable system models and use those models to do loop algebra on the cross and auto
spectra of the signals.

In previous chapters we discussed using filters for loop shaping (Chapter 5) and how to build those
filter components in a numerically robust and minimal latency way (Chapter 6). We also discussed
the implications of Bode’s Integral Theorem and Stein’s Dirt Digging [1]: that noise – once it enters
the loop – will not be eliminated by the loop (at least not through any linear filter means), but merely
amplified or attenuated with a “conservation of dirt” (noise amplification) principle underlying the whole
thing.

This chapter then focuses on noise; not the esoteric noise of cosmic background radiation or the
quantum sources of shot noise (although these are really cool things to learn about), but on how to
measure noise in a feedback loop, back it out as an external input to the loop, and see its effect on the
the closed-loop error and closed-loop output. This Bode’s Theorem inspired methodology is called

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
365

Winter 2022-2023
December 31, 2022

Signals & Noise

PES Pareto. This is introduced in Section 7.3 and we delve into it in Section 7.4. In PES Pareto, we
were able to measure much of the noise in the loop by opening the loop at various points and doing a
process of elimination. However, ADC and DAC quantization provided such a low level of noise that
we had to try something different.

Once we have tracked different noise components to their respective sources and found out how
much each of the components affects the loop error and output, we can attack the noise at the inputs
by filtering the noise before it enters the loop (for baseband signals) or by demodulation methods
that provide significant filtering (for modulated signals). In this we are not violating Bode’s Integral
Theorem, merely reading the fine print. Input filters are often tied to off-the-shelf sensors. That
may be convenient packaging, but as with many things in control systems, that filtering might not be
designed with the idea of using it in a feedback loop and can cause problems.

Another aspect of input signals is that they start out analog and are shaped by analog input filters.
Perhaps the best known of these to control engineers is the anti-alias filter, a low pass filter placed
on the input signal to ensure that nothing above the Nyquist rate enters the control loop. There are
multiple issues with this (Section 7.12).

Returning to control sensor signals are modulated onto a carrier, we will discuss the tradeoffs be-
tween non-coherent demodulation and coherent demodulation with a couple of examples. This is
standard fare for communication engineers, but is not something is largely ignored by control texts..
Nevertheless, poor demodulation can allow significant noise and nonlinearities into the loop, and so
it behooves us – makes our control life significantly easier – if we can understand coherent demodu-
lation algorithms that can provide significant nonlinear and linear filtering. We will see how spending
the effort to properly demodulate these signals can dramatically cut the apparent sensor noise and
effective signal latency seen by the control loop. We will do this in Sections 7.13, 7.21, and 7.19.

7.3 Noise Filtering in Feedback Introduction

Now, I know what you’re thinking: Didn’t we just leave the filtering party back in Chapters 6 and
5? Well, that was the “filters for loop shaping” discussion, not the “filters for noise minimization”
discussion. I’m glad we got that cleared up. Noise is a term used to describe anything from shot
noise to biases due to cables or friction. Noise can be easy to model (e.g additive white Gaussian
noise) and not describe what we are observing or may be perfectly descriptive and hard to handle

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
366

Winter 2022-2023
December 31, 2022

Signals & Noise

analytically. As with all of the above, it places a limit on what information we can cleanly extract from
a system, either in our attempts to model the system or to properly control it.

Less common is the understanding of the effects of noise through the feedback loop, or how to back
noise measurements out to their sources. In the legendary “Respect the Unstable” Bode Lecture of
1989 [1] Gunter Stein educated us to the idea that loops do not eliminate noise, they merely move
it around, as he brilliantly illustrated with a dirt digging problem, reconstructed from memory on the
right side of Figure 7.3.

lo
g

 |
S

|
(d

B
)

0

Classical Control

ω

lo
g

 |
S

|
(d

B
)

0

Modern Control

ω

HP Computer Chair
0 200 400 600 800 1000 1200 1400 1600

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

Freq (Hz)

M
a

g
 (

d
B

)

KittyHawk II PES: Measured () and Measured/||S||^2 ()Blue Green

1
‖S ‖2 × PSD of PES

PSD of PES

Figure 7.3:On the left, Gunter Stein’s dirt digging analogy, recreated from memory circa 1994. On
the right, KittyHawk 1.3” disk drive: PSD of PES, and PSD of PES filtered by 1

‖S ‖2 .

If one uses that as a starting point and works backwards, one can establish what the “input noise”
must have looked like, as shown in Figure 7.3. This became the basis for the PES Pareto methodology
of analyzing the effects of noise on a system [34, 35, 36, 37].

One of the issues with passing noise through a loop is having any of it be tractable. It turns out
(and later versions of this document may actually have the reference) that if we can model the noise
as additive, white, Gaussian noise (AWGN) then the power spectral density (PSD) of that noise can
be analyzed as it passes through a filter. We saw this in our measurements of frequency response

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
367

Winter 2022-2023
December 31, 2022

Signals & Noise

functions in Chapter 3, Section 3.16. Thus, this assumption of having AWGn and being able to mea-
sure the power spectral density (PSD) of the noise allows us to filter the noise forward and backward
around the loop to (a) track it to its source and (b) find its effect on the loop error.

Even then, when we are trying to make practical measurements, we must default to some idealiza-
tions. The Widrow model [38] of quantization (Section 7.6.3), assumes quantization error can be
modeled as additive white, uniform noise (AWUN) on the interval, [−q/2, q/2], where q is a single
quantization unit (1 bit). To analyze noise through a linear filter requires an assumption of additive,
Gaussian, white noise (AWGN). That is, when we pass AWGN through a filter, it is still AWGN, but
with a possibly different mean and variance. We have no such guarantees for AWUN, but what mat-
ters in the frequency domain is that the autocorrelation of both AWGN and AWUN are delta functions
at τ = 0, which means that they both have uniform power spectral densities (PSDs) out to the Nyquist
frequency. For our analysis, that is enough.

We step away from analytical purity and mathematical exactitude to be able to gain understanding.
The Widrow model is used to analyze the effects of ADC and DAC quantization, but it is not the only
measure. A popular one with circuit designers is called the Effective Number of Bits (ENOB). Several
of these measures are discussed in Section 7.6.3, not because they are useful for PES Pareto, but
because they are useful when someone using PES Pareto has to discuss quantization noise with a
circuit designer.

In order to get a handle on how noise at a sensor, or due to quantization at an ADC, or quantization at
a DAC, or a power amplifier, or an input signal affects the overall loop response we need to make an
approximation and realize that it has its limitation. Additive, white, Gaussian noise can pass through a
linear filter and the result is that the noise power spectral density is shaped by the magnitude squared
of the filter response. In other words, we can use this approximation to look at how noise from
different inputs filters through a loop. Perhaps as importantly, we can back out the noise contributions
of different inputs. This allows us to focus our effort on the key contributors. In the PES Pareto method,
it was enough to start with the Widrow quantization model, we can take the mean and variance from
that, and spread that variance across the relevant frequency bandwidth to create a Power Spectral
Density (PSD) that when integrated is consistent with Parseval’s theorem [26]. We can then use that
calculated PSD for the rest of our noise analysis. It is not exact, but pretty effective.

The question becomes, what to do about it? If Bode’s integral theorem tells us that we cannot get
rid of noise amplification, only move it around, and the discrete time version of it tells us that we
have a finite range over which to work, are we forever stuck with noise? Can any filter help us? The
answer is that Bode’s Theorem applies to noise amplification in the loop. If we can minimize the

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
368

Winter 2022-2023
December 31, 2022

Signals & Noise

noise before it enters the loop, at the source, then we are fine. This is where filters can play a key
role. However, many of the signals that we rely upon for servo information are modulated on some
carrier. Traditionally, when Silicon was expensive, simple methods of demodulation to extract the
signal were used. We will discuss the problems with these methods and give a couple of examples of
how intelligent use of coherent demodulation can minimize the noise being demodulated. In the end,
the same filters we use for loop shaping also shape our noise spectra.

Before we can do these things, we need some method of tracking noise through a feedback loop.
It turns out that if we are willing to use linear analysis and assume additive, white, Gaussian noise
(AWGN), we are able to say quite a lot because the power spectral density (PSD) of such noise can
be added to the PSD of other noises and they can be understood when filtered through loop elements.
Few other noise “measures” can be managed this way, and so even though circuit designers might
prefer the effective number of bits (ENOB) as a measure of ADC and DAC quality, their Widrow model
PSDs are more informative.

7.4 An Introduction to PES Pareto

lo
g

 |
S

|
(d

B
)

0

Classical Control

ω

lo
g

 |
S

|
(d

B
)

0

Modern Control

ω

HP Computer Chair

Figure 7.4:Gunter Stein’s dirt digging analogy, recreated from memory circa 1994.

The PES Pareto method arose out of trying to quantify the fundamental limits of position accuracy for
hard disk drives (HDD) [34, 35, 36, 37]. The work, first internal to Hewlett-Packard, was published
after HP exited the disk drive business. In the years that followed, it became apparent from the disk
drive control sessions at the American Control Conferences in the early 2000s, that many of the disk
drive manufacturers of the day had adopted this method for their work. In the years since then, the
number of disk drive companies has reduced to three and the disk drive control sessions at ACC are
only a fond memory. It is not clear if PES Pareto is still used in the remaining industry, but it seems

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
369

Winter 2022-2023
December 31, 2022

Signals & Noise

0 200 400 600 800 1000 1200 1400 1600
-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

Freq (Hz)

M
a

g
 (

d
B

)

KittyHawk II PES: Measured () and Measured/||S||^2 ()Blue Green

1
‖S ‖2 × PSD of PES

PSD of PES

Figure 7.5:HP KittyHawk 1.3” disk drive: PSD of PES, and PSD of PES filtered by 1
‖S ‖2 .

like a good time to teach a new generation of control engineers how to apply it to their control loops.

It is worth spending a moment to consider why the PES Pareto methodology was so quickly accepted
by the disk drive industry while barely penetrating control practice anywhere else. Servo engineers
in the disk drive industry had several common practices that made an intuitive understanding of PES
Pareto easy for them, once it had been explained:

• They were used to making extensive, but not unified, measurements on physical systems. In
fact, they had a variety of relatively expensive electronic test instruments in the lab and were
well versed in making measurements in both time and frequency domain. What was far less
common was a unified view of how to practically combine those measurements.

• They were used to working on difficult to control problems with severe limits on processing
power, sample frequency, cost, and model completeness. This meant that they were receptive
to the notion that there was no one “magic bullet” measurement method that would apply to all
the different components around the feedback loop, and were ready to find a reasonable way to
piece these together. Put another way, they had no issues with the “mixed metaphor” approach
that physical system limits mandate and that PES Pareto embraces.

• They were acutely aware of noise and uncertainty limiting what they could do in their control
designs, working against what they called a “noise budget.” However, they were were flying

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
370

Winter 2022-2023
December 31, 2022

Signals & Noise

0 200 400 600 800 1000 1200 1400 1600
−40

−20

0

20

40

Freq (Hz)

M
a
g

 (
d

B
)

KittyHawk II Frequency Response

0 200 400 600 800 1000 1200 1400 1600
−300

−200

−100

0

100

200

Freq (Hz)

P
h

a
s
e
 (

d
e
g

)

Closed−Loop (), Opened−Loop (), Sensitivity ()Blue Green Red

PC

T

S

PC

T

S

Figure 7.6:Frequency response of a KittyHawk II.

yPES

PES In

r = 0
S

-
C P

Figure 7.7:Block diagram of original KittyHawk measurement that led to PES Pareto.

blind as to where the noise was actually originating and how much any one source consumed
of their noise budget.

It took this author years to realize that this kind of knowhow was not prevalent in the academic controls
research community [19] and that the lack of these very utilitarian practices had likely prevented PES
Pareto from filtering up to them and then out to their students. For this reason, this tutorial will teach far
more about the pedantic intricacies of measurement between domains to give the reader the intuitive
familiarity with what has to happen to assemble the measurements and models needed to get a much
better picture of noise throughout the loop. It is hoped that by doing this, PES Pareto can become
useful to a new generation of control systems engineers, far beyond what remains of the disk drive

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
371

Winter 2022-2023
December 31, 2022

Signals & Noise

industry.

This paper will focus on understanding of the effects of noise through the feedback loop, or how to
back noise measurements out to their sources. In the legendary “Respect the Unstable” Bode Lecture
of 1989 [151, 1] Gunter Stein educated us to the idea that loops do not eliminate noise, they merely
move it around, as he brilliantly illustrated with a dirt digging problem, reconstructed from memory in
Figure 7.4.

The original measurement that was spawned by the persistent memory of Stein’s talk (nine years
before the paper [1] was published) was a disk drive problem measuring the Position Error Signal
(PES) in HP’s KittyHawk 1.3” disk drive in the early 1990s. That measurement is diagrammed in
Figure 7.7 and the data displayed in Figure 7.5. The blue Position Error Signal (PES) was considered
flat in the frequency domain by the servo engineers at HP’s Disk Memory Division (DMD) in the
early 1990s. Certainly, the blue measurement of PES in Figure 7.5 looks relatively flat across most
frequencies. It was Stein’s pile of closed-loop dirt that led to the realization that the blue curve was
a closed-loop quantity, that had been filtered by the servo loop. What would that noise look like if it
were a signal being injected into the loop, if it were the PES In signal?

The “Aha!” moment was realizing that the filtered, closed-loop PES signal could be quantified in
frequency using its Power Spectral Density (PSD) and that PSD looked like what would happen if
PES In had been filtered by the magnitude squared of the sensitivity function. If one had a model or
measurement of that sensitivity function that covered the same frequency bins as the measurement
of PES, one could do some math. Denoting the PSD of PES as ΦEE and the PSD of PES In as ΦEE,
if

ΦEE(f) =
∥
∥
∥
∥
∥

1
1+ PC

∥
∥
∥
∥
∥

2

ΦII(f), (7.1)

then

ΦII(f) =
∥
∥
∥
∥
∥

1+ PC
1

∥
∥
∥
∥
∥

2

ΦEE(f). (7.2)

The resulting green curve in Figure 7.5 and was out of norm with what the engineers had been used
to that it took a while to accept as correct. If the noise looked flat after being filtered by the sensitivity
function (which has a lot of rejection at low frequency), then the unfiltered curve should have high
levels at low frequency. Realizing this launched the PES Pareto methodology.

Even in such a simple diagram as Figure 7.7, it becomes a fundamental set of questions. If we are
track following (r = 0), what does the noise in PES look like as the input PES In. We get that in Figure

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
372

Winter 2022-2023
December 31, 2022

Signals & Noise

7.5, and in the case of a disk drive, a lot of the broadband noise can be modeled to enter at that point,
be in noise in the generation of the PES signal (called Position Sensing Noise, PSN) or air flow over
the disk drive heads buffeting the physical position around. However, even in a disk drive, there are
far more noise injection points around the loop, as diagrammed in Figure 7.1. If ΦEE(f) is flat, or no
matter what shape it takes, what do the input PSDs of ΦWW(f) and ΦVV(f) look like? Furthermore,
how do we quantify how much of ΦEE(f) is due to one versus the other? It is clear that without any
other knowledge, it is hard to separate out the effects of ΦWW(f) versus ΦVV(f).

SensorADCS S

y

z

e u

r
SSS

-
SC

Physical
System

Power
Amp

DAC
Noise

PA
Noise

Phys. Sys.
Noise

ADC
Noise

Sensor
Noise

DAC

Figure 7.8:Simplification for analysis of Figure 7.2. Closed-loop system with each block having its
own noise source as an additive output noise.

In a more complex model where each block can be modeled to have its own noise source (Figure
7.2), how do we:

• Isolate and measure some noise source at some downstream output or measurement point?

• Back up through whatever effective filter there is to get to the particular noise source as an
input?

• Push that source (and others) forward through the closed-loop system to see the effects of that
noise source on the rest of the loop?

The second two questions are answered by setting up the math:

• We need Power Spectral Densities (PSDs) in a measurement frequency range with consistent
frequency bins.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
373

Winter 2022-2023
December 31, 2022

Signals & Noise

• We need measurements and/or models of all the blocks in such a way that we can match the
frequency bins.

• We need to understand the relationship between physical PSDs, the integral across the fre-
quency band, and (via Parseval’s Theorem [26]) the noise variance in time, σ2.

The first question involves a lot of hands-on cleverness and some fudging, but it is worth it.

• We see right away that in order to isolate some noise sources, we need to open the loop.

• In other cases, we cannot make the measurements without the system being in closed loop.

• Some noises are arrived at when we channel Sherlock Holmes and eliminate all the others as
a potential source [186].

The model of Figure 7.2 can become intractable for our analysis, unless we can simplify it to that of
Figure 7.8, in which we have taken the block noises and modeled them as individual output noises
of the blocks. Furthermore, we have made a reasonable assumption that we can consider the digital
noises (apart from quantization) to be negligible, at least in the sense that they can be mitigated
via numerical stability methods. In that respect, they are part of any reasonable controller design.
Figure 7.8 will serve as a prototype for the type of block diagram that best fits into the PES Pareto
environment.

Once we have these noise “sources” and their effect on the loop, we can model the effects of changing
one of those sources. This measurement based modeling tells us where to put our system design
and control effort. The achievable bandwidth of even the best control algorithm is eventually limited
by time delay and noise on a sensor that the loop amplifies at high frequency [19]. In such cases,
attention to the sensors, to the critical and dominant noise sources, and perhaps to how to demodulate
signals [185], often enables a much higher performance increase than the 10% improvement achieved
through 20× the math in the controller.

Finally, it is worth understanding why we focus on broadband noise. In the case of a hard disk drive,
the error signal, called the Position Error Signal (PES), can be decomposed in the frequency domain
into four components:

External Shock and Vibrations are heavily influenced by the drive’s operating environment. It has
been shown that accelerometer feedforward control can considerably reduce the effect on PES [187,
188].

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
374

Winter 2022-2023
December 31, 2022

Signals & Noise

Synchronous or Repeatable Excitationsare due to the rotation of the spindle and therefore syn-
chronous with it or one of the spindle orders. While synchronous excitations may be large, stan-
dard practice in the disk drive industry includes using feedforward cancelers to reduce the effects of
synchronous excitations [189, 190]. More importantly in the hard disk industry, the move of drives
from the office into the living room meant that the audio noise caused by the ball bearing spindles
were disturbing enough to people viewing their recorded movies that the ball bearing spindles quickly
were replaced with fluid bearing spindles [31]. In recent years, feedforward has seen a dramatic in-
crease in popularity with its use in nanopositioning control loops such as atomic force microscopes
[191, 192, 193] as well as macro-positioning control such as wind turbines [194].

Non-synchronous or Non-repeatable Excitationsinclude sharp spectral peaks due to spindle bearing
cage orders and structural resonances (which are less sharp but still narrow band). There was work
suggesting that disturbances due to resonances or cage orders could be considerably reduced by the
use of damped disk substrates and fluid bearing spindles [195, 196, 197]. As mentioned above, this
happened for other reasons. In applications beyond rotating machinery, these are also minimized via
physical redesign. Alternately, loop gain can be raised over a narrow portion of the pass band with a
bump filter, or dropped outside the passband). In these cases, if the band is narrow enough, the area
of noise amplification can be kept relatively small.

Broadband or Baseline Noiseis what remains when all of the narrow band components have been
removed. Of the four categories, baseline noise has received the least attention in the literature.
Therefore, broadband noise became the focus of PES Pareto. Broadband noise was not viewed
as something that could be managed via repetitive or other feedforward control methods. By its very
nature, it could not be minimized with narrowband filters. When combined with Stein’s revelation about
Bode’s Integral Theorem, understanding the effects broadband noise gained much higher priority.

Consider that if signals including noise are filtered by closed-loop (CL) dynamics to get to PES (the
error signal), then inverse filtering by closed-loop filter dynamics should give us a “reference” or “noise”
input. How do we filter noise? It is better to ask what kind of noise can be analyzed through a filter?
The answer is additive, white, Gaussian noise (AWGN). AWGN has the property that auto and cross
spectra can be analyzed when passed through a linear filter [75]. This means that if we can generate
frequency responses for our closed loop dynamics, generate magnitude squared filters, and invert
those, we can back out noise sources. We need to keep in mind that each source injection point has
it’s own back filter from the measurement point, and each measurement location has it’s own forward
filter from any injection point.

This became the basis for the PES Pareto methodology of analyzing the effects of noise on a system

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
375

Winter 2022-2023
December 31, 2022

Signals & Noise

[34, 35, 36, 37]. While that work was focused on the control of hard and optical disk drives, this tutorial
will attempt to give participants a view to applying this method to all manner of control problems.

The structure of this half of the chapter is as follows. Section 7.5 will review how Bode’s Integral The-
orem and its discrete-time counterpart motivate the study of noise passing through a feedback loop
and outline the methods for doing this. Section 7.6 will establish a common mathematical framework
that will motivate and underpin all of our measurements and the rest of our analysis. Section 7.7 will
provide an old but real example system, illustrates the methods. Section 7.8 will discuss the “Simple
Tricks and Nonsense” [10] needed to get actual noise measurements out of a physical system, using
the two examples from Section 7.7. Section 7.9 will illustrate backing closed-loop noise measure-
ments back to their open-loop sources, and then propagating them forward to the loop error signal so
that they can be ranked by their effects on that error. Section 7.10 will present some examples of how
these new measures can be used to evaluate the effects of a particular noise source increasing or
being minimized. Finally, Section 7.12 will discuss methods of minimizing the effect of noise sources
before they enter the feedback loop [185].

7.5 Bode’s Theorem and Noise Shaping

Bode’s integral theorem [158] deals with what Bode calls regeneration, and dates back to the 1940s.
In the years since Stein’s Bode Lecture [151], it has gained prominence in the controls community, as
this theorem has significant implications for and applications to control systems.

The sensitivity function, S , is also known as the disturbance rejection function because it shows how
disturbances, d, go through the system and show up at the output, y, or at the error signal e.

S =
e
r
=

1
1+ PC

=
y
d
= − e

d
. (7.3)

While the mathematics used to prove both versions of Bode’s Theorem can be fairly complicated, the
result is fairly simple and extremely powerful. We will leave the proofs to the references [158], [161]
and talk simply about the interpretation. Looking at Figure 7.9 it says simply that:

the area of
disturbance
amplification

=
the area of
disturbance

rejection
+

a non-
negative
constant.

(7.4)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
376

Winter 2022-2023
December 31, 2022

Signals & Noise

area of
disturbance
rejection

area of
disturbance
amplification

ω

lo
g

 |
S

|
(d

B
)

log |S| = 0

0

usually very close
to open loop (PC) crossover

Figure 7.9:Sensitivity function drawing.

ω ωNyquist

lo
g

 |
S

|
(d

B
)

log |S| = 0 log |S| typically
close to 0 here

0

Figure 7.10:Drawing of sensitivity function in discrete time.

Mathematically, this is stated as
∫ ∞

0
log |S |dω = c, (7.5)

where c is some positive constant dependent only on the open loop unstable poles and non-minimum
phase zeros.

Consequences: “Sooner or later, you must answer for every good deed.” (Eli Wallach in the The

Magnificent Seven)

Translation: If you make the system less sensitive to noise at some frequencies, you then make the

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
377

Winter 2022-2023
December 31, 2022

Signals & Noise

system more sensitive at other frequencies.

Typical control designs attempt to spread the increased sensitivity (noise amplification) over the high
frequencies where noise and/or disturbances may be less of an issue. The image of this was pro-
vided in the Bode Lecture at the 1989 IEEE Conference on Decision and Control (Tampa, FL)[151].
The talk, by then Honeywell Researcher and MIT Professor, Gunter Stein, was entitled “Respect the
Unstable.” Stein described the net effect of control systems design as trying to get a certain amount
of disturbance rejection at some frequency span while trying to thinly spread the amplification over
a large frequency span. Stein’s drawing had a guy shoveling disturbance amplification “dirt” as in
Figure 7.4. The dirt can be moved, but not eliminated. Furthermore, the discrete-time version of
Bode’s Integral Theorem [161] has some implications for discrete time systems [35], however they
are essentially those of the continuous time theorem with the Nyquist rate forming a retaining wall for
the disturbance amplification dirt 7.10.

There are two reasons why Bode’s Integral Theorem is important in a discussion of a feedback loop’s
error signal. First of all, it gives a very good gage on what can and cannot be done with disturbance
rejection and noise in a control system. An intelligently designed control system puts noise ampli-
fication in places where there is little noise. A poorly designed system results in significant noise
amplification.

The second reason will become apparent in Section 7.8 on making measurements. It turns out that
when the error signal is measured from a closed loop system, the loop should actually be opened up to
look at the error’s contributing sources. The exact same effects that are the point of the above theorem
affect a measurement of error in closed-loop. Before we can do any of this, we need to establish a
common mathematical framework that will motivate and underpin all of our measurements and the
rest of our analysis. Basically, we need the machinery to do what was discussed above. This will be
in Section 7.6.

7.6 Noise Analysis and PSDs

The PES Pareto methodology requires measuring, averaging, and isolating the spectra of signals
at different points in a feedback loop and then filtering them in different ways to get to input noises
and output noises. It goes without saying that all of the operations need to be done on the same
frequency axis. Whether a spectrum is measured using a spectrum analyzer, or generated from a

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
378

Winter 2022-2023
December 31, 2022

Signals & Noise

time trace, the frequency bins (width, count, and location) have to be the same. The models of the
different loop components that “filter” the spectra must also have the same frequency axis so that
the filtering can be done bin-by-bin. This requires some rethinking of our measurements. Frequency
response functions are often measured on a logarithmic frequency scale since control engineers
are used to plotting frequency response functions using logarithmic frequency. Spectrum analyzers
typically generate spectra on a linear frequency axis, so our frequency response functions (even if
we are generating them from an analytic model) really need to be generated on this same linear
frequency axis. Calculating spectra from time measurements – usually via FFT calculations – also
are usually done on a linear frequency scale. Generally, the most reasonable way to do this is to
generate an analytic model of the different loop components from our measurements. That analytic
model can then be evaluated at the frequency points of the spectrum measurements. This brings in
all the difficulties of extracting models from measurements [19, 87], but is a needed step.

7.6.1 Useful PSDs from Measurements

Our goal in this section is to describe how to measure Power Spectral Densities, either directly from
a spectrum analyzer, or from one or more time domain measurements that have been transformed
via a Discrete Fourier Transform (DFT) or Fast Fourier Transform (FFT). As mentioned above, we
need these spectra measurements to have the same number and distribution of bins in the frequency
domain. The easiest way to get a spectrum measurement of a signal is with a spectrum analyzer,
an instrument that does this computation automatically . Spectrum analyzers are nice because they
essentially package all the necessary computations. The modern ones all compute FFTs [198, 199],
while some of the older ones computed a spectrum by sweeping an narrow band Gaussian filter
across the frequency range and simply using the output of that filter as the spectral value at that
frequency point [200].

The issue with any spectrum analyzer is that they have a fixed sample frequency and typically have a
fixed number of frequency bins at which they evaluate the spectrum. It is also often difficult to extract
from their documentation exactly what scaling is used in their FFT calculations, as the equations for
computing FFTs are scaled differently in different devices. Let’s get back to basics so we can have a
unified understanding of all these measurements.

The Fourier Transform of a signal x(t) is defined as

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
379

Winter 2022-2023
December 31, 2022

Signals & Noise

X(f) =
∫ ∞

−∞
x(t)e− j2π f tdt, (7.6)

while the inverse Fourier Transform becomes

x(t) =
∫ ∞

−∞
X(f)e j2π f td f . (7.7)

In some cases, the authors use ω in place of f . This doesn’t affect the first integral (which is over the
time variable, t)

X(ω) =
∫ ∞

−∞
x(t)e− jωtdt, (7.8)

but in integrating over ω in place of f we need to factor out the 2π, so the inverse Fourier Transform
becomes

x(t) =
1
2π

∫ ∞

−∞
X(f)e− jωtdω. (7.9)

If only a finite data record of time length T exists then the finite length Fourier Transform is

X(f ,T) =
∫ T

0
x(t)e− j2π f tdt. (7.10)

We should note that for any practical measurement, only a finite data record of time length T will ever
exist, so to apply Fourier Transforms in real life, we need to make use of Equation 7.10.

If that signal is sampled with a sampling period of ∆t then the sequence that results is

xn = x(n∆t) n = 0,1,2, . . .N − 1 (7.11)

and Equation 7.10 can be recast as the discrete Fourier Transform:

X(f ,T) = ∆t
N−1∑

n=0

x(n)e− j2π f n∆t. (7.12)

By letting fk =
k
T =

k
N∆t in Equation 7.12 we get

X(k) =
X(fk)
∆t
=

N−1∑

n=0

x(n)e
− j2πnk

N . (7.13)

Let WN = e
− j2π

N and W̃N(u) = e
− j2πu

N . Then Equation 7.13 can be written as

Xk = X(k) =
N−1∑

n=0

x(n)Wkn
N =

N−1∑

n=0

x(n)W̃N(kn). (7.14)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
380

Winter 2022-2023
December 31, 2022

Signals & Noise

This is what a standard FFT, including the one in Matlab computes. Note that

X(fk) = ∆tX(k) (7.15)

which returns the FFT to something closer to the physical units. From this definition of the FFT, the
inverse FFT is given by

xn =
1
N

N−1∑

k=0

X(k)e
j2πkn

N =
1
N

N−1∑

k=0

X(k)W−kn
N . (7.16)

Note that the placement of the 1
N is arbitrary. However, it is significant in trying to return the FFT

calculation to physical units. Alternate FFT definitions are available as:

X̃k =
1
√

N

N−1∑

n=0

xnWkn
N ⇐⇒ xn =

1
√

N

N−1∑

k=0

X̃(k)W−kn
N (7.17)

or

X̂k =

N−1∑

n=0

xnWkn
N ⇐⇒ xn =

1
N

N−1∑

k=0

X̂(k)W−kn
N . (7.18)

This is generally a pain because we want physical units when measuring signals in the lab and the
physical units do not have arbitrary scaling.

In order to make any of this analysis self-consistent, we need to have all the FFTs computed with
the same scaling. This means that we need to know what any spectrum analyzer or digital oscillo-
scope is using as its primary equation, and this often involves digging through the middle pages of the
manuals. Beyond that, we need to consider the sample period (∆T = TS = 1/ fS) used in each mea-
surement, and the number of points in each measurement as these two factors define the frequency
bins available in an FFT calculation.

So, whether by spectrum analyzer, by digital oscilloscope, or by using our digital control system to
capture a block of data, we understand that we have a linear spectrum of the data. Considering
the spectrum analyzer as more of a corner case moving forward, we might use a digital scope or a
time capture feature of our digital control system to capture a long stretch of sampled data and use
a Digital Fourier Transform (DFT) or Fast Fourier Transform (FFT) to compute the linear spectrum of
that signal. No matter how they are computed linear noise spectra do not pass through filters in an
analytical way, so we need to generate the complex conjugate of this spectra, multiply it times the
original at each frequency point, and then normalize it to get a power spectral density. This gives us
a Power Spectral Density (PSD). Section 7.6.2 will discuss some details about this calculation.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
381

Winter 2022-2023
December 31, 2022

Signals & Noise

7.6.2 Power Spectral and Cross Spectral Densities

This section deals with the practical generation of auto and cross spectra from spectra generated
by Fourier Transforms (or FFTs) or Fourier Series calculations. When the cross or auto spectrum is
normalized by the bandwidth of the measurement, we get a spectral density. Because we are making
discrete time measurements with a sample period, ∆t = TS = 1/ fS , our measurement bandwidth is
from − fS /2 to fS /2. Thus, we end up normalizing by the sample frequency, fS . A common term for
the auto-spectral density is power spectral density (PSD). Cross spectral densities may be referred to
as CSDs. Note that if we assume the same sample frequency for all of our FRF measurements, then
we can use the FRFs to filter the spectra in each frequency bin.

For PES Pareto, where we are backing noises out to the point where they are independent inputs,
we can consider the CSDs of these noises to be 0. Thus, we really care about the Power Spectral
Density (PSD).

Let’s consider that we have made a measurement sampled in time at intervals of ∆t = TS , where
there are at least N points in the measurement and N is a power of 2. From this time measurement,
we could compute the FFT on the range from − fS

2 to fS
2 using Equation 7.13. We scale this to physical

units via Equation 7.15. To produce the PSD from X(f), we compute the complex conjugate X∗(f).
This is a fairly straightforward computation. At that point we compute the element by element product
of the two complex vectors:

PS D(x) =
X∗(f)X(f)

Be
(7.19)

where Be is the Resolution Bandwidth of the filter used to compute the spectrum (or the Noise Equiv-
alent Bandwidth which is technically not the same but very close to the Resolution Bandwidth) and
where X(f) is the Fourier Transform from Equation 7.6. This is the smallest change in frequencies
that a given measurement can resolve.

In general Be is inversely proportional to the length of the time window over which a measurement is
made , i.e.,

Be =
1
T

(7.20)

where T is the length of the time record. For an FFT,

Be =
1
T
=

1
N∆t

(7.21)

where N is the number of points in the FFT and ∆t is the sample period between points.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
382

Winter 2022-2023
December 31, 2022

Signals & Noise

Note that for an FFT, the resolution bandwidth is fixed as all the integrations are done over a single
period of time (N∆t, as in Equation 7.21. Band Selectable Fourier Analysis or Zoom-FFT [82, 83]
can be used to maximize the resolution, but this is usually only known to experts. In a brute force
spectrum calculation, we could computes a separate integral for each frequency. To eliminate errors
due to a partial period integral, the integration should be done over an integer number of periods of
the frequency in question. This would that except in special cases, the actual resolution bandwidth
of the calculations at different frequencies will differ slightly, but the spectral leakage would be largely
eliminated.

MATLAB computes the FFT in Equation 7.14 and (with some details to be filled in later) then produces

Pxx = PS D(x) =
X∗. ∗ X

N
(7.22)

where X∗ is the complex conjugate of X and N is the number of points in the FFT and the .∗ operation
is the element by element multiply of two same-sized vectors in MATLAB . (Windowing and scaling
are standard methods of improving the performance of FFTs by driving the time signal to 0 at the
beginning and end of the data run, but we will not discuss those here.)

Note that these units are not physical. From Bendat & Piersol[75], page 407 there is a procedure
for computing a PSD from FFT based measurements. At any frequency, fk, the PSD of a signal x is
given by:

P̃xx(fk) =
X∗(fk)X(fk)

N∆t
(7.23)

where X(fk) = ∆tXk. This means that

P̃xx(fk) =
(∆t)2X∗k Xk

N∆t
(7.24)

or

P̃xx(fk) =
∆tX∗k Xk

N
(7.25)

so

P̃xx =
∆tX∗. ∗ X

N
(7.26)

and thus
P̃xx = ∆tPxx (7.27)

i.e. to go from MATLAB units to physical units, multiply the MATLAB PSD by ∆t. Now, the MATLAB
PSD function has been deprecated, and now they favor a Welch algorithm that does the physical
scaling found in Equation 7.27. Alternately, one can use MATLAB ’s periodogram function. So, for a
time domain measurement in the vector, d, of length Nmeas ≤ N = NFFT = 2M, we can:

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
383

Winter 2022-2023
December 31, 2022

Signals & Noise

• Compute from MATLAB ’s FFT routine:

d.FFT = f f t(d,NFFT); (7.28)

d.FFTphys = TS ∗ d.FFT ; (7.29)

d.PS DFFT =
(d.FFT)∗. ∗ d.FFT

NFFT
; (7.30)

d.PS DFFT,TS = TS ∗ d.PS DFFT ; (7.31)

• Compute using MATLAB ’s Welch routine:

[Pxx,w, fw] = pwelch(d,NFFT, [] ,NFFT, f s); (7.32)

• Compute using MATLAB ’s periodogram routine:

d.PS DPer = periodogram(d, [] ,NFFT); (7.33)

These three methods give the same PSD and give a PSD that is scaled to be equivalent to the Fourier
transform of an analog signal. We believe that for most purposes, the first method has the advantages
that it is relatively straightforward and completely transparent. Furthermore, the routines are easily
mimicked in computer languages besides MATLAB or Python, making the math far more portable.

The FFT calculations above all compute an FFT from − fS
2 to fS

2 but since we really can only make
use of the positive frequency axis, we want to use the FFT frequency bins from 0 to fS

2 . The Fourier
Transform of real function is Hermitian [26], which means that the real part is even and the imaginary
part is odd, but when we multiply the FFT by its complex conjugate, we get a real and even function
on the frequency axis. We can then take double the values of the PSD for the positive frequency bins,
leave the bin at DC the same, and discard the portion with the negative frequency bins.

Note that it is typical to pick the next power of 2 above Nmeas to compute the FFT. However, we may
have a situation where we have a lot of data i.e. Nmeas is far larger than any reasonable FFT we might
wish to make. This means that we have the option to do some averaging. Averaging is a good thing in
noise analysis because – to put it simply – one cannot get an expected value from a single vector of
data, and one cannot approximate an expected value without a bit of averaging. If one makes a long
data measurement, and one assumes that the noise process is ergodic, that is that the time averages
are the same as the ensemble averages [75], then we can break a long measurement into sections to
be FFTed and those FFTs can be averaged. One of the tricks one could do with the old MATLAB PSD
algorithm was perform overlap processing: a long run of data could be broken in to multiple segments
for FFTs, but those segments could overlap giving the illusion of more points while still averaging, as
diagrammed in Figure 7.11.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
384

Winter 2022-2023
December 31, 2022

Signals & Noise

.21 .81 .90 .99.95 1.0.97 .99.97 1.0.19 .79 .91 .98.94 .99.97 1.0.98 1.0.21 .81 .89 .99.95 .98.96 1.0.98 1.0 .80 .21 .11 .01.06 .02.02 0.0.03 0.0.80 .19 .09 .02.05 .01.04 0.0.02 0.0.81 .20 .11 .00.04 .01.03 0.0.03 0.0

Long Time Domain Measurement Split into 6 Equal, Non-Overlapping Segments

.21 .81 .90 .99.95 1.0.97 .99.97 1.0 .80 .21 .11 .01.06 .02.02 0.0.03 0.0

.21 .81 .90 .99.95 1.0.97 .99.97 1.0.80 .19 .09 .02.05 .01.04 0.0.02 0.0

.19 .79 .91 .98.94 .99.97 1.0.98 1.0 .80 .19 .09 .02.05 .01.04 0.0.02 0.0

.19 .79 .91 .98.94 .99.97 1.0.98 1.0.81 .20 .11 .00.04 .01.03 0.0.03 0.0

.21 .81 .89 .99.95 .98.96 1.0.98 1.0 .81 .20 .11 .00.04 .01.03 0.0.03 0.0

Segment 1 Segment 4

Segment 5Segment 2

Segment 3

Long Time Domain Measurement Split into 5 Equal, Longer, Overlapping Segments

.21 .81 .90 .99.95 1.0.97 .99.97 1.0.19 .79 .91 .98.94 .99.97 1.0.98 1.0.21 .81 .89 .99.95 .98.96 1.0.98 1.0 .80 .21 .11 .01.06 .02.02 0.0.03 0.0.80 .19 .09 .02.05 .01.04 0.0.02 0.0.81 .20 .11 .00.04 .01.03 0.0.03 0.0

Long Time Domain Measurement

Figure 7.11:Diagram of overlap processing.

7.6.3 Quantization Noise: The Widrow Model and Others

Quantization Error Modeled
As Uniform White Noise

q
2

1
q

-q
2

q

Quantizer
Input

Quantizer
Output

q
2

-q
2

Quantization
Error

q
2

-q
2

Figure 7.12:Diagram of quantization and Widrow model.

There are other time domain measurements that yield only a single number, such as the variance due
to quantization in the Widrow model [38]. This variance must be spread across the frequency band in
some logical way, so the authors chose to normalize it by the frequency bandwidth. This is consistent
with the texts [201, 202] on quantization devices and with will be described briefly here. Note that
[202] is erroneous in that the normalization by TS = 1/ fS has been omitted.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
385

Winter 2022-2023
December 31, 2022

Signals & Noise

The Widrow model [38] of quantization is based on an analog of the Nyquist sampling theorem [203].
A conceptual quantizer is shown on the left side of Figure 7.12. Quantization is not a random process,
but a deterministic, nonlinear operation. This makes it hard to do anything with passing the math
through a filter. Widrow’s insight was that while quantization was deterministic and nonlinear, if the
signal excited enough of the scale of the quantizer, and the quantization bins were fine enough, that
the probability of the quantized signal falling anywhere in the quantization bin could be modeled as
a uniform density white noise on the interval [− q

2,
q
2], where q is the size of a minimum quantization

interval. This is displayed on the right side of Figure 7.12. With this model, computing the mean and
the variance of the quantization “noise” reveals that the mean and variance are:

µq = 0 and σ2
q =

q2

12
. (7.34)

This number for variance is used in texts all over the world [15]. That is all well and good, but how do
we translate this variance into a PSD that we can pass through filters?

The leap of faith here is to treat that Additive Uniform White Noise as an Additive Gaussian White
Noise, with zero mean and variance of q2

12. As both are white, they have an autocorrelation that is only
nonzero at an offset of 0. At an offset of 0, the autocorrelations are a Delta functions with a hight equal
to the variance. We know from Parseval’s Theorem [26, 204] that the variance in time is equal to the
integral of the PSD over frequency, in this case, from − fS

2 to fS
2 , so we can as a first approximation,

give the quantization noise a uniform PSD on the interval [− fS
2 ,

fS
2] with magnitude q2

12fS
. In summary,

we set the noise PSD due to quantization as:

ΦQQ(f) =
q2

12fS
=

q2TS

12
, using f ∈ [− fS

2
,

fS

2
] (7.35)

If we are only using the interval from [0, fS
2], then the PSD magnitude is q2

6 fS
.

ΦQQ(f) =
q2

6 fS
=

q2TS

6
, using f ∈ [0,

fS

2
] (7.36)

This is a correction to the classic circuit text [202] where the noise PSD is set to q2

12 from f ∈ [0, fS
2].

The key to understand is that the integral of the PSD over the frequency range, must equal the total
variance of q2

12.

The swap between a uniform and Gaussian additive white noise is not perfect, but it does allow us to
deal with quantization noise in the PES Pareto method, i.e. to pass it through digital filters. We will
discuss how to apply these ideas to measurements of ADC and DAC “noise” in Section 7.8.4. This
model serves us as a theoretical minimum for the quantization noise, if all of the noise in the ADC or
DAC noise and can be used to generate a PSD as described above.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
386

Winter 2022-2023
December 31, 2022

Signals & Noise

Other measures of ADC and DAC noise depend upon the access to the system. If one can open up
the system and drive the ADC with either a single tone, or with an open circuit, one can establish
(for the ADC) an input noise level. Applying an open circuit to the ADC means that all that is coming
in is noise. However, this doesn’t exercise the full range of the ADC. An alternate input is to drive
the ADC with a single sinusoid that excites the full range of the ADC. The issue then is that the tone
dominates the response, so it needs to be removed digitally. This can be done in the time domain with
an adaptive noise canceler [24], which adapts coefficients of a generated sine and cosine to cancel
the magnitude and phase of the input signal. If done after an FFT, we need to look at the frequency
bins that contain the tone and set it equal to some average of side bins outside the skirt of the tone.
If the tone is removed in the time domain, we can also remove the DC level by averaging the entire
data run to establish the sample mean. For an N-sample measurement,

x̄k,N =
1
N

N−1∑

i=0

xk−i, (7.37)

and we proceed as above.

We can also use this to back out a measure of how many bits we get out of the ADC. Consider if we
have an N-bit ADC that spans a particular full voltage scale, FS. Then

FS
q
= 2N or q =

FS
2N

or FS = q2N . (7.38)

Now using (7.34) we can substitute:

σ2
meas =

q2
e f f

12
, so (7.39)

qe f f = σmeas

√
12=

FS
2Ne f f
. (7.40)

This means that

2Ne f f =
FS

σmeas

√
12
, so (7.41)

Ne f f = log2

(

FS

σmeas

√
12

)

bits. (7.42)

Equation 7.42 is not useful for PES Pareto per se, but does give an answer to the question of how
many bits we are getting out of our ADC. This is an almost religious bone of contention with analog
circuit designers and mixed signal device engineers, who have a handful of measurements that they
like to use (none of them useful for PES Pareto). However, since anyone applying the above methods

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
387

Winter 2022-2023
December 31, 2022

Signals & Noise

will likely hear from a member of those two groups that the measure is wrong, it is good to understand
what they use and how they related. There are essentially three popular measures:

Effective Resolutionis a measure that is easy to compute and defined as:

Effective Resolution = log2

(

FS
σmeas

)

bits. (7.43)

While this is easy enough to compute, as we should know the full scale and can measure σmeas, it
uses a peak-to-peak signal FS and compares to an Root Mean Square (RMS) signal, σmeas.

Signal-to-noise ratio (SNR)is a measure commonly understood by engineers as some ratio of signal
power to noise power. Both of these are RMS signals. For the signal, the assumption is to use
a sinusoid to represent the signal. The RMS amplitude of a sinusoid of amplitude, A is A√

2
, but a

sinusoid that spans the entire ADC range would mean FS = 2A so A = FS/2

SNR =
FS RMS

σnoise
=

FS

2
√

2σnoise

. (7.44)

What happens is that many analog engineers will use the σnoise from the Widrow model, so

SNRq =
FS

2
√

2
(

q√
12

) =
FS 2

√
3

2
√

2q
=

FS
q

√

3/2, (7.45)

=
q2N

q

√

3/2 = 2N
√

3/2. (7.46)

Furthermore, because engineers like SNR in decibels, they compute:

SNRq,dB = 20 log10

(

2N
√

3/2
)

(7.47)

SNRq,dB = N20 log10(2)+ 20 log10

√

3/2. (7.48)

Now, 20 log10(2) ≈ 6.02 and 20 log10(
√

3/2) = 10 log10(3/2) ≈ 1.76 which gives the equation often
seen in the device literature:

SNRq,dB ≈ 6.02N + 1.76. (7.49)

From there, one could back out N with malice a forethought as:

N =
SNRq,dB − 20 log10

√
3/2

20 log10(2)
≈

SNRq,dB − 1.76

6.02
. (7.50)

What the device literature usually neglects is that (7.49) only holds when we attribute all of the noise
in the device to quantization and use the Widrow model. What happens when there are other noises

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
388

Winter 2022-2023
December 31, 2022

Signals & Noise

and distortions? For that, the device engineers use a term called SINAD for SIgnal to Noise And
Distortion ratio. The most useful definition seems to be

SINAD =

√

Psignal

σtot,n
, where (7.51)

σtot,n =

√

σ2
q + σ

2
n1 + . . . + σ

2
nm. (7.52)

Thus we take the ratio of our pure signal to all the noises and distortions (assuming that they are
independent) that we can find or measure. Using SINAD in place of SNR and the total noise in place
of quantization noise in Equations 7.48 and 7.50, they arrive at what they call Effective Number of
Bits (ENOB):

SINADdB = ENOB · 20 log10(2)+ 20 log10

√

3/2. (7.53)

ENOB =
SINADdB − 20 log10

√
3/2

20 log10(2)
, or (7.54)

ENOB ≈ SINADdB − 1.76
6.02

bits. (7.55)

The issue with ENOB, which is considered the gold standard by many device engineers is that the

20 log10(
√

3/2) ≈ 1.76 is based on all the noise being due to quantization and then they count quan-

tization again in the SINAD calculation. This double counting seems to be based more on what could

easily be measured from traditional instruments rather than reworking the math. Because of that, there

is also a division by 20 log10(2) ≈ 6.02 instead of simply computing log2(·) in place of log10(·).

A “harder to compute on ancient instruments but trivial in MATLAB ” correction for this might be

Effective Bits (EB). Staring with the SINAD definition of Equation 7.51 and realizing that it is simply

the SNR of Equation 7.44

SINAD = SNRtot =
FS RMS

σtot,n
=

FS

2
√

2σtot,n

, (7.56)

where σtot,n is either measured or computed using (7.52). Since FS = q2N (7.38) we have

SINAD = SNRtot =
q2N

2
√

2σtot,n

. (7.57)

We now replace N by EN, analogously to (7.53), to get

2EN =
(SINAD)2

√
2σtot,n

q
(7.58)

EN = log2

(SINAD)2
√

2σtot,n

q

 bits. (7.59)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
389

Winter 2022-2023
December 31, 2022

Signals & Noise

We can, of course, simplify this with

EN = log2(SINAD) + 1.5+ log2(σtot,n) − log2(q). (7.60)

To put it in the less logical but more familiar framework of decibels, we would have:

S INADdB = EN20 log10(2)+ 20 log10(q) −
20 log10(2

√
2)− 20 log10(σtot,n). (7.61)

From here

EN =
S INADdB − 20 log10(q) + 20 log10(2

√
2σtot,n)

20 log10 2
, (7.62)

or using the approximations from before and 20 log10 (2
√

2) ≈ 9.03

EN =
S INADdB − 20 log10(q) + 9.03+ 20 log10(σtot,n)

6.02
. (7.63)

This is an awful lot to go through for measures that do not help PES Pareto, but they do help in

understanding the terms used by circuit and device engineers, especially when we need to explain to

them that their measures do not help us move quantization through a block diagram.

7.6.4 Using PSDs in PES Pareto

With all these tricks, one ends up being opportunistic, generating as many different spectra from as

many different locations as possible, with the loop open whenever possible, so as to isolate different

noise sources. Because PSDs can be added, they can be subtracted from each other and so by a process

of elimination, we arrive at isolated noise sources. However, there are measurements that can only be

made when the system is in closed-loop. The measurement of PSN is one such case. In this case, we

must use subtraction of the PSD from the sources that we could isolate to leave us with the PSD of the

remaining source.

As we try to convert any measurement into a PSD, the following is useful to keep in mind:

• We will be working on the waveform. That is, we will have a frequency axis from some lower

frequency to some higher frequency. That higher frequency will be no more than the Nyquist

frequency.

• In order to do waveform math on multiple waveforms (scalar math one frequency bin at a time),

all waveforms must share the same frequency axis.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
390

Winter 2022-2023
December 31, 2022

Signals & Noise

• If we have an instrument, or instrumentation functionality that can measure the PSD directly,

we can use that. If the instrument can measure the FFT of the signal, then we must multiply

it, frequency bin by frequency bin, times its complex conjugate. If we simply have a single time

domain variance number, then this must be distributed across the frequency spectrum as described

in discussion of quantization in Section 7.6.3.

• PSDs generated by independent processes can be added. Thus, if we have different, independent

noise sources generating the PSDs at a particular measurement point, then the results of those

sources can be considered added at the measurement point. We have a strata of noise contributors.

• By model or measurement, generate frequency response functions (FRFs) for the loop components

on the same frequency axis as our PSD measurements. Generically call these H for this discussion.

• Multiply H times its complex conjugate to get ‖H‖2.

• Multiply ‖H‖2 times the power spectrum or PSD to get effect of the loop on noise. Note that

‖H‖2 must be the appropriate units for filtering the PSDs.

• The resulting output is another power spectrum or PSD.

• We can use superposition to built up contributions from many sources.

• We need to do some “loop unwrapping” to extract proper input noise levels for model.

The chief restriction of manipulating PSDs is that we will have to limit ourselves to linear models of

the system. However, by doing so we are able to actually add and subtract PSDs. In order to do so,

we formally should require some knowledge that the noise sources are independent. It turns out that

there is no way to verify this for all sources, but it is very likely true. While any measured signal in the

loop is correlated to several noise sources, each source arises from an independent physical phenomenon.

Furthermore, without allowing for superposition of noise measurements, it would be next to impossible

to analyze the noise of a measured system. Thus, it is a starting point we must choose.

7.7 Using the HDD Example Guide Us

When we introduced the PES Pareto methodology in the 1990s, we were working in the context of the

disk drive industry and had plenty of measurements from actual disk drives. In the years since then,

there have been few chances to measure more disk drives. That being said, the measurements from

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
391

Winter 2022-2023
December 31, 2022

Signals & Noise

Disk
Pos.

❄

Real Time
NRRO

✻

Spindle
Orders &
Written

In NRRO

✲ ♠Σ ✲
❄

Position
Sensing

Noise (PSN)

Demod. ✟✟

︸ ︷︷ ︸

D(s)

✲PES

(volts)
ADC

❄

ADC
Noise

︸ ︷︷ ︸

C(s)

✲ Comp ✲DAC

❄

DAC
Noise

✲
(volts)

♠Σ

✻
Xout

❄

Xin

✲ PA

︸︷︷︸

A(s)

❄

PA
Noise

✻

Kis
Isense

(amps)

✲ Kt ✲

(N·m)

♠Σ
❄

Windage

✲ 1
J

✲ 1
s

✲

✲Resonances

To LDV
Velocity

✛Kv
❅

❅
❅❅■

1
s

✲Resonances

To LDV
Position

✛Kp❇
❇
❇
❇
❇❇▼−

︸ ︷︷ ︸

P(s)

(
microns
or tracks

)

(
microns
or tracks

)

✻−

Figure 7.13: Generalized view of track following model in an HDD. Each block can be considered both
a source of noise and affected by noise. PSN refers to Position Sensing Noise, that is the inaccuracies
caused in trying to extract position information from alternating polarities of magnetic domains.

that original work are still quite instructive. We will reference the block diagram in Figure 7.13 to help

us “walk around the loop.” We will have an augmented discussion of the measurements made on that

system, showing how different PSD measurements were extracted for different blocks in Section 7.8. We

and how we put it all together to get noise strata in Section 7.9 and then Section 7.10 will show how

to use our extracted sources and models to extrapolate how changes in a noise source would affect a

particular measurement point.

Terril Hurst, Dick Henze (our manager at the time), and I introduced PES Pareto to HP’s Disk Memory

Division (DMD) in 1995. In 1996 HP exited the hard disk business, so Terril and I got permission to

publish the work, which we first did at the 1997 American Control Conference in Albuquerque [35, 36, 37].

Publishing three papers from the same authors in one disk drive control session was pretty much unheard

of, but then CMU ME Professor William (Bill) Messner (now at Tufts) was adamant that the material

should be heard together and rearranged the session to make it happen.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
392

Winter 2022-2023
December 31, 2022

Signals & Noise

Power
Amp

Windage

Disk Position

Arm Mechanics

S

S
ADC DAC

Motor
Torque

LDV

Demod

-

Position
Sensing
Noise

ADC
Noise

DAC
Noise

PA
Noise

Head Position

PES

DSP

Figure 7.14:Generalized view of track following model for executives.

Together, those papers described the PES Pareto method [35], how to make measurements on a disk

drive to feed the method [36], and the results of applying the method to some HP disk drives of the

time [37] (KittyHawk II (1.3” diameter, 40 MB), and Lynx II (3.5” diameter, 1 GB). They describe a

method of breaking down the Position Error Signal (PES) of a magnetic disk drive to its contributing

components. Once these components are identified, they can be ranked in terms of their overall effect

on PES and thus the most critical ones can be worked on first. In order to do a practical analysis of

the contributors to PES, the fundamental question that must be answered is: What can be measured?

While this may seem whimsical at first, it should be noted that in any real system, we will not have

access to all the measurement points that we desire. Furthermore, although many different analysis tools

might theoretically be available, they are useless to us if they cannot make use of the actual laboratory

measurements available to us.

In order to guide our measurements and our modeling, it is useful to have a map of the system. The

block diagram in Figure 7.13 will serve as the map for our tour of noises in the system. Starting at

the left of this diagram, the reference position that the actuator arm must follow is the position of the

magnetic track written on a disk, turning on a spindle. Only the position error – the difference between

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
393

Winter 2022-2023
December 31, 2022

Signals & Noise

the reference track position and the readback head position – is sensed by the readback head, and this

error signal is sent to the demodulator. The demodulator outputs a set of numbers at the system sample

rate, and these are combined electronically to form PES. This PES signal is then converted to a digital

format via an analog to digital converter (ADC), filtered by the compensator and then sent back out to

the power amplifier via a digital to analog converter (DAC). The power amp converts the desired voltage

into a current to drive the voice coil actuator (with torque constant Kt). The actuator itself has rigid

body behavior as well as resonances. Through this, the head position is set. The position error is then

sensed by the head. Absolute head position is not generally known from what is read off of the disk

surface, but can be obtained in the laboratory by shining a laser spot from a Laser Doppler Vibrometer

(LDV)1 off of the side of the head. While this nominally measures velocities, the result can be accurately

integrated in time (for the frequencies we are concerned with) to obtain position.

We engineers like block diagrams that explain things in detail to us. This certainly was the case with

Figure 7.13. Something happened that changed my view of how to present this material. Joel Birnbaum,

then Director of HP Labs and Hewlett-Packard’s CTO, was touring our lab with his entourage. Now,

Joel is a brilliant technical contributor, but not everyone in the entourage would remember any of their

technology. Thus, I made a non-engineer, executive version of Figure 7.13, and that was Figure 7.14.

I was kind of embarrassed to draw Mr. Wind to represent air flow. However, during the lab tour, the

most amazing thing happened: they loved it. This might feel cheap, but as anyone familiar with Tom

Wolfe’s seminal book, The Right Stuff [205], knows: “No bucks, no Buck Rogers.” You have to get the

folks controlling the money to think they understand what you are doing. Figure 7.13 would not have

done that but Figure 7.14 sure as heck did.

There are several measurement points that can be accessed around the loop: Xout, Isense, PES, and head

velocity (and position) via the LDV. In general test signals can be injected into the loop only at Xin.

There are several likely noise input points on a disk drive. First of all, there are the noises associated with

the moving disk and the readback process. These all enter the loop at the same point, but have different

root causes. The noise due to the motion of the disk attached to a ball bearing spindle creates both

Repeatable Run Out (RRO) (typically at orders of the spindle rotational frequency) and Non-Repeatable

Run Out (NRRO). One of the interesting properties of servowritten disks is that one pass of the NRRO

is usually locked into the servo position information when it is written. Thus, this written in NRRO is

repeated at every revolution of the disk. The other noise source that enters at this point is the noise

from the readback process of position information, called Position Sensing Noise (PSN). This noise can

1In this case, made by Polytec.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
394

Winter 2022-2023
December 31, 2022

Signals & Noise

be due to the magnetic domains on the disk, the behavior of the magnetic readback head, the interaction

of these two, or the action of the demodulator. (We lump demodulator noise into PSN for our current

analysis.) Downstream in the loop, there are potential noise sources at the ADC and DAC (due to

quantization), noise at the power amp, and finally windage. Windage is caused by the air flow generated

as the disk spins. This air flows over, under, around, and into the actuator arms and the readback head,

disturbing the head position. Given all these potential noise sources, there is a fundamental need to

identify which of these – if any – are the most significant contributors to PES. With this information,

the effort to reduce the noise in PES can be concentrated on the critical few.

It is worth noting that we purposely ignore external shock and vibration in this analysis for two reasons.

First of all, external shock and vibration is heavily influenced by the drive’s operating environment while

the above noises are a function primarily of the drive. The second is that prior work in this area[187] gives

us some confidence that we already have a reasonable engineering solution to many types of external

shock and vibration. Thus, this work will focus on internal noises.

The tools available to us are a set of laboratory instruments that can make both time and frequency

domain measurements. In particular, Digital Storage Oscilloscopes (DSO) can record time domain data

as can certain spectrum analyzers. The spectrum analyzers are most useful, though, for measuring linear

spectra, power spectra, power spectral densities (PSDs), and frequency response functions of systems.

Spectrum analyzers typically only measure spectra as an independent quantity, but a class of these called

network analyzers measures an output spectrum over an input spectrum. In particular, the network

analyzers that we use are the HP 3563A Control Systems Analyzer and the HP 3567A Multi-Channel

Analyzer. The latter instrument has the advantage of allowing more than two signals from the system

to be measured at once.

For analysis, we used the standard set of matrix based tools, in particular MATLAB and Simulink . The

tools one might use today would be the same, or one could imagine using Octave or some of the Python

tools. What was novel at the time and still a lot more rare than it should be is that we made our

measurements with the conscious thought of transferring them in to MATLAB for analysis [206].

7.8 Measurements for PES Pareto

The ideas of Section 7.5 fundamentally depend upon having measurements of noises at different parts

of the loop to manipulate back and forth. Some noises can be measured simply by breaking the loop

at some point and making a measurement downstream of the block in question. In other cases, the

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
395

Winter 2022-2023
December 31, 2022

Signals & Noise

measurements are only available when the loop is closed in feedback. For the most part, the method is

assuming that we can apply linear analysis through our feedback loop, especially when the signals are

small (as we expect them to be for noise analysis). This breaks down when we want to relate the effects

of quantization from analog-to-digital converters (ADCs) and digital-to-analog converters (DACs) to

these linear methods.

It should be noted that this section contains the most ad-hoc techniques in the tutorial. The measurement

test points we want are not always available. Some measurements can only be made when the loop is

broken, while others are only feasible in closed-loop. A certain amount of faith is needed that the noises

we measure when we isolate a component are representative of those noises when the loop is operational.

7.8.1 Measurements in Open and Closed Loop

In order to do a practical analysis of the contributors to error, the fundamental question that must be

answered is: What can be measured? In any real system, we will not have access to all the measure-

ment points that we desire. Furthermore, although many different analysis tools might theoretically be

available, they are useless to us if they cannot make use of the actual laboratory measurements available

to us.

In order to guide our measurements and our modeling, it is useful to have a map of the system. In

the original hard disk drive example, the Figure 7.13 served as the map for our tour of noises in the

system. Starting at the left of this diagram, the reference position that the actuator arm must follow

is the position of the magnetic track written on a disk, turning on a spindle. Only the position error

– the difference between the reference track position and the readback head position – is sensed by

the readback head, and this error signal is sent to the demodulator. The demodulator outputs a set

of numbers at the system sample rate, and these are combined electronically to form PES. This PES

signal is then converted to a digital format via an analog to digital converter (ADC), filtered by the

compensator and then sent back out to the power amplifier via a digital to analog converter (DAC).

The power amp converts the desired voltage into a current to drive the voice coil actuator (with torque

constant Kt). The actuator itself has rigid body behavior as well as resonances. Through this, the head

position is set. The position error is then sensed by the head. Absolute head position is not generally

known from what is read off of the disk surface, but can be obtained in the laboratory by shining a laser

spot from a Laser Doppler Vibrometer (LDV) off of the side of the head. While this nominally measures

velocities, the result can be accurately integrated in time (for the frequencies we are concerned with) to

obtain position.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
396

Winter 2022-2023
December 31, 2022

Signals & Noise

We had the following useful models that we could measure from our physical system. Our block groupings

in Figure 7.13, are the plant, P(s):

P(s) =
1
Kt

(

LDV
Isense

)

3WM

≈ 1
KtA(s)

(

LDV
Xin

)

OfCLM

, (7.64)

the power amplifier, A(s):
A(s) : from block model, (7.65)

the compensator, C(s):

C(s) =
(Xout

PES

)

meas
≈ Analytic Model, (7.66)

and the servo position generator or demodulator, D(s):

D(s) =

(
NPES
Isense

)

meas
(

LDV
Isense

)

meas

. (7.67)

Adjusted
Reference

Reference

Error
(e)

Control
(u)

Position
(y)

S

-
FCLI

FPI

Controller
Reference
Generator

Physical
System

ADC

DAC Amps

Sensor

S S

S

SS

Stim Stim

Stim

Stim

PlantDigital Controller

Closed-LoopFeedforward

F OutputCLI

F OutputPI

Figure 7.15:Generic feedforward-feedback loop with measurement points. Note that if measurement
IP is built into the digital controller, then the number of test injection and measurement points gets
much larger. Furthermore, the measurements are made at frequencies compatible with the digital
control system.

In traditional measurement systems using external instruments, such as this disk drive example, there

were a limited number of measurement points that could be accessed around the loop: Xout, Isense, PES,

and head velocity (and position) via the LDV. In general test signals could only be injected into the loop at

Xin. However, in the two decades since the original PES Pareto work, the nature of instrumentation and

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
397

Winter 2022-2023
December 31, 2022

Signals & Noise

measurements has changed quite a bit. As digital controllers have gotten more ubiquitous, it has made

less and less sense to connect analog instruments to the loop, that is, instruments that required their own

ADCs and DACs. Many of the classic instruments from the original PES Pareto work [34, 35, 36, 37]

are no longer manufactured. Even for these instruments, many of the digital control loops run at sample

rates an order of magnitude higher than these instruments could allow.

Instead, it has become more logical to build in measurement tools right into the digital controller [87].

Diagrams such as the one in Figure 7.15 should become the norm rather than the exception. In particular,

such built-in measurements allow the measurement algorithms to use the same data conversion path as

the control loop. Furthermore, the number of digital measurement points (both for signal injection

and measurement) are dramatically increased and the data for measurement does not need a format

conversion from the data for running the loop.

The classic laboratory instruments for these kinds of measurements include spectrum analyzers (discussed

earlier), network analyzers (which calculate the ratio of input and output spectra), and digital storage

oscilloscopes (DSO). Any of these can be recreated within a modern digital controller and should be for

the reasons mentioned above. What are known as dynamic signal analyzers (DSA) used for measuring

frequency response functions (FRFs) of control systems, are generally low frequency versions of network

analyzers. Rather that focusing on the specific instruments of the original work, it seems more useful to

discuss the types of measurements that we want for the methodology.

Returning to our disk drive example, there are several likely noise sources in the loop. First of all, there

are the noises associated with the moving disk and the readback process. These all enter the loop at the

same point, but have different root causes. The noise due to the motion of the disk attached to a ball

bearing spindle creates both Repeatable Run Out (RRO) (typically at orders of the spindle rotational

frequency) and Non-Repeatable Run Out (NRRO). One of the interesting properties of servowritten disks

is that one pass of the NRRO is usually locked into the servo position information when it is written.

Thus, this written in NRRO is repeated at every revolution of the disk. The other noise source that

enters at this point is the noise from the readback process of position information, called Position Sensing

Noise (PSN). This noise can be due to the magnetic domains on the disk, the behavior of the magnetic

readback head, the interaction of these two, or the action of the demodulator. (We lump demodulator

noise into PSN for our current analysis.) Downstream in the loop, there are potential noise sources at the

ADC and DAC (due to quantization), noise at the power amp, and finally windage. Windage is caused

by the air flow generated as the disk spins. This air flows over, under, around, and into the actuator

arms and the readback head, disturbing the head position. Given all these potential noise sources, there

is a fundamental need to identify which of these – if any – are the most significant contributors to PES.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
398

Winter 2022-2023
December 31, 2022

Signals & Noise

With this information, the effort to reduce the noise in PES can be concentrated on the critical few.

It is worth noting that we purposely ignore external shock and vibration in this analysis for two reasons.

First of all, external shock and vibration is heavily influenced by the drive’s operating environment while

the above noises are a function primarily of the drive. The second is that prior work in this area [187, 188]

gives us some confidence that we already have a reasonable engineering solution to many types of external

shock and vibration. Thus, PES Pareto focuses on internal or self-generated noises.

7.8.2 Measurements/Modeling of Power Amplifier Noise

Physical
System

Power
Amp

Extra
Sensor
Allows
Meas.

0

PA
Noise

(amps)
DAC

KIS

Figure 7.16:Generating different conditions to measure power amplifier noise.

Referring back to Figure 7.8, power amplifiers are usually needed to convert the low voltage signals out of

DACs into currents large enough to drive an actuator. This is pretty universal, unless that amplification

is done in the actuator itself. They tend to have a low-pass nature, but their bandwidth is usually

considered beyond that of the actuator, plant, or closed-loop system. The nature of their amplification

allows for the generation of noise, and so we can often break out these components as individual blocks

to be analyzed for their noise contribution. When a model is needed for filtering noise, it can often be

generated in MATLAB to mimic the data sheet frequency response function (FRF), but at the frequencies

that we want for our PSD measurements. Alternately, with enough control over the digital controller

(as diagrammed in Figure 7.15), one can stimulate the DAC to generate an FRF measurement, provided

we have a way to measure the current being produced by the power amplifier. In Figure 7.16 there is

a sense resister often used for monitoring the current being produced by the power amp to drive the

actuator. In the disk drive, such a signal has utility as a secondary measurement of what is going into

the actuator. Note that we still need to convert the voltage (converted from the sensed current using a

reference resistor).

To isolate a PSD of the noise due to the power amplifier we need some sort of differential measurement.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
399

Winter 2022-2023
December 31, 2022

Signals & Noise

0 1000 2000 3000 4000 5000 6000
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

Isense (0.982 mV/A) vs. Current Probe on Lynx−2 VCM Wire

Frequency (Hz)

V
C

M
 C

u
rr

e
n

t
P

S
D

(A

^
2
/H

z
)

Current Probe

Isense

Figure 7.17:Calibrating the current sense measurement against a highly accurate voltage probe.

Since the amplifier can be run typically in open loop, we can set the DAC output to 0 to generate a PSD

of the PA and ambient actuator input noise (Figure 7.16). In this case, we can drive the DAC with an

all zeros code. We would normally be concerned with DAC quantization, but an all zeros code should

produce a calibrated 0 output at the DAC voltage. (The signal is not moving, so there is no quantization

to speak of.) In the second measurement, we physically open the circuit from the power amp to the

rest of the actuator. The current sense measurement now only has the ambient actuator input noise. If

we take the expected values of the PSDs from both measurements (and this means averaging multiple

measurements) we can assume independence and subtract the two PSDs. This means taking more than

one measurement of these signals to get the statistical independence to kick in.

Figure 7.17 shows a calibration of the current sense measurement. The close match between the current

sense, Isense in the plot, and that from a Current Probe, indicates that with a bit of smoothing the Isense

is a reliable measurement of the current being sent to the actuator. We then measure directly at Isense

and since that is the source point as well, the back filter to the source is simply 1 for all frequencies of

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
400

Winter 2022-2023
December 31, 2022

Signals & Noise

0 1000 2000 3000 4000 5000 6000
10

−16

10
−14

10
−12

10
−10

10
−8

Frequency (Hz)

C
ur

re
nt

 P
S

D
 (

A
^2

/H
z)

Lynx2 B Current Measurements (Zero Gain A)

Zero Gain (at Isense)

Open Acutator (at Isense)

Power Amp Noise = Open Loop − Open Actuator (at Isense)

0 1000 2000 3000 4000 5000 6000
10

−16

10
−14

10
−12

10
−10

10
−8

Lynx2 B PES due to PA Noise

Frequency (Hz)

P
E

S
 P

S
D

 (
V

^2
/H

z) PES due to PA Noise

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−6

Frequency (Hz)

P
E

S
 V

ar
ia

nc
e

(V
^2

)

Lynx2 B PES due to PA Noise

PES Var. due to PA Noise, sigma = 1.2 mV (0.08%)

Figure 7.18: Measurement of Power Amplifier Noise on Lynx 2 Disk Drive. PSDs are generated
from open loop and open actuator configurations, allowing the difference to be considered the power
amplifier noise.

interest. We difference the PSDs in the top plot of Figure 7.18. In the middle plot of Figure 7.18, we

forward filter to PES through the magnitude squared filter:

∥
∥
∥
∥
∥

KtP(s)D(s)
1+ KtP(s)D(s)C(s)A(s)

∥
∥
∥
∥
∥

2

(7.68)

to get the contribution to PES, where P(s), A(s), C(s), and D(s) are defined in Equations 7.64 – 7.67.

In the lower plot of Figure 7.18, this PSD is integrated to get the variance (in the frequency domain)

due to the power amplifier.

7.8.3 Measurements/Modeling of Plant Disturbance

Separating out plant disturbances from noise in the position sensing has a particular challenge when

the same sensor is used in the measurement for the error signal as is used to try to quantify plant

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
401

Winter 2022-2023
December 31, 2022

Signals & Noise

0 1000 2000 3000 4000 5000 6000
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Lynx2 Head (LDV) Response for Various Loop Conditions (10−6410Hz)

Frequency (Hz)

P
S

D
 (

un
its

^2
/H

z)

Open Actuator ((um^2)/Hz)
LDV Setup ((um^2)/Hz)
Windage ((um^2)/Hz)
Unwrapped Windage ((Nm)^2/Hz)

0 1000 2000 3000 4000 5000 6000
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

PES generated from Windage (V^2/Hz) (from LDV/Xin)

Lynx2 PES PSD due to Windage (10−6410Hz)

Frequency (Hz)

P
S

D
 (

V
^2

/H
z)

0 1000 2000 3000 4000 5000 6000
0

1

2

3
x 10

−5 Lynx2 PES Variance due to Windage (10−6410Hz)

Frequency (Hz)

V
ar

ia
nc

e
(V

ol
ts

^2
)

PES Var. due to Windage, sigma = 5.0 mV (0.36%)

Figure 7.19:Measurement of the disturbance due to air flow on the drive head (windage) on the drive
example via an LDV. Backfiltering the LDV measurement through the inverse plant model gave the
windage as an open-loop source, which could then be filtered forward through the model to see its
effect on PES.

disturbances. This almost always calls for an external sensor, one that is of high enough quality to give a

signal that can be trusted on its own. In the case of the HDD, the issues with the loop sensor were that

it had a limited bandwidth (due to the sectored servo patterns used in HDDs) and the generation of the

error signal itself was part of the experiment. There was no option to up the sample rate and filter, and

the error signal (PES) was only really available when the drive was in closed loop. Furthermore, it was an

error only sensor, not giving us the actual position of the drive head. This is a major limitation, since two

significant noise suspects were the buffeting of the drive head by the air flow generated by the spinning

disks and the actual generation of the error signal from the servo position dibits. An instrument such

as an laser interferometer [207] or a laser Doppler vibrometer (LDV) could provide an actual position

measurement (against a calibrated distance set to 0) if an appropriate spot on the drive head could be

found for reflecting the laser spot.

In the disk drive example, a Polytec LDV provided highly accurate position measurements for any fre-

quency above 10 Hz. We could minimize the feedback loop gain in the controller and measure the head

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
402

Winter 2022-2023
December 31, 2022

Signals & Noise

position (not the error) by shining the laser spot on the side of the drive head. We could then back filter

to the noise source (modeled at the plant input) by back filtering through:

∥
∥
∥
∥
∥

1
P(s)

∥
∥
∥
∥
∥

2

. (7.69)

With this windage “input noise”, we now filtered forward through

∥
∥
∥
∥
∥

P(s)D(s)
1+ KtP(s)D(s)C(s)A(s)

∥
∥
∥
∥
∥

2

(7.70)

to get the effect of windage on PES.

This is an example of a more general problem: there will always need to be a way to separate the

disturbance generated movement from the error generated in measuring position. After all, we cannot

perform any reasonable tradeoffs in a Kalman filter design [208] if we have no idea what the noise powers

of w and v are. There are other noises in the loop, but at some point, we need to be able to isolate

these as well.

7.8.4 Measurements/Modeling of ADC and DAC Noise

In Section 7.6.3 we discussed some basic modeling for quantization noise. In this section, we will apply

those ideas to generating noise as a source for our Pareto measurements. Recalling Section 7.6.3, we

had arrived at a quantization PSD (7.35) of ΦQQ(f) = q2

12fS
=

q2TS

12 . At a first cut, we can use this to

define the quantization noise being added in at the output of our ADC or DAC.

However, there are methods of making measurements on ADCs. Usually, the engineer injects either a

simple tone or 0 at the analog input to the ADC. The signal is sampled and quantized and the spectrum

of the measurement is FFTed. In the case of the tone, this signal will dominate any integral that is done,

so it is removed, either by excising the frequency bin and replacing an average of neighboring bins, or

by applying an adaptive noise canceling approach [24] to match and remove the tone before the FFT is

computed. In either case, the sample mean of the data is removed.

Now, why inject a tone at all if we are going to remove it? The tone exercises the full range of the

ADC, which was one of the assumptions of the Widrow model discussed in Section 7.6.3. As such, the

noise properties of the ADC with and without a tone might be different, so it is good to have both

measurements. Secondly, there are several possible noise measures used with respect to signals, and

one of them is dBc or Decibels with respect to a carrier. We need a tone, a carrier, to compute this.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
403

Winter 2022-2023
December 31, 2022

Signals & Noise

0 5 10 15 20 25

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Frequency (MHz)

P
S

D
s
 (

d
B

F
S

) s
2

signal
= −8.35 dB

s
2

noise,NH
= −53.55 dB

s
2

BL,meas
= −64.83 dB

Bits
s

2

BL
,q,sim

: 14.00

s
2

BL,q,sim
= −89.05 dB

Bits
noise,NH

: 8.10

Bits
BL,meas

: 9.98

Single−Sided PSD of chipscope_1_422mhz_16384, 16384 FFT points with Harmonics Removed in 5 Bin Spans

Effective Res.
noise,NH

= 9.89 Bits

Effective Res.
noise,BL

= 11.77 Bits

s
2

quant
/f

S
(sim) = −162.89 dB 2q

2
/(12f

S
) = −163.04 dB

Baseline s
2

meas
/f

S
= −138.81 dB

PSD From FFT (No Harmonics)

Measured Baseline: −138.81 dB

Uniform Quantization Noise

Theory Quant. Noise Baseline (2q
2
/(12f

s
)): −163.04 dB

Uniform Quant. Noise Baseline: −162.89 dB

Figure 7.20: Decomposition ADC noise with a removed tone.

Removing the tone itself has its own issues. The best method is probably the adaptive noise canceling

approach, since that removes the matched signal only and not other signals at that frequency. Removing

a tone once an FFT has been done has issues of spectral leakage, that is that the FFT bin itself bleeds

into others. To combat that long data runs being FFTed are often windowed – in this context meaning

that they are multiplied by a window that drives the end points of the data record to 0. (This is another

reason why overlap processing is a useful trick, allowing us to lengthen the record to a point that the

window doesn’t affect the data points we want.)

Assuming we have made a measurement (with a tone that was removed or without a tone) and computed

the FFT, we then can compute the PSD and make it one-sided using the methods described in Section

7.6.2. How do we related this back to our flat quantization PSD model? We fit that data to a flat PSD

across the frequency band (usually looking at the high frequency tail to establish the level), and then set

that level to
q2

e f f

12fS
. We can now back out our effective quantization level, qe f f .

An example is shown in Figures 7.20 and and 7.21. Figure 7.20 shows a measurement of a 14-bit ADC

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
404

Winter 2022-2023
December 31, 2022

Signals & Noise

0 5 10 15 20 25

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Frequency (MHz)

P
S

D
s
 (

d
B

F
S

) s
2

noise
= −62.73 dB

Bits
s

2
,meas

: 9.63

Bits
s

2

BL
,q,sim

: 14.00

s
2

BL,q,sim
= −89.04 dB

Effective Res.
RMS

= 11.42 Bits

Effective Res.
noise,BL

= 12.08 Bits

s
2

BL,phys
= −66.69 dB

Bits
BL,meas

: 10.28

Single−Sided PSD of ADC1_opencircuit, 32768 FFT points

s
2

quant
/f

S
(sim) = −163.04 dB 2q

2
/(12f

S
) = −163.04 dB

Baseline s
2

meas
/f

S
= −140.67 dB

PSD From FFT (No Harmonics)

Measured Baseline: −140.67 dB

Uniform Quantization Noise

Theory Quant. Noise Baseline (2q
2
/(12f

s
)): −163.04 dB

Uniform Quant. Noise Baseline: −163.04 dB

Figure 7.21: Decomposition ADC noise with an open circuit.

sampled at 50 MHz, into which a 1.422 MHz tone was injected. A 16,384 point FFT was performed and

the frequency bins containing the tone and its harmonics were flattened by replacing their signals with

the averages of nearby bins. To keep the spectral leakage low, the data was windowed with a 16,384

point Hanning window to drive the end points to 0. If we start with by normalizing the full scale range,

FS to ±1, we can then calculate the effective value of q and using the math in Section 7.6.3, compute

the PSD for the theoretical quantization noise. This is the magenta curve, and the computed PSD is

plotted along with the pure theoretical curve. Another curve, taken from averaging the high frequency

end of the computed PSD is also drawn, as a way of verifying that the curve represented the original

theoretical value. We then could take the measured signal (with the tone removed) and calculate the

average of the high end of the PSD, allowing us to draw the green curve back, to reveal an effective level

of quantization PSD. Again, using the calculations from Equation 7.42 in Section 7.6.3, we back out an

Ne f f . Figure 7.21 repeats the same calculation, but with an open circuit input to the ADC. There is no

tone to remove, but it is helpful to see that the resulting calculations give us similar numbers for the

effective bits.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
405

Winter 2022-2023
December 31, 2022

Signals & Noise

SensorADCS S

y

z

e u

r = 0
SSS

-
SC

Physical
System

Power
Amp

DAC
Noise

mask off bits
here to simulate

ADC noise

mask off bits
here to simulate

DAC noise

PA
Noise

Phys. Sys.
Noise

ADC
Noise

Sensor
Noise

DAC

Figure 7.22:Simulating ADC and DAC quantization by masking off bits at different signal points. On
their own, the masked off bits are still one of many noise sources, but when they are differenced from
each other, the unchanging noise PSDs drop out, revealing the effects due to the quantization.

This can be done with an ADC if we have a reliable analog signal source of higher resolution than the

ADC and if we have the ADC connected to a test system. The first characteristic is to make sure we

are not including the noise in the signal source, and the second characteristic is needed just to get the

discretized signal into a place where it can be processed. It becomes more difficult for a DAC, because

while we may be able to generate a high fidelity signal to send out to the DAC, we now need to digitize

the analog voltage produced and get that back into some analysis engine, without that discretization

becoming the dominant or even a significant part of that measurement. For either device, we often

do not have the ability to evaluate the components separately. In this case we can employ a scheme

diagrammed in Figure 7.22.

When we cannot separate out the ADC from the loop, we use this scheme of masking off bits in the error

measurement (PES) (assuming the reference signal, r = 0). By artificially masking off these bits, we can

generate a PSD of the different levels of PES. For the hard disk example, the resulting plots are shown in

Figure 7.23. Note that this PSD was made with frequency bins out only to 2 kHz, which did not match

the other measurements, so the frequency bins were zero padded with more bins at higher frequency to

produce the top plot of Figure 7.24. The differencing of those measurements is shown in the middle

plot of Figure 7.24. We find that differencing these small PSD levels made it difficult to have any sort

of non-visual fit to the data. Instead, the effective level of quantization noise was back calculated from

PES measurements by assuming a uniform input noise distribution. This was then forward filtered to

PES via:

∥
∥
∥
∥
∥

KtP(s)D(s)C(s)A(s)
1+ KtP(s)D(s)C(s)A(s)

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥

1
Tcl

∥
∥
∥
∥
∥

2

. (7.71)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
406

Winter 2022-2023
December 31, 2022

Signals & Noise

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
PES vrs. ADC Resolution

Frequency (Hz)

M
a
g

n
it

u
d

e
−

U
IN

 P
e
a
k

10 bit

9 bit

8 bit

7 bit

6 bit

5 bit

Figure 7.23:Measurement of ADC quantization by masking off bits at the error signal.

Eventually, the scaling of quantization that matched the curves in the lower plot of Figure 7.24 was:

q =
1.25 V

512counts
∗ 1

20
. (7.72)

We employ a similar measurement scheme for quantization noise from the DAC. By masking off bits

being sent to the DAC, we can generate a PSD of the different levels of PES. For the hard disk example,

the resulting plots are shown in Figure 7.25. Again, this PSD was made with frequency bins out only to

2 kHz, which did not match the other measurements, so the frequency bins were zero padded with more

bins at higher frequency to produce the top plot of Figure 7.26. The differencing of those measurements

is shown in the middle plot of Figure 7.26. Once again, we find that differencing these small PSD levels

made it difficult to have any sort of non-visual fit to the data. Instead, the effective level of quantization

noise was back calculated from PES measurements by assuming a uniform input noise distribution. This

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
407

Winter 2022-2023
December 31, 2022

Signals & Noise

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5
x 10

−10 ADC Noise PSDs (from uniform input)

Frequency (Hz)

P
S

D
 −

 (
V

^2
/H

z)
 R

M
S 9−10 bit ADC PES PSD

 8−9 bit ADC PES PSD

 8−10 bit ADC PES PSD

 10 bit ADC PES PSD

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1
x 10

−9 PES PSD vrs. ADC Resolution

Frequency (Hz)

P
S

D
 −

 (
V

^2
/H

z)
 R

M
S 10 bit ADC PES PSD

 9 bit ADC PES PSD

 8 bit ADC PES PSD

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5
x 10

−10 PES PSD of Differences Between Resolutions

Frequency (Hz)

P
S

D
 −

 (
V

^2
/H

z)
 R

M
S

9 bit − 10 bit ADC at PES

8 bit − 9 bit ADC at PES

8 bit − 10 bit ADC at PES

Figure 7.24:Measurement of ADC noise in closed-loop by differencing measurements of the type in
Figure 7.23. Rather than try a numeric fit of the differences in PES, a scaled uniform noise is filtered
through to the PES to match the difference signals.

was then forward filtered to PES via:

∥
∥
∥
∥
∥

KtP(s)D(s)A(s)
1+ KtP(s)D(s)C(s)A(s)

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥

C(s)
Tcl

∥
∥
∥
∥
∥

2

. (7.73)

Eventually, the scaling of quantization that matched the curves in the lower plot of Figure 7.26 was:

q =
0.3125V

512counts
∗ 1

9
. (7.74)

7.8.5 Channeling Sherlock Holmes

At some point, we have isolated all the contributors to the error signal (PES in our disk drive example)

that we can and we can put them together. We can show them independently to show the most important

ones, or stack them cumulatively to show how much of the PES PSD we have accounted for, as shown

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
408

Winter 2022-2023
December 31, 2022

Signals & Noise

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5
PES vrs. DAC Resolution

Frequency (Hz)

M
a
g

n
it

u
d

e
−

U
IN

 P
e
a
k

10 bit

9 bit

8 bit

7 bit

6 bit

5 bit

Figure 7.25:Measurement of DAC quantization by masking off bits at the controller output signal.

in Figure 7.27. There is still a large amount of noise that is unaccounted for. If we plot the PSD of PES

- the Cumulative PSD of all the noises we have accounted for, we get the plot of Figure 7.28. A feel for

sensitivity functions, especially those plotted on a linear frequency scale reveals that this looks a lot like:

k ∗ ‖D(s)S cl(s)‖2 (7.75)

At this point in the original effort [34, 35, 36, 37], we turned to the wisdom of Sherlock Holmes, who

although fictional [186], was an ancestor of the equally fictional Mr. Spock. “An ancestor of mine

maintained that if you eliminate the impossible, whatever remains, however improbable, must be the

solution. [209]” To make this unaccounted for noise an input to the error signal (which is where any

noise in position sensing would appear in this diagram), we filter the PES PSD and unaccounted for PSD

by
∥
∥
∥
∥
∥

1
D(s)S cl(s)

∥
∥
∥
∥
∥

2

(7.76)

to get to a possible input Position Sensing Noise (PSN) PSD. This is shown for our example in Figure

7.29.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
409

Winter 2022-2023
December 31, 2022

Signals & Noise

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1
x 10

−9 PES PSD vrs. DAC Resolution

Frequency (Hz)

P
S

D
 −

 (
V

^2
/H

z)
 R

M
S 10 bit DAC PES PSD

 9 bit DAC PES PSD

 8 bit DAC PES PSD

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4
x 10

−10 PES PSD of Differences Between Resolutions

Frequency (Hz)

P
S

D
 −

 (
V

^2
/H

z)
 R

M
S

9 bit − 10 bit DAC at PES

8 bit − 9 bit DAC at PES

8 bit − 10 bit DAC at PES

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4
x 10

−10 DAC Noise PSDs (from uniform input)

Frequency (Hz)

P
S

D
 −

 (
V

^2
/H

z)
 R

M
S

 9−10 bit DAC PES PSD

 8−9 bit DAC PES PSD

 8−10 bit DAC PES PSD

 10 bit DAC PES PSD

Figure 7.26:Measurement of DAC noise in closed-loop by differencing measurements of the type in
Figure 7.25. Rather than try a numeric fit of the differences in PES, a scaled uniform noise is filtered
through to the PES to match the difference signals.

Note that there is a broadband, essentially white noise component to “what’s left”. There is also a large

hump at low frequency. As windage is accounted for already, the most likely source of this large hump is

the actual non-repeatable motion of the disk on the rotating spindle (RT-NRRO). Likewise the broadband

flat noise cannot be from the power amplifier, ADC, or DAC (since these have been eliminated) and

therefore it follows that this is Position Sensing Noise. If this PSD is fed forward to PES and then

integrated in frequency to yield the PES baseline variance due to PSN, this number, σPS N = 0.03µm,

closely matches the prediction of the ANOVA analysis[36].

In our measurements, we have been able to find “simple tricks and nonsense [10]” to isolate noise PSDs

from quite a few noise sources. We have brought in extra sensors and measurement points to give

representative measures of other noise sources. In the disk drive example, windage (Section 7.8.3) was a

large component. Still, we get to the total PSD of the broadband noise at the error signal, remove the

PSDs that we have isolated, and we have something left over. This is the unaccounted for noise, but if

we have confidence in our structural model, and if we have found a way to the other noises, then what

is left, no matter how improbable, must be the sensing noise PSD.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
410

Winter 2022-2023
December 31, 2022

Signals & Noise

0 1000 2000 3000 4000 5000 6000

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

PES PSD (Total Measured Baseline)

Lynx2 NPES PSD from Various Sources (10-6410Hz)

Frequency (Hz)

P
S

D
 a

t
P

E
S

(V

^
2

/H
z

)

From ADC

From ADC + DAC

From PA + DAC + ADC

From Windage + DAC + ADC + PA

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

6

7

8
x 10

-5 Lynx2 PES Variance from Various Sources (10-6410Hz)

Frequency (Hz)

V
a

ri
a

n
c

e
 a

t
P

E
S

 (
V

o
lt

s
^

2
)

PES Var. (Total Measured Baseline), sigma = 8.7 mV (0.62%)

From Windage + DAC + ADC + PA, sigma = 5.2 mV (0.37%)

From PA + DAC + ADC, sigma = 1.2 mV (0.08%)

From DAC + ADC, sigma = 0.1 mV (0.01%)

From ADC, sigma = 0.0 mV (0.00%)

Figure 7.27:Decomposition of baseline noise sources in a hard disk. Cumulatively plotted to account
for all of PES. The top plot shows the PSDs. The bottom plot has them integrated across frequency.

0 1000 2000 3000 4000 5000 6000
10

−10

10
−9

10
−8

10
−7

Unaccounted for PSD

Lynx2 NPES PSD from Various Sources (10−6410Hz)

Frequency (Hz)

P
S

D
 a

t P
E

S
 (

V
^2

/H
z)

1.0e−7*(D(s)S_cl(s))^2

Smoothed Unaccounted for PSD

PES PSD

Figure 7.28:Unaccounted for PES PSD noise.

7.9 Noise Sources and Noise Strata

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
411

Winter 2022-2023
December 31, 2022

Signals & Noise

0 1000 2000 3000 4000 5000 6000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Unaccounted for PSD as an Input

Lynx2 NPES PSD from Various Sources (10−6410Hz)

Frequency (Hz)

P
S

D
 a

t P
E

S
 (

m
ic

ro
ns

^2
/H

z)

Smoothed Unaccounted for PSD as an input

PES PSD as an Input

Figure 7.29:Unaccounted for PES PSD noise as an input.

0 1000 2000 3000 4000 5000 6000

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

Lynx2 NPES PSD from Various Sources (10−6410Hz)

Frequency (Hz)

P
S

D
 a

t P
E

S
 (

V
^2

/H
z) PES PSD due to Windage

PES PSD (Total Measured Baseline)

PES PSD due to PA

PES PSD due to 10 bit DAC

PES PSD due to 10 bit ADC

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

6

7

8
x 10

−5 Lynx2 NPES Variance from Various Sources (10−6410Hz)

Frequency (Hz)

V
ar

ia
nc

e
at

 P
E

S
 (

V
ol

ts
^2

)

PES Var. (Total Meas Baseline)

PES Var. due to Windage

PES Var. due to PA Noise

PES Var. due to DAC Noise

PES Var. due to ADC Noise

Figure 7.30:Decomposition of baseline noise sources in a hard disk. Independently plotted to show
relative importance. The top plot shows the PSDs. The bottom plot has them integrated across
frequency.

A theory is a good theory if it satisfies two requirements: It must accurately describe a

large class of observations on the basis of a model that contains only a few arbitrary elements,

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
412

Winter 2022-2023
December 31, 2022

Signals & Noise

and it must make definite predictions about the results of future observations. — Stephen

Hawking in “A Brief History of Time[7]”

Science, therefore, for all the reasons above, is not what it appears to be. It is not

objective and impartial, since every observation it makes of nature is impregnated with theory.

Nature is so complex and so random that it can only be approached with a systematic tool

that presupposes certain facts about it. Without such a pattern it would be impossible to

find an answer to questions even as simple as ‘What am I looking for?’ James Burke in “The

Day the Universe Changed[210]”

If we have a good model, and we have made all these measurements of different noises, we are now in a

position to put them all together at the error measurement. We use our best models to filter the noises

from their backed out sources to their effect on the error (with appropriate unit conversions). There are

two reasonable ways to think of this. One can compare them independently to see which noise sources

are the dominant ones that we should worry about. This is shown in Figure 7.30.

Once the potential contributors to the error signal are identified, they can be ranked in terms of their

overall effect on error and thus the most critical ones can be worked on first. In our HDD example, Figure

7.30 shows these independent noise sources and what is telling is not only how little the ADC and DAC

quantization contribute to the overall error in this system, but how much of it is due to two sources, the

disturbance of windage buffeting the drive head and the actual sensing of the position error. The former

led to Terril Hurst working on redesigning the air flow inside of hard disks before HP exited the business

in 1996. This latter fact, that close to 2/3 of the baseband noise in the PES was due to sensing errors

led to the work on improving the demodulation circuits for HDDs [211, 212, 213]. While improving the

noise in the actual magnetic domains from which position was derived might have taken considerable

effort, providing smarter electronics to cleanly process these signals was an inexpensive and dramatic

improvement. The benefits of understanding demodulation are discussed in the tutorial of [185].

To be clear, as quantization is nonlinear, the fundamental assumptions of the Widrow model assumes

that quantization is fine enough to model the error as noise. These results argued against worrying

whether to add extra bits to the next generation of of ADCs and DACs. On other systems, they may be

the dominant noise sources.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
413

Winter 2022-2023
December 31, 2022

Signals & Noise

0 1000 2000 3000 4000 5000 6000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Unaccounted for PSD as an Input

Frequency (Hz)

P
S

D
 a

t P
E

S
 (

m
ic

ro
ns

^2
/H

z)

Lynx2 PSN Input PSD (10−6410Hz)

Total Baseline PES PSD as an Input

PSN Baseline

With PSN Baseline Removed

Figure 7.31:Baseline PSN

7.10 Using Pareto Models for Extrapolation

The quality of the results allow the effort to be put on the sources that most significantly limit the

servo loop performance. Beyond analyzing the key sources of noise, present in a current system, the

PES Pareto method, because it gave us noises as open-loop inputs and gave us a method tho add them

independently at the error signal, allowed us to model the amplification or attenuation of any of these

noise sources. Whether we could make a measurement (say of increasing the air flow by spinning the

disk at a higher rotational speed) or simply increasing or decreasing a noise in a particular band of its

input or across all frequencies, we could see what that change would have on our control loop.

For windage (or more generally the disturbance into the plant) we were able to change the level and

measure the new result with the external sensor (the LDV). This is shown in the results of Figure 7.33.

On top is the measurement at the LDV. The middle plot gives the effects of the different windage levels

on PES. The lower plot integrates these to show the variance. Those variances are summarized in Figure

7.34. In the case of the Position Sensing Noise (PSN) we could scale that signal up and down, as shown

in Figure 7.35. The plots show the potential benefit of dramatically reducing the PSN, which motivated

the work on advanced demodulation.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
414

Winter 2022-2023
December 31, 2022

Signals & Noise

0 1000 2000 3000 4000 5000 6000
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

PES PSD (Total Measured Baseline)

Lynx2 NPES PSD from Various Sources (10−6410Hz)

Frequency (Hz)

P
S

D
 a

t P
E

S
 (

V
^2

/H
z)

From Windage + DAC + ADC + PA

From Doubled PSN Baseline

From Halved PSN Baseline

From No PSN Baseline

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

x 10
−4

Frequency (Hz)

V
ar

ia
nc

e
at

 P
E

S
 (

V
ol

ts
^2

)

Lynx2 PES Variance from Various Sources (10−6410Hz)

PES Var. (Total Measured Baseline), sigma = 8.7 mV (0.62%)

From Windage + DAC + ADC + PA, sigma = 5.2 mV (0.37%)

From Doubling PSN Baseline, sigma = 10.9 mV (0.78%)

From Halving PSN Baseline, sigma = 7.4 mV (0.53%)

From No PSN Baseline, sigma = 5.8 mV (0.41%)

Figure 7.32:Effect of Changing Baseline PSN (5400 rpm)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
415

Winter 2022-2023
December 31, 2022

Signals & Noise

0 1000 2000 3000 4000 5000 6000
10

−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

3600 RPM (60 Hz)

5400 RPM (90 Hz)

7200 RPM (120 Hz)

9600 RPM (160 Hz)

Windage Input Vs. RPM (derived from LDV meas.)

Frequency (Hz)

P
S

D
 (

(N
m

)^
2/

H
z)

0 1000 2000 3000 4000 5000 6000

10
−12

10
−10

10
−8

10
−6

NPES measurement (V^2/Hz) (from psd_sl6k.mat)

PES generated from Windage (V^2/Hz) (from LDV/Isense)

3600 RPM (60 Hz)

5400 RPM (90 Hz)

7200 RPM (120 Hz)

9600 RPM (160 Hz)

Frequency (Hz)

P
E

S
 P

S
D

 (
V

ol
ts

^2
)/

H
z

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4
x 10

−4

NPES at 5400 RPM (90 Hz), sigma = 8.7 mV (0.62%)

3600 RPM (60 Hz), sigma = 4.9 mV (0.35%)

5400 RPM (90 Hz), sigma = 5.1 mV (0.37%)

7200 RPM (120 Hz), sigma = 10.2 mV (0.73%)

9600 RPM (160 Hz), sigma = 19.6 mV (1.40%)

Lynx2 PES Variance Due to Windage at Different RPM

Frequency (Hz)

V
ar

ia
nc

e
(V

ol
ts

^2
)

Figure 7.33: Effects of changing spindle RPM. On top is the measurement at the LDV. The middle
plot gives the effects of the different windage levels on PES. The lower plot integrates these to show
the variance.

0 2000 4000 6000 8000 10000 12000
0

0.002

0.004

0.006

0.008

0.01

0.012

Spindle RPM

P
E

S
 V

ar
. (

m
ic

ro
ns

^2
)

PES Variance Due to Windage vs. RPM

3600 RPM (60 Hz), sig = 22.20 nm

5400 RPM (90 Hz), sig = 23.30 nm

7200 RPM (120 Hz), sig = 46.55 nm

9600 RPM (160 Hz), sig = 88.87 nm

Figure 7.34:PES Variance Due to Windage Versus RPM

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
416

Winter 2022-2023
December 31, 2022

Signals & Noise

0 1000 2000 3000 4000 5000 6000
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

PES PSD (Total Computed Baseline)

Lynx2 NPES PSD from Various Sources (10−6410Hz)

Frequency (Hz)

P
S

D
 a

t P
E

S
 (

V
^2

/H
z)

From Windage + DAC + ADC + PA

From Doubled PSN Baseline

From Halved PSN Baseline

From No PSN Baseline

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

x 10
−4 Lynx2 PES Variance from Various Sources (10−6410Hz)

Frequency (Hz)

V
ar

ia
nc

e
at

 P
E

S
 (

V
ol

ts
^2

)

PES Var. (Total Computed Baseline), sigma = 12.2 mV (0.87%)

From Windage + DAC + ADC + PA, sigma = 9.8 mV (0.70%)

From Doubling PSN Baseline, sigma = 13.8 mV (0.99%)

From Halving PSN Baseline, sigma = 11.2 mV (0.80%)

From No PSN Baseline, sigma = 10.2 mV (0.73%)

Figure 7.35: Effects of changing Baseline Position Sensing Noise (PSN) with the spindle at 7200
rpm. The top plot gives the effects of the different PSN levels on PES. The lower plot integrates these
to show the variance.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
417

Winter 2022-2023
December 31, 2022

Signals & Noise

7.11 PES Pareto Summary

For the purposes of feedback control, once we have done everything else right, we are limited [19] by

latency around the loop and by the noise that Bode’s Integral Theorem tells us we cannot completely

eliminate [1]. Looked at another way, the noise we see at different measurement points can be interpreted

as a filtered amalgam of different noise sources that have independently entered the loop at different

points to be filtered through to our measurement point. Once the noise enters, Stein’s “dirt digging”

analogy makes it easy to see that eliminating sensitivity in one region of the frequency space must

increase it elsewhere.

It follows then that a key to understanding the limits of performance of our control system then is to

understand the noise environment in which we operate. The PES Pareto methodology allows us to

isolate different noises as inputs to the system and then to combine them at specific measurement points

– such as the error signal – so that we can rank the main contributors. While the method depends

upon a few assumptions of linear analysis and the ability to measure and isolate PSDs of different noise

sources, it is inherently practical and flexible, making use of whatever measurements are available. As

such, the method is applicable to a wide variety of control systems that lend themselves to frequency

domain analysis. The ability to scale these independent noise sources, and see the effects of this at

different points around the loop, allow us to localize the key noise sources that should be the focus of

engineering design effort. We hope that this is helpful.

The hardest and most ad-hoc part of PES Pareto is getting measurements to isolate the different

noise inputs. However, much of this can be seen as a consequence of not building the measurements

into out digital controller from the start, requiring physical loop breaking and auxiliary sensors and/or

instrumentation to extract a quantity. At that point, an assumption of time-invariance needs to be

made for us to believe that the measurement we made two weeks ago on the testbench still applies

to the operational closed-loop system today. In the time of inexpensive ADCs and DACs, and parallel

processing via multi-core CPUs, Systems on a Chip (SoC), and FPGAs, there is really little excuse not

to build PES Pareto (as well as the system identification measurements of Chapter 3) into our digital

controller. When we build these measurements into the digital controller, we can better ensure data

consistency (even in the measurement frequency axes). Furthermore, since the patch panel is digital

and the switches programmatic, a process that originally took months to generate can be done with the

touch of a button or automatically from some supervisory loop in the digital controller. This again brings

to mind some variant of Figure 7.15.

Given our need to have good models to use advanced methods, and given the need for those models to

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
418

Winter 2022-2023
December 31, 2022

Signals & Noise

be derived from measurements, it should not be surprising if the measurement and modeling code inside

of a well designed digital controller would be dramatically more substantial than the running code itself.

AFter all, we have shown many examples when a relatively simple, but well tuned to a physical model,

controller can perform almost as well as far more sophisticated algorithms that are not parameterized

with measurement based data.

7.12 Minimizing Noise Before It Enters the Loop

One of the take aways from Stein’s explanation of Bode’s Integral Theorem [1] and the discussion above

is that since attempting to suppress noise at one frequency range will amplify it in another range, it

makes sense to try to minimize the noise before it enters the loop.

One way to manage this is through greater use of feedforward control when possible. If most of the

reference signal following can be accomplished with a feedforward component [191, 192, 193] (which

does not amplify any sensor noise), then the feedback loop can be optimized to minimize the effects of

disturbance. Likewise, if external disturbances can be sensed [187, 188], this also changes the constraints

of the feedback system design. We will touch on these methods in Chapter 8.

Without the use of auxiliary sensors or feedforward and repetitive control methods, we are really talking

about filtering the main sensor signals of the loop (if they are baseband signals) or improving the

demodulation of these signals, if the sensor signals are in-fact modulated onto another signal. Modulated

sensor signals are far more commonplace than we think, for basic reasons of making the sensor signal

more immune to DC offsets and other biases. This is even the case in the pulses fired by neurons in

the brain. Thus, the latter part of this chapter will give an introduction to the use of demodulation in

feedback loops and how a little bit of the math that control engineers generally know can go a long way

in cutting noise and latency. By being careful about the demodulation methods used can dramatically

lower the noise that is allowed into the feedback loop [185]. That discussion will start with Section 7.13.

That leaves us with the noise and latency injected by our baseband sensor signals and whatever filters

we apply to them. Repetitive signals can often be identified and canceled using methods that end up

being classified as feedforward (because they are outside of the normal feedback loop and when tuned

have minimal negative phase in the canceling signal).

In a perfect world, we would be able to sample fast enough so that our anti-alias filter would provide

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
419

Winter 2022-2023
December 31, 2022

Signals & Noise

minimum phase lag in the frequencies in which we want to control the system. For all other situations,

it is a tradeoff between whether we can handle the filtering needs digitally or whether we need to add

some well designed analog circuitry outside of our converts operating regions. The phase you save may

be your own.

7.12.1 Thoughts About Anti-Alias Filters

10-2 10-1 100 101

Normalized Frequency (f/f
Ny

)

-80

-60

-40

-20

0

M
ag

 (
dB

)

Anti-Alias Filters with Cutoff at f
Ny

 = 1000 Hz

4th Order Butterworth
4th Order Elliptical
2nd Order Butterworth

10-2 10-1 100 101

Normalized Frequency (f/f
Ny

)

-80

-60

-40

-20

0

P
ha

se
 (

de
g)

Figure 7.36: Frequency responses of various anti-alias filters. All filters have a DC gain of 1, with the
passband ending at the Nyquist Frequency (fNy = 1kHz here). Under an assumption that the Nyquist
frequency is 5 or 10× the open loop crossover frequency, we can examine the filter phase response,
which can significantly degrade the phase margin of the system, as documented in Table 7.1.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
420

Winter 2022-2023
December 31, 2022

Signals & Noise

A perfect example for understanding the role of filters is in the use of anti-alias filters. Virtually every

book on digital control will mention that designers should use an anti-alias filter to limit signals at

frequencies above the Nyquist frequency into the feedback loop. That is, they recommend an analog

filter applied to signals before the ADC that cuts off signals above the Nyquist rate.

Filter Phase atfNy/10 Phase atfNy/5
Attenuation

at 10fNy

Peak Gain
Beyond Roll Off

4th Order
Butterworth −15.0276◦ −30.1223◦ −80.1201 dB NA

4th Order
Elliptical −10.5523◦ −22.8086◦ −40.8932 dB −40 dB
2nd Order

Butterworth −8.1486◦ −16.4211◦ −40.0605 dB NA

Table 7.1:Phase penalty of representative anti-alias filters. The corner frequency is chosen to be at
the Nyquist frequency, half the sample frequency, fNy = fS /2. Comparisons are made with respect
to the Nyquist frequency, as it is considered the limit of intentional digital control action. The two
Butterworth filters are flat in the passband, but they incur a larger phase penalty relative to the elliptical
filter for stopband gain attenuation they provide. On the other hand, the elliptical filter has up to 3 dB
magnitude distortion in the passband. Outside the passband, beyond the Nyquist frequency, the
Butterworth filters drop off monotonically, while the Elliptical filter has lobes with the peak gain at
approximately −40 dB at frequencies up to 100fNy (beyond the range of the plot). Ultimately, the
choice of anti-alias filter structure should not be separated from the available sample rate options, nor
the robustness of the system to gain and phase distortions.

We are told that we should use anti-alias filters to remove high frequency signals from showing up as

impostors in the frequencies below the Nyquist frequency. This makes sense, but one has to consider

the phase effects of such filters. Ideally, we would have a filter remove all signals above fS
2 . Such an

ideal rectangular filter would have a sinc function response in the time domain, and have infinite extent

both in positive and negative time. This is probably hard to implement. Anything else produces phase

effects and the closer the attenuation is to fS
2 , the stronger the negative phase effects will be on signals

below fS
2 . The question then becomes: how much faster than the system dynamics is fS

2 ?

We come back to this idea that for practical uses, one does not simply apply any old analog filter (just

as one simply does not walk into Mordor). Instead, there is a tradeoff between attenuation and phase

effects. This clearly gets easier if we can sample at a higher rate than the dynamics we care about. If

we are barely meeting the Nyquist Criterion then it is very likely that any sort of anti-alias filter that has

a corner frequency close to fS
2 will have a serious phase effect on our loop. On the other hand, if we are

sampling 20 times as fast as the highest dynamic we care to handle digitally, then a reasonable analog

low pass filter above then Nyquist frequency probably does not impact our control design.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
421

Winter 2022-2023
December 31, 2022

Signals & Noise

Here we run into a different issue: defining what is a reasonable low pass filter. A Butterworth filter has

very smooth magnitude and phase response, but they phase effects kick in very early compared to the

corner frequency. There are other analog filter designs (e.g. elliptical) that have ripple in the pass band

of the filter, but that have a much smaller phase effect at low frequency. Again, it’s a design tradeoff

and a control engineer that wants their design to work in the real world does not leave these decisions

to a circuit designer on their own. It is important to know enough, to be conversant enough in their art

to be able to guide their choices.

Finally, the amount of anti-alias low pass filter attenuation that we need might not be so much if we

understand our signal environment. If we know that we have a general level of falling off dynamics

and noise, but that there are a handful of disturbance signals at high frequency, or harmonics of some

fundamental signal that is being generated as digital square wave that gets filtered by the system, then

we can attack these specific disturbances, either by eliminating the original source; via direct digital

synthesis (DDS) of high frequency signals, or coherent demodulation of readback signals (Section 7.13)

or attenuating the specific signals with targeted notch filters (Section 7.12.2). By removing these narrow

band disturbances individually, we not only beat the problem into a much simpler form, but we also allow

a much milder anti-alias filter that does not affect our loop phase nearly as much. It’s the circle of life.

What is left out of these discussions is any talk of the phase effects of anti-alias filters, as demonstrated

in Figure 7.36 and Table 7.1. One might desire maximum flatness in the pass band (frequencies below

Nyquist) and a sharp drop after Nyquist, but filters with such sharp shapes are either not causal or

have substantial effects on the system phase even a decade below the Nyquist frequency. The 4th

Order Butterworth filter does not achieve 40 dB of attenuation until the frequency is at 3× the Nyquist

Frequency. If all critical frequencies of the feedback loop are below fNy/10 then the phase penalty is only

about 15 degrees, but in systems that can only sample at 10× the critical frequencies, this phase penalty

doubles to 30 degrees. A 2nd Order Butterworth halves this phase effect, but does not get to 40 dB of

attenuation until a full decade above the Nyquist Frequency. One can apply a 4th Order Elliptical filter

to get better stop band attenuation and less phase effects, but this comes at the cost of inaccuracies in

the magnitude of the pass band. In this case, the design limit was 3 dB, but that is still a gain variation

of
√

2 ≈ 1.4142. Many control systems cannot tolerate a gain uncertainty of 40% in the passband.

At this point, we are affecting the basic performance of the system. If one chooses an anti-alias filter with

higher bandwidth to combat this problem, signals above the Nyquist rate are allowed into the feedback

loop. A similar thing happens if one chooses a less aggressive anti-alias filter. Moves made to decrease

the phase effects result in more aliased signals. Eliminating more aliased signals severely affects the

phase margin.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
422

Winter 2022-2023
December 31, 2022

Signals & Noise

The discussion of anti-alias filters cannot reasonably proceed without a discussion of the converter circuits,

the ADCs and to a lesser extent the DACs. At this point, we are not discussing the quantization, but

the speed and the latency of the converters. Control engineers need to be aware that of the many

types of ADCs, the fastest get their speed by pipelining the digital conversion in a “bucket brigade” of

processing. For signal processing applications this means very little, but for a control engineer, the idea

that my ADC samples at 1 MHz but has a pipeline delay of 20 sample periods is unacceptable. From

a latency perspective, the engineer has paid extra money to get a 50 kHz ADC. There are ADCs which

convert in a single cycle, such as Flash ADCs and Successive Approximation Register (SAR) ADCs. With

those, the engineer knows what they are getting.

Conceptually, from a minimum phase and latency perspective, the control engineer would do well to

specify ADCs that could sample at 10–20 times the desired Nyquist frequency. (This is obviously not

always possible, given the speed requirements or the limitations on sampling imposed externally such as in

a sectored servo hard disk drive.) If the engineer can specify such a high sample rate relative to what they

need, then an anti-alias filter that provides reasonable rejection at the device Nyquist frequency would

still impose 10–15o phase lag at the working Nyquist frequency. However, since the control engineer is

very likely to not be the person specifying the mixed signal electronics, they need to come to the meeting

fully aware of what they need and why. Imagine spending a year to robustly get 10% more bandwidth

out of a system only to throw it away because of not making the case for a slightly more expensive ADC.

7.12.2 Analog Notches

Good place for some notch filter stuff from my notes.

As mentioned earlier, notch filters are an essential component of removing signal harmonics from signal

paths. Often, these are left out of the documentation, but a look at the schematics of any mixed signal

board interacting with a system’s ADCs and DACs will reveal them. Analog notch filters are used to

remove signals that we really just don’t want to deal with in our digital system. Analog notch filters are

most efficiently made using op-amps, and are often second order. The control engineer would do well to

become familiar with a few of these devices, just to have the conversation with the circuit designer.

Sallen and Key, Twin-T Notch, basic notch.

Part of the attraction of a notch filter, compared to simply using a low pass filter, is that the phase

effects can be quite low and localized. The two numerator zeros produce a +180◦ phase bump. Since

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
423

Winter 2022-2023
December 31, 2022

Signals & Noise

the filter has to have at least the same number of poles, the two poles produce a −180◦ phase bump. If

the two are close together, the phase effects are minimized away from the notch frequency. Thus, there

is a positive incentive for making the notch narrow, for making it very high Q. The problem with this

can be seen by paraphrasing Eli Wallach’s Tuco in The Good, the Bad, and the Ugly: Whomever misses

with a high Q notch, he’d better miss very well.” That is, as with other high Q things described in this

workshop, we had better get the frequency right, or we create a magnitude/phase/signal dipole that can

really mess up the system. In the case of a filter external to the loop, this simply means that we have

severe signal attenuation in a place where there is no harmonic or disturbance signal and the harmonic

or disturbance we wanted to remove is not there.

7.13 An Introduction to Demodulation for Use in Feedback Loops

Understanding the utility and methodologies of using modulated signals in feedback loops is not com-

mon, and is usually limited to a particular type of modulation in a particular application. Seen primarily

as belonging to communication theory, this subject gets little attention. Often only the simplest em-

bodiments are presented, ignoring the potential noise, delay, and nonlinearities that these methods can

introduce in the desired signal. While the simplest methods have the advantage of ease of implementa-

tion with simple analog circuits, they are decades behind the times. New digital (and analog) methods

make practical a whole slew of coherent methods. Even then, these methods are often only understood

from a communications perspective, where the lack of a feedback loop make the role of noise, delay,

and nonlinearities in the sensor signal far less significant. To get the most out of our control loops, it is

worth fundamentally understanding demodulation.

Still, whether by design or necessity, many of the signals that are used to mark position, velocity,

and/or acceleration are modulated onto some carrier. The position signals in hard disk drives are in a

pattern of alternating polarity magnetic domains. Motor control is often achieved via shaft encoders

with alternating patterns around the circumference. Laser interferometers work by detecting the phase

between a reference signal reflected off of a mirror at a fixed distance and a measurement signal reflected

off of a mirror on a moving object.

Nature also makes use of modulation in the firing of neurons [214, 215] which “fire” not with a DC level,

but with the presence or absence of a string of pulses. A higher level of firing corresponds to a higher

frequency of the pulses, not a greater amplitude. As these pulses are all non-negative, demodulation of

the neuron signal can be done simply with averaging. Why would nature choose to use a modulated

signal? Modulating a signal makes it less susceptible to offsets and baseline noise. Baseband (DC)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
424

Winter 2022-2023
December 31, 2022

Signals & Noise

signals often can’t travel far, encode biases and offsets, and are susceptible to drift.

Often, a modulated signal is the only way to encode a position or velocity measurement with sufficient

signal-to-noise ratio (SNR) for feedback control. Sometimes, we are looking for the effects of the system

on the modulated signals. Sine-dwell (also known as swept-sine in industry) measurements of dynamic

systems rely on the system’s response to a particular sinusoid at a particular frequency. For atomic force

microscope (AFM) measurements of soft biological samples [216, 217, 27], it’s more advantageous to

tap the probe tip across the surface using an AC drive signal, so that the surface experiences compression

forces but minimal shear. In these problems, extracting the surface’s affect on the cantilever oscillation

is the key to characterizing the surface. The faster and more accurately an AFM can do this, the more

effective the measurement [85, 86, 218, 219].

No matter what the original motivation, we often need to demodulate these signals to actually use them

in a feedback loop. How we do this demodulation depends not only on the modulation method, but on

the technology available to do the math. The advent of improved digital electronics has allowed for a

far more exotic set of modulation/demodulation schemes. For use in feedback control loops, we must

further consider the latency of the demodulation computation and the achievable SNR from a method.

This paper will attempt to give a cohesive overview of the different demodulation methods as they are

applied in feedback loops.

For the purposes of feedback control, once we have done everything else right, we are limited [19] by

latency around the loop and by the noise that Bode’s Integral Theorem tells us we cannot completely

eliminate [1]. A practical linear analysis of noise through a loop can be accomplished using a PES Pareto

methodology [2], but the final takeaway from that method is that one should pay attention to eliminating

noise before it enters the loop. While the simplest, non-coherent, “slow and noisy” demodulation methods

may suffice for a large set of important problems, there are problems for which doing a little bit more

math – in the right way – can dramatically improve the signal to noise and dramatically lower the latency

of the extracted signal. In other words, we can minimize some of the factors that limit the performance

of our feedback loop. Those factors are hard to limit from control design only.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
425

Winter 2022-2023
December 31, 2022

Signals & Noise

Neurons Firing

(a1)

(b1)

(c1)

(a2)

(b2)

(c2)

Integrated Response

Figure 7.37:Drawings of pulse modulation of the type used by neurons firing. On the left, we see that
an increase in the input to a neuron causes an increase in the frequency (not the magnitude) of the
pulse train. On the right, we see the simplest demodulation, a kind of averaging, that can be done on
the pulse train to extract a lower frequency value.

7.14 Pulse Modulations

One family of modulation schemes involves modulating pulses of fixed height, either by their position

(Pulse Position Modulation, PPM) or by their duty cycle (Pulse Width Modulation, PWM) . One of

the simplest forms of modulation can be found in nature, where neurons “fire” with a series of positive

voltage pulses. The absence of the pulses can be viewed as not firing, but once the pulses do start firing,

an increase in signal is denoted not by a higher amplitude, but a higher frequency of the positive pulses

[214, 215]. This is sketched in Figure 7.37. Clearly, the lack of pulses denotes a baseline for the received

signal, but the level above a baseline must be obtained through some finite length averaging of the pulse

train, which can be seen on the right side drawings, symbolizing integration of their counterparts to their

left. The higher the pulse frequency, the higher the baseline of the integrated result.

It is worth noting that averaging only works when the signal is single sided and that the speed of obtaining

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
426

Winter 2022-2023
December 31, 2022

Signals & Noise

a usable output is limited by the length of the average taken.

Outside of nature, pulse-position-modulation (PPM), pulse-frequency-modulation (PFM), and pulse-

width-modulation (PWM) use essentially the same ideas. While PFM is the closest analog to neurons,

PWM is perhaps the most ubiquitous, showing up in many forms of low level, slow control. While it

shows up in communication systems [30] as NRZ data, for the purpose of control, it is usually used as

a method to encode a control input or output signal into a binary, [0,1] signal.

Pulse Position Modulation (PPM) is usually a matter of whether a pulse is there or not. The meaning

of the signals is – in large part – related to whether the output signal is meant to be a baseband (low

frequency) value or whether it is a driving a clock or oscillator signal. In the former case – and if the

pulses are all single signed (e.g. all positive) then a low pass filter (LPF) will average the signals and

give a usable low frequency output. If the thing being driven is a clock or oscillator, then the leading

edges can go through a phase-detector (along with the clock leading edges) to generate a phase error

(Section 7.18). Pulse Frequency Modulation (PFE) is similar to PPM, but the value of the modulation

is encoded in the density of the pulses. When driving a clock, there is usually a minimum pulse rate to

allow the clock (a phase tracking loop based on a PLL) to maintain synchronization.

Controller
Sample Points

50% Duty Cycle

10% Duty Cycle

90% Duty Cycle

Carrier Signal

PWM Signals
(Timer Based)

Figure 7.38:Classic Pulse Width Modulation (PWM). The numerical input modulates the duty cycle of
the pulses with respect to a fixed carrier frequency.

Pulse Width Modulation (PWM) (Figure 7.38) is commonly used in control systems as a cheap substitute

for a digital-to-analog converter (DAC). The control signal that has values ranging from 0 to 1 is

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
427

Winter 2022-2023
December 31, 2022

Signals & Noise

modulated into the width of a pulse stream with 0 being represented by a 0% duty cycle and 1 being

represented by a 100% duty cycle. PWM allows the modulated signal to be transmitted as binary data

on a digital signal line, greatly increasing the immunity to low level random noise. The digital signal

– being received at the plant – is simply low pass filtered (LPF) to produce an averaged output that

once again spans the [0,1] range. This signal can be converted into a voltage and amplified to drive an

actuator.

Pulse Width Modulation (PWM) need not have a nonzero offset, although this enables the most trivial

form of demodulation: averaging. For our purposes, averaging and low pass filtering are used inter-

changeably in this context. PWM is a critical method to understand in part because of its ubiquity in

controlling slow processes, such as voltage references, pressure, and temperature. In these contexts, the

control law is most likely a PID or PI controller producing an “analog” (multi-bit) value. These values

could be sent to the plant via a Digital-to-Analog Converter (DAC), and transmitted via an analog signal

line, but this is more expensive than the PWM function and the analog signal is more susceptible to

noise than a binary signal that is pulse-width-modulated. The PWM signal, transmitted on a binary

signal line, can have small amounts of noise cleaned up by simply adding a relay centered at the voltage

equivalent of 1/2 to estimate if the received signal was at logical 0 or logical 1. Once inside the receiving

device, an average of the signal recovers the original multibit value (between 0 and 1). This can then

be appropriately scaled to drive whichever device is being controlled.

PWM relies on the assumption that the actual signal value changes far more slowly than the modulation.

This means that a slowly changing “analog” value can be encoded into the PWM and the averaging

of the 0-1 binary input will produce a value on the [0,1] range that represents the original multi-bit

signal. While demodulating the signal can be accomplished simply with LPF/averaging, modulating the

slowly changing signal into PWM involves producing a binary signal that is changing far faster than the

“multibit” signal. This would require a microprocessor to spit out signals at a far faster rate than the

control loop signaling. For example, a processor sampling analog data at say 0.5 Hz might need to

modulate this signal two orders of magnitude higher, say at 100 Hz, so that the averaged/LPF signal

was relatively smooth when looked at with a 0.5 Hz sample rate.

For this reason, many microcontroller chips include a bit of PWM logic that accomplishes the modulation

without the processor needing to “bit bang” – a term used to describe when a processor spends a

significant fraction of its processing time merely flipping bits at a high rate. The function can also be

accomplished using programmable logic (PL) such as an FPGA (Field Programmable Gate Array).

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
428

Winter 2022-2023
December 31, 2022

Signals & Noise

7.15 Basic Modulation of Sine Waves

Another family of modulations used in control systems can be explained as variants on modulating a

sinusoidal carrier. Consider the carrier signal, c(t),

c(t) = A0 sin(ω0t + θ0), (7.77)

where A0 is the fixed amplitude of the carrier, ω0 = 2π f0 is the carrier frequency, and θ0 is the carrier

phase. Often θ0 is defined as 0 for simplicity. For amplitude modulation (AM), we modify the carrier,

c(t), by changing the amplitude [220] i.e.

s(t) = (Am(t) · A0) sin(ω0t + θ0). (7.78)

Phase modulation (PM) [221] is shown in

s(t) = A0 sin(ω0t + (θ0 + θm(t))), (7.79)

while frequency modulation (FM) [222] is shown in

s(t) = A0 sin((ω0 + ωm(t))t + θ0), (7.80)

The development of sophisticated electronics has allowed for more complex modulation schemes, such

ad the amplitude-phase modulation schemes (e.g. QAM) that enabled faster modems in the days before

high speed Internet connections [223].

7.16 Non-Coherent AM Demodulation

It is worth making a distinction here between AM and PM/FM signals. AM signals, like the common

use of Pulse Modulated Signals, can be demodulated – if one is not too precise about values or timing

– using non-coherent methods. That is, a carrier or clock need not be used. There is a cost to using

non-coherent methods (no clock synchronization), but the simplicity of the circuits often make up for

it. Phase and frequency modulation require the use of a precise mixing signal (a signal normally at the

carrier frequency) which requires more complex electronics.

Sticking with non-coherent methods, we see one of the most common forms in the drawings of Figure

7.39. On top we see a diode bridge circuit which is one way to build a full wave rectifier using passive

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
429

Winter 2022-2023
December 31, 2022

Signals & Noise

R Vout

Vin

Rectifier

AM Modulated Sine

Diode Bridge Rectifier Circuit

Rectified Signal has DC component

Figure 7.39:Non-coherent demodulation of an AM signal with a rectifier made from a passive diode
bridge. The amount of ripple in the output can be limited by adding a low pass filter on the output. It
can be something as simple as adding a capacitor across Vout.

circuits. The output of the bridge is tied to a resistor so that if the input is an amplitude modulated

(AM) sine wave (upper left), the output (upper right) is rectified. That rectified signal can now be

averaged using a low pass filter (LPF) to show extract the amplitude modulation.

The issue is that many sensor signals are modulated on a carrier, and those signals need to be demodulated

off that carrier in order to be useful to the rest of the controller. The classical demodulator uses a bridge

circuit as a rectifier, as diagrammed in Figure 7.39. The circuit has the advantage that it is passive (all

diodes and passive elements) and that it works at all frequencies (until the parasitic capacitances of the

circuit kick in which is probably far beyond the frequencies that we will care about here). The circuit

of Figure 7.39 is often followed by a low pass filter which serves as an analog averager. In Figure 7.39,

we see that Vout has a DC component (what we want for our control loop) and a component at 2× the

carrier frequency. That is the ideal behavior. We put a low pass filter on the system such that most of

the 2 fC signal goes away and we get a smooth output. How smooth that output needs to be determines

the lower cutoff of that low pass filter, but the lower the cutoff, the more it can impact our loop signals.

This has served well for years but it has several limitations. If we consider an input signal as being

modulated on a carrier, fC, then passing it through even a perfect rectifier will produce a desired

component of the signal around DC, but also at every even harmonic, 2 fC, 4 fC Furthermore, any

broadband noise that might have had 0 DC content now shows up in the demodulated signal, because

while it may have been zero mean at the input of the bridge circuit, the rectification means that the

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
430

Winter 2022-2023
December 31, 2022

Signals & Noise

zero mean noise is now biased noise. Furthermore, as we have a tighter requirement on the accuracy

of our filtered output, we have to filter for longer. Very realistically, that translates into the number of

signal cycles needed before we detect a change in the signal level. This can very realistically be tens or

hundreds of cycles, and so by using one of these circuits, we have potentially added a large chunk of

latency to our control system.

There is an inherent assumption that the modulation is at frequencies far lower than the carrier frequency,

fC. The averaged signal will exhibit different levels of ripple (signal at 2 fC getting past the LPF) depending

upon the LPF itself, but generally we see that the averaged signal can return the modulated amplitude.

One implementation of this is known as an analog RMS-to-DC circuit[224]. In this reference the example

of a 36 ms settling time of the AD736 [224] is 3,168 periods of the 88 kHz signal used in [85]. A 36 ms

settling time sets the Nyquist frequency at 0.5*(1/36e-3) = 13.89 Hz. From this a reasonable closed-

loop bandwidth limit would be 1/10 of the Nyquist frequency or about 1.4 Hz, which severely limits

achievable bandwidth from a fairly high speed signal.

For many low speed, low to moderate precision control problems, this type of signal demodulation is

sufficient. The disadvantages of such a simple scheme are that it allows through broadband noise,

nonlinearities, and harmonics of the carrier frequency. Adding more LPF to minimize these effects will

also lower the effective bandwidth of the demodulated signal.

7.17 Basic IQ Demodulation: Lock-In Amplifiers

sin(t)wo

s(t)

cos(t)wo

Low Pass
Filter

Low Pass
Filter

I(t) I (t)LP

Q (t)LPQ(t)

Figure 7.40:Operation of a lock-in amplifier.

The next important demodulation component to understand is the in-phase/quadrature (IQ) demodu-

lator. These are commonly used in communication systems and in precision instrumentation. Among

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
431

Winter 2022-2023
December 31, 2022

Signals & Noise

the simplest of these instruments to understand is the lock-in amplifier (Figure 7.40). Lock-in-amplifiers

(LIAs) and coherent demodulation have typically been used in a variety of communication and measure-

ment systems [75, 53, 70, 84, 87]. The difference is that those systems did not close the feedback loop

and thus were not affected by latency. Furthermore, many LIAs require post-integration low pass filtering

to minimize the effects of harmonics [225, 226].

Lock-in amplifiers are common measurement instruments which produce an in-phase and quadrature

signal to mix with the incoming modulated sinusoid. In Figure 7.40, the input signal is mixed with a

sine and a cosine at frequency ω0 = 2π f0. By convention one signal, I(t), is called the in-phase signal

and the other, Q(t), is called quadrature. The mixing signals will cause any component of s(t) at ω0 to

produce a signal at baseband (no carrier) and one at 2ω0. The low pass filters are supposed to remove

this 2X frequency harmonic, as well as anything else at high frequency. Generally any signal not at ω0

should average out in the low pass filters.

The integrated in-phase (I(t)) and quadrature (Q(t)) branches now have signals from which the magnitude

and phase can be extracted via a standard rectangular to polar coordinate transformation. That is, if

s(t) = A sin(ω0t + θ), then (7.81)

A =
√

I(t)2 + Q(t)2 and θ = arctan
I(t)
Q(t)
. (7.82)

Again, there are inherent assumptions about A and θ having frequency contents far below ω0. Lock-in

amplifiers are very useful laboratory instruments for examining signals when delay doesn’t matter much,

but when we chose to use IQ demodulation in feedback loops, we are far more concerned about delay.

A second issue is doing the computations of Equation 7.82. Square root and arctangent functions, are

relatively expensive for real-time computations. Even the famous CORDIC algorithms developed in the

1950s for a US Air Force computer and used in the original HP-35 pocket calculator [227, 228] typically

took 1 computation cycle per bit of accuracy, meaning that 32 bits of accuracy took up to a whopping 32

computer clocks. While this seems relatively small by current standards, it is not when the computation

is being pushed by extremely high sample rates, as found in nano-mechatronics. For such systems, both

the number of cycles and the variability of the number of cycles needed for any particular computation,

are a particular hindrance to high bandwidths. We will see later, that there are ways of mitigating this.

First, we need to introduce one more foundational piece, the phase-locked loop (PLL).

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
432

Winter 2022-2023
December 31, 2022

Signals & Noise

Loop
Filter

Phase
Detector

Voltage
Controlled
OscillatorSignal

Phase-Locked
to Reference

Signal
Reference

Figure 7.41:A general PLL block diagram. Each PLL has a phase detector, an oscillator, a loop filter,
and operates in feedback.

7.18 Basic Coherent Demodulation: Phase-Lock Methods

One last critical component in this modulation/demodulation universe is that of phase-lock methods.

The most basic component is the phase-locked loop (PLL) (Figure 7.41), which will be described below,

but these methods are far more general and thus deserve their own mental subset. This author has

argued that with PLLs in every computer, smart watch, television, radio, and generally any piece of

digital electronics, the PLL is the most ubiquitous feedback loop designed by humans [30]. PLLs are

unique amongst most feedback systems in that they include two intentionally inserted nonlinearities: the

voltage or numerically controlled oscillator (VCO/NCO) and the phase detector. The former generates

an oscillator frequency in response to an input voltage level or number and the latter extracts that phase

and/or frequency from combining a pair of oscillating signals [156, 229, 230, 155, 231, 232].

In its most mathematically pure form, a PLL involves the same mixing (multiplying of two sinusoids)

described in Section 7.17 on IQ demodulators. The difference here is that the latter are open-loop

devices while PLLs are feedback mechanisms. While the non-coherent demodulation methods described

in Section 7.17 are only useful for extracting the amplitude of a modulated signal. A PLL – by aligning

the internal oscillator with the fundamental oscillation of the incoming signal – allows the phase (and

sometimes frequency) of the incoming signal to be determined. This then opens up a world of other

demodulation methods [233, 234, 152, 125].

First introduced in the 1930s [235], a classical analog phase-locked loop (Figure 7.42) takes a reference

sinusoid and mixes (multiplies) another sinusoid that is conceptually in quadrature (90o out of phase)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
433

Winter 2022-2023
December 31, 2022

Signals & Noise

Loop
Filter

Voltage
Controlled
Oscillator

VCO
Control
Voltage

Signal
Phase-Locked
to Reference

Signal
Reference

Asin(t +)w qi i

cos(tw q
o o

+)

Figure 7.42:A classical mixing (analog) phase-locked loop.

with it. Via the use of trigonometric identities and low pass filtering (LPF), the loop creates an error

signal in the baseband which is a sector 1-3 nonlinearity. This allows the loop to be closed and the

difference signal – corresponding to the phase – to be driven to 0.

Because the low frequency (baseband) behavior of the multiplied sinusoids is a sine – a quadrant 1 and

3 nonlinearity (Figure 7.46), the phase detector output signal can be used as an error signal to drive

the frequency and phase differences between the reference sinusoid and the internal sinusoid to some

constant value or 0 (depending on the system type). The internal sinusoid then represents a filtered or

smoothed version of the reference sinusoid.

For multibit analog input signals, one group of digital PLLs (DPLLs) approximates the analog loop in

the same sense way that digital controller approximate analog ones: the modulated carrier signals are

digitized using an ADC, acted upon by a set of digital filters, fed into a numerically controlled oscillator

(NCO), and that signal can be converted back to analog if needed using a DAC. However, this limits the

carrier signals to only those that can be effectively digitized by an ADC. PLL circuit designers, being a

clever bunch, have found ways to modify these methods so as not to require a full ADC conversion. For

these binary digital signals, Walsh functions replace sinusoids. Special phase detectors work on edges

of clock signals, or even on simply [0,1] bits coming in from a communication link. In these cases, the

analysis moves from the comfortably analytical methods that use trigonometric identities on sinusoids

to almost purely heuristic methods based on an intuitive understanding of the phase detector behavior

both in its baseband signals (the demodulated ones) and in the residual high frequency signals. Although

uncomfortable for those of us used to having analytical descriptions, these circuits are ubiquitous in low

power digital electronics and therefore should not be ignored.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
434

Winter 2022-2023
December 31, 2022

Signals & Noise

Loop
Filter

High
Frequency

LP Filter

Bandpass
Filter

Voltage
Controlled
OscillatorSignal

Phase-Locked
to Reference

Signal
Reference

Figure 7.43: A practical version of the classic mixing phase-locked loop: note the addition of a
bandpass filter preceding the loop to limit input noise and a high frequency low pass filter within the
loop to attenuate the 2X frequency component with minimal impact on the loop dynamics.

Typical block diagrams of PLLs in the literature resemble Figure 7.42, however practical loops often

more closely resemble Figure 7.43, in which a high frequency low pass filter is used to attenuate the

double frequency term and a bandpass filter is used to limit the bandwidth of input signals to the loop.

A general sinusoidal signal at the reference input of a PLL as shown in Figure 7.43 can be written as:

vi = R1(t) = A sin(ωit + θi). (7.83)

Without loss of generality, we can assume that the output signal from the voltage-controlled oscillator

(VCO) into the mixer is given by

vo = VCOout(t) = cos(ωot + θo). (7.84)

The output of the mixer in Figure 7.43 is then given by

vd = Mixerout(t) = AKm sin(ωit + θi) cos(ωot + θo), (7.85)

where Km is the gain of the mixer.

Typically, analysis of such a PLL is done by taking several simplifying steps. Using the familiar trigono-

metric identity in terms of the PLL:

2 sin(ωit + θi) cos(ωot + θo) = (7.86)

sin((ωi + ωo)t + θi + θo) + sin((ωi − ωo)t + θi − θo)

and then making two fundamental assumptions leads to the commonly used model of the analog PLL.

Let θd = θi − θo. Then these assumptions are:

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
435

Winter 2022-2023
December 31, 2022

Signals & Noise

S

-

s

Ko

VCO

qi

q
o

x

F(s)K sin()d

qd

Figure 7.44: Conceptual block diagram of PLL with sine detector. This is a transition stage in the
analysis of the classical mixing loop. This model represents the effect of the multiplying detector once
the high frequency component has been attenuated.

F(s)S

-

s

Ko

VCO

qi

q
o

x

Kd

qd

Figure 7.45: Conceptual block diagram of linear PLL. This is derived from the sine detector loop
by assuming that the phase error is small and thus sin(θd) ≈ θd. This is the model with which most
analyses of phase-locked loops are done.

1. The first term in (7.86) is attenuated by the high frequency low pass filter in Figure 7.43 and by

the low pass nature of the PLL itself.

2. ωi ≈ ωo, so that the difference can be incorporated into θd. This means that the VCO can be

modeled as an integrator.

Making these assumptions leads to the PLL model shown in Figure 7.44. The problem is that this is

still a nonlinear system, and as such is in general difficult to analyze. The typical methods of analysis

include:

1) Linearizion: For θd small and slowly varying

sinθd ≈ θd, cosθd ≈ 1, and θ̇d
2 ≈ 0.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
436

Winter 2022-2023
December 31, 2022

Signals & Noise

a

b

Figure 7.46:A quadrant 1-3 sector nonlinearity assumed for almost all PLL phase-detectors.

While this is useful for studying loops that are near lock, it does not help for analyzing the

loop when θd is large.

2) Phase plane portraits [156, 230]. This method is a classical graphical method of analyzing

the behavior of low order nonlinear systems about a singular point. The disadvantage to this

is that phase plane portraits can only completely describe first and second order systems.

The saving grace here is that by far the vast majority of PLLs are first or second order.

3) Simulation. Note that explicit simulation of the entire PLL is relatively rare. Because the

problem is stiff, it is more typical to simulate the response of the components (phase detector,

filter, VCO) in signal space and then simulate the entire loop only in phase space.

The linearized model is used for most analysis and measurements of PLLs. We can still analyze the

the sinusoidal phase detector model shown in Figure 7.44, it has been possible to apply the technique

of Lyapunov Redesign [153] to phase-locked loops [152, 30]. This can even be applied when the phase

detector is digital, but the rest of the loop is analog, known as a classical digital phase-locked loop [125].

Changing the phase detector and VCO can result in a system for which this model is very accurate. It

is possible to learn quite a bit about the phase behavior of the PLL from linear analysis.

Again the difference with an I-Q demodulator is the latter is an open-loop device – never minimizing

the phase difference between input and output signals – while a PLL closes the loop on the phase

difference so as to drive it towards 0. In contrast to an I-Q demodulator, in a PLL, the magnitude of

the demodulated signal is trivially available from the remaining baseband signal. The phase error can be

viewed as a residual instantaneous phase difference between the input and the locked oscillator signal. In

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
437

Winter 2022-2023
December 31, 2022

Signals & Noise

an IQ demodulator, the magnitude and phase are typically extracted via a rectangular to polar coordinate

transformation as shown in Equation 7.82.

Signal

Reference

VCO

Signal

qep

-p -p/2

p/2

Vd

Vdm

Figure 7.47:Classical mixing phase detector

Signal

Reference

VCO

Signal

Vdm

qep

-p -p/2

p/2

Vd

Vdm

Figure 7.48:Over driven mixing phase detector

A classical mixing (multiplying) phase detector is shown in Figure 7.47. Once the 2X frequency compo-

nent has been integrated out with the loop filter (and any high frequency low pass filter), the resulting

phase characteristic is the sinusoidal one that we discussed earlier.

If one overdrives the circuit so that it saturates, then we get the phase response that is shown in

Figure 7.48. Understanding the output of such a phase detector relies on a combination of averaging

analysis and heuristics. However, one of the more interesting features of such a phase detector is that

it can be implemented using an Exclusive-OR (XOR) gate as shown in Figure 7.49. One advantage of

such a phase detector is that the loop gain is now independent of input signal amplitude. Furthermore,

an XOR phase detector’s response can have a larger linear range than a sinusoidal detector (mixer). The

disadvantage is that the linearity of the baseband response is affected by the relative duty cycles of the

input and VCO signals [155, 231]. The standard analysis done by PLL engineers involves drawing out

square waves as shown in Figure 7.50 and then doing some heuristic “analysis” to convince themselves

that the baseband (low frequency) component of the signal behaves with the triangular phase response

shown in the right of Figure 7.49 (for a 50% duty cycle of the input signal).

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
438

Winter 2022-2023
December 31, 2022

Signals & Noise

Signal

Reference

VCO

Signal

vi

vb

vo

va
qep

-p -p/2

p/2

Vd

Vdm

v = v - vd b a

Figure 7.49:Phase detection using an XOR gate. Note that this accomplishes the same thing as an
over driven mixer, but with digital circuitry.

vi

vo

v XOR vi o

residual

vi

vo

v XOR vi o

2X

residual

Figure 7.50: Phase detection using a XOR gate. On the left, a phase shift between reference and
VCO output of π/2 produces an output of the phase detector whose baseband component is 0. On
the right a relative phase shift of π/4 results in an output of the phase detector whose baseband
component is vd/2. The output is broken up here into a 2X frequency signal and a residual. The 2X
signal averages to 0, while the residual averages to the baseband phase error.

Even more sophisticated digital circuits, such as a phase-frequency detector can integrate pulses to lock

in not only the phase, but the frequency of an incoming signal. The analysis for such loops is often

heuristic and graphical, but since most PLLs model the oscillator – either a voltage controlled oscillator

(VCO) for analog loops or a numerically controlled oscillator (NCO) for digital loops – as an integrator

and the loop filter often contains another integrator, the analysis often follows that of control of an

integrator plant under PI control.

If all modulated signals were simply sinusoids, demodulated with analog circuits, the field of phase-locked

methods would be a lot duller. Because accurate sinusoids are often difficult to produce in simple circuits

and difficult to maintain across a circuit, deviations using non-sinusoidal shapes have arisen, and phase

detectors beyond mixers (multipliers) have been employed. These circuits are even more nonlinear than

the classical PLL, but they have clear advantages in simplicity and large scale reliability. A perfect exam-

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
439

Winter 2022-2023
December 31, 2022

Signals & Noise

qe

p-p

Vd

Vdm
D Q D Q

D Q D Q

c a

b’ b

Data
(Data)

(Clock)

vi

vo

Latch tracks input
when clock = 0.

c ab

Data

bit center

bit edge

Figure 7.51: Block diagram for a Bang-Bang phase detector used in clock-data recovery PLLs.

ple involves replacing the sinusoids with square waves and the mixer phase detector with an Exclusive-OR

circuit. The signals are binary, but the baseband behavior of the output of the XOR follows that first

and third quadrant nonlinearity [30].

The point of this discussion is not to teach a lot of phase detector circuits (see [30] for that), but to

point out that phase-lock methods – and the ideas behind them – can be used in all manner of signals

that do not match our typical control system signals. Understanding that even these pulse trains and/or

binary signals can yield information allowing us to synchronize an oscillator (or some mixing signals for

an IQ demodulator) allow us to extract clean signals from all manner of encodings. As strange a device

as the so-called Bang-Bang phase detector of Figure 7.51, can produce results that, when averaged to

reveal the demodulated low frequency behavior, yield understandable phase relationships as shown in

Figure 7.52 [236, 237].

It is worth understanding the Costas Loop, shown in Figure 7.53 because its progeny show up repeatedly

in designs. We will see an example of one in the Laser Interferometers described in Section 7.23. The

upper branch of the loop, labeled as quadrature, acts like a PLL, driving the phase between the input

and the mixing signal to 0. When the phase error in the upper branch is driven to near 0, the oscillation
in the lower branch is in phase with the input signal. In the absence of modulation, the two in-phase

signals multiplied together essentially form a sin2(·) quantity which would produce an always positive

value, especially when integrated via any low pass filter. Any amplitude modulation may be extracted

almost trivially at this point. While the Costas Loop is most commonly associated with communication

signals using Binary Phase Shift Keying (BPSK) this basic idea can be extremely useful in speeding up

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
440

Winter 2022-2023
December 31, 2022

Signals & Noise

0 0.5 1 1.5 2 2.5 3 3.5

x 10
−6

−2

−1

0

1

2

3

4

5

6

Time (sec)

re
fIn

, c
lo

ck
In

 &
 P

D
S
ta

te

HRBB_VCOFilt1a_1M_dp50f: Half Rate Bang Bang PLL (testHRBBPLL3)

Data phase at 50 deg.

refIn clockIn

PD_State

0 0.5 1 1.5 2 2.5 3 3.5

x 10
−6

−1.5

−1

−0.5

0

0.5

1

1.5

Time (sec)

θ D
F
 &

 θ
D

LP

Multirate factor at data/clock transitions: 10

High Speed Sections Using Single Pole Analog Filter

0 0.5 1 1.5 2 2.5 3 3.5

x 10
−6

−60

−40

−20

0

20

40

60

Time (sec)

θ I &
 θ

O
 (

de
g) Simulation Ts = 1e−012; Data Period = 2.5e−011

VCOFilt1a : This approximates our lab VCO with modulation BW (Ts = 1e−012)

Figure 7.52:Time domain response of Half-Rate Bang Bang PLL simulation. Vertical fuzziness seen
in phase detector output due to filters used by Matlab’s decimation feature. The refIn signal is the
data input. The clockIn is the recovered VCO clock. The PD State is the state of the phase detector.
This is passed through two different low pass filters. The LP PD Out is low passed with a 4 GHz
bandwidth. The VLP PD Out is the phase detector output passed through a 400 MHz bandwidth filter.
In the bottom plot, the input phase is θi and the recovered clock phase is θo.

precision IQ demodulation (Section 7.19) or in laser interferometers (Section 7.23).

Phase-lock methods allow us to synchronize an internal oscillator with some external reference signal. In

doing so we use feedback to get phase alignment between signals, which simplifies a lot of other signal

extraction. In some cases, we will see that the alignment provided by phase-lock methods allows a trivial

extraction of other signal information, greatly reducing the computational load.

PLLs have made possible phase encoding of radial position on hard disk drives (HDDs), as shown in Figure

7.54. Once the PLL locks on the sync field, the phase detector provides left-right position information

in the form of a phase delay or a phase advance.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
441

Winter 2022-2023
December 31, 2022

Signals & Noise

Bandpass
Filter

Reference
Signal

with BPSK

Loop
Filter

-P/2

High
Frequency

LP Filter

VCO

Clock

DataHigh
Frequency

LP Filter

Quadrature

In-Phase

Figure 7.53:A Costas loop combines a PLL and an IQ demodulation function.

Sync Time Shift Determines
Radial Position

Figure 7.54:PLLs allow phase modulation of radial position on hard disk drives.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
442

Winter 2022-2023
December 31, 2022

Signals & Noise

7.19 Precision Integration Lock-In

sin(t)wo

s(t)

I(t) I (t)INT

Q(t) Q (t)INTcos(t)wo

()dtʃ
0

MTO1
MTO

()dtʃ
0

MTO1
MTO

Figure 7.55:Lock-in amplifier with precision integration over an integer number of periods.

The lock-in amplifier methods described in Section 7.17 had the disadvantage – from a controls perspec-

tive – of having a fairly long delay, because their use models were not affected by delay. However, as we

will see in the examples that follow this section, many of the uses of demodulation in control systems

require a minimization of that delay.

One of the sources of delay is the long time constant in the LPF needed to minimize the effects of

the higher harmonics produced in the mixing operation. In a pure circuit, this would only be the 2ω0

harmonic, but as many circuits have small nonlinearities in practice, they had produce a wide set of

higher harmonics that are hard to predict in advance. Returning to Figure 7.40, we can replace the

generic LPF with a precision integral of Figure 7.55.

A given output signal, s(t), can be demodulated using a stepped-sine demodulator. Referring back to

Figure 3 we can use Fourier series to decompose the signal, s(t), as

s(t) = A0 +

∞∑

k=1

(Ak sin(kω0t) + Bk cos(kω0t)) . (7.87)

We can expect that if the stimulus signal is single sinusoid, then s(t) will have a strong first Fourier

component:

s(t) ≈ A1 sin(ω0t) + B1 cos(ω0t) + n(t) = C1 sin(ω0t + φ1) + n(t), (7.88)

where

C1 =

√

A2
1 + B2

1 and φ1 = arctan
A1

B1
. (7.89)

The signals to be integrated, I(t) for the in-phase and Q(t) for the quadrature signal are

I(t) = s(t) sin(ω0t) and (7.90)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
443

Winter 2022-2023
December 31, 2022

Signals & Noise

Q(t) = s(t) cos(ω0t). (7.91)

Here n(t) is the noise in s(t).

Mixing with in-phase and quadrature signals as shown in Figure 7.55 yields
∫

I(t)dt =
∫

s(t) sin(ω0t)dt
≈

∫

A sin(ω0t + θ) sin(ω0t)dt +
∫

n(t) sin(ω0t)dt
(7.92)

and ∫

Q(t)dt =
∫

s(t) cos(ω0t)dt
≈

∫

A cos(ω0t + θ) cos(ω0t)dt +
∫

n(t) cos(ω0t)dt.
(7.93)

Here n(t) is the noise in s(t). Coherent demodulation (a.k.a. lock-in amplification) is based on the idea

that if one sets the mixing signal to the same fundamental period as the drive signal, T0 =
1
f0
= 2π
ω0
,

and integrates, then most of the terms drop out, leaving only a signals at baseband and at 2 f0. The

higher frequency signal can be removed with a post-integration notch or low-pass filter. Often, this low

pass filter effect is achieved just by integrating over a large number of periods. With analog circuits,

the difficulty in precisely knowing the fundamental frequency, f0, means that it is difficult to place an

analog notch at the exact 2 f0 frequency (or those of any other harmonics). For this reason, the use of

analog Lock-In-Amplifiers for coherent demodulation is usually accompanied by a broad low pass filter.

The negative phase effects of using such a filter limits the closed-loop bandwidth of any system using

such a demodulator.

Ideally, we will want to integrate over an integer, M, number of periods of the frequency that we wish

to demodulate. Making the integrals definite and using well known trigonometric identities, yields:

1
MT0

∫ MT0

0
I(t)dt =

A
2

(

cosθ
1

MT0

∫ MT0

0
dt − 1

MT0

∫ MT0

0
cos(2ω0t + θ)dt

+
1

MT0

∫ MT0

0
n(t) sin(ω0t + θ)dt

)

and (7.94)

1
MT0

∫ MT0

0
Q(t)dt =

A
2

(

sinθ
1

MT0

∫ MT0

0
dt − 1

MT0

∫ MT0

0
sin(2ω0t + θ)dt

+
1

MT0

∫ MT0

0
n(t) cos(ω0t + θ)dt

)

. (7.95)

Equations 3.218 and 3.219 both have the properties that the second term on the right hand side goes

to 0 for all positive M. The third term goes to 0 for increasing MT0 as long as n(t) is uncorrelated with

the mixing sinusoids.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
444

Winter 2022-2023
December 31, 2022

Signals & Noise

Such precise control of the integration period is difficult in an analog circuit but straightforward in a

digital operation. As MT0 gets large the contribution of n(t) goes to 0, yielding the familiar relationships

Iint =
1

MT0

∫ MT0

0
I(t)dt ≈ A

2
cos(θ) (7.96)

and

Qint =
1

MT0

∫ MT0

0
Q(t)dt ≈ A

2
sin(θ). (7.97)

7.19.1 Discrete Approximation of the Integral

There are several issues with standard methods of demodulation. The first is that imperfections in the

integration approximation and noise in the signal require that MT0 be large, relative to the period of the

frequency at which demodulation is to take place, T0, so M must be large.

Sample Points

Signal

End of last full
period of signal

Last Sample
of Integration

Figure 7.56:Integrating the partial sample of a sampled sinusoid.

The second is that with a digital controller, we have to be careful if we want to honor our desire to

integrate over an integer number of periods of oscillation. We want

NTS = MT0, (7.98)

where N are are the number of samples in the integration, TS is the sample period, M is the number of

periods of oscillation, and T0 is the period of oscillation. As illustrated in Figure 7.57 the data sample

rate is rarely an integral multiple of the oscillation frequency, so it is difficult to make Equation 7.98

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
445

Winter 2022-2023
December 31, 2022

Signals & Noise

End of last full
period of signal

Sample Points

Sine Wave very close to f0

Sine Wave at f0

Figure 7.57:The top drawing shows a sine wave which doesn’t end up on an integer number of sample
points. Adjusting f0 slightly allows an integer number of periods to line up with an integer number of
samples, as shown in the bottom drawing.

hold. Most digital systems are run at a fixed sample rate, fS =
1

TS
. The oscillation frequency, f0 = 1

T0
,

comes from the frequencies at which we want to measure the FRF. That means f0 will vary but fS will

not. A solution is that for any desired f0 and M, we can pick N such that:

NTS ≤ MT0 = NRealTS ≤ (N + 1)TS . (7.99)

We then round NReal to the nearest integer. We don’t want to change TS or M, so we have two options.

There is a fundamental difference between these methods when we have a fixed fundamental frequency,

f0 and when we can adjust it. In the most common case when equality does not hold, the last period of

the integration is a partial one, as shown in Figure 7.56. This will require N + 1 samples where the first

N samples of the integral integrate over the complete sample period and the last one is interpolated over

a partial sample. If we are trying to precisely match a frequency, such as the resonant frequency of an

AFM cantilever [85, 86], then we round NReal down to the closest integer below and then integrate over

a partial fraction of an interval (Figure 7.56). The length of the partial fraction of an interval changes

with every sample period and oscillation frequency, but would be fixed during any one measurement.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
446

Winter 2022-2023
December 31, 2022

Signals & Noise

S

-

Cz

Piezo X-Y
Actuator

Sample

Tip & Cantilever
Assembly

Piezo
Stack

A B

CD

Photo
Detector

Laser

Cx

-
uyeyry

S Cy

-

S
ux

ex
rx

uz

ez
rz

Decimator Image
Display

zc

~

X

Y

Z

Surface
Estimate

Surface
Position

Calibration
Sample

X Y
Scan

x

-y

z

Figure 7.58:Schematic diagram of AFM control loop. Note that the loops driving the relative position of
the sample and tip (put in the X-Y plane here) are often separate and slower than the loop controlling
the interaction of the tip with the surface topology (put in the Z axis.

7.19.2 Coherent Demodulation for AFMs

One example of a practical implementation of these integrals was described in the author’s earlier work

on a low latency, high fidelity demodulation for atomic force microscopes (AFMs) [85, 86, 238].

These demodulation methods allow the system to extract signal information in as little as one cycle of

the fundamental oscillation frequency. By having so little latency, the demodulator minimizes the time

delay in the servo loop for an AC mode AFM. This in turn minimizes the negative phase effects of the

demodulation allowing for higher speed scanning. There are two fundamental stages to this: mixing and

integrating the signal efficiently [85] and extracting the magnitude and phase from those quantities [86].

To be useful, both should be done in real time. For the former, we will discuss the tradeoff between

the accuracy of the integration and the relative sample frequency relative to that of the fundamental

oscillation frequency. In the latter, we will discuss tradeoffs between the popular CORDIC method,

optimized table lookup operations, and a phase-locked loop (PLL) based method. The latter two show

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
447

Winter 2022-2023
December 31, 2022

Signals & Noise

Tip/
Cantilever

Piezo
Actuator(e) (u)(r)

(d)

Optical
Sensor

Tip Position
(z)T

Reference
Amplitude

Surface
Estimate

Error

Surface
Position

SS

- C

P

Cantilever
Deflection

(z)C
~

Sine
Drive

AC
Actuator

AC
Demod

PID

Controller
Output

Figure 7.59:An AFM Control Block Diagram in dynamic mode. The digital controller generates a
sinusoid and uses it to drive the AC actuator and feed the demodulation of the return signal.

a significant decrease in latency, with the PLL based method generating the magnitude and phase with

virtually no extra latency and a significant savings in resources.

Control of Atomic Force Microscopes (AFMs) is depicted pictorially in Figure 7.58. This is often seen

as three independent loops. The X-Y positioning of the sample relative tot he tip has a reference

signal which makes this amenable to a large number of combined feedforward/feedback control schemes

[239, 240, 241, 242, 243, 113, 244, 245, 246, 247, 248, 249, 250]. The Z-ais loop which controls the

primary interaction of the cantilever and tip with the sample is only provided with a deflection signal in

the case of contact mode measurement or a tip oscillation signal in the case of AC mode. Furthermore,

the precision needed from the tip control loop often mandates significantly higher closed-loop bandwidth

than with the X-Y control loops [27] (more references).

Dynamic mode AFM, which involves an oscillation of the cantilever in the proximity of the surface at a

frequency close to the resonant frequency of the cantilever is depicted in Figure 7.59. In non-contact

mode, the amplitude of the oscillation is slightly less than the nominal tip/surface distance so that

while there is interaction between the tip and surface, this never enters into what would be considered

contact. In the most common form of dynamic mode, also known as AC mode, or intermittent contact

mode [216, 217], the amplitude of the free oscillation is slightly larger than the nominal tip/surface

distance. When the tip comes into proximity with the surface, the oscillation amplitude, phase, and

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
448

Winter 2022-2023
December 31, 2022

Signals & Noise

Optical
Sensor

Sine
Drive

AC
Actuator AC Demod

Deflection

Sine I

Q

Cosine

Mag.

Phase

Mag.

Phase

Figure 7.60:Coherent demodulation for AFM.

frequency are modulated, as shown (for amplitude) in Figure 7.61. By detecting this modulation and

closing a feedback loop on the amplitude of the oscillation, this amplitude can be maintained at a

constant level (modulo the closed-loop bandwidth of the z-axis loop [27]). Typically, the control signal

represents the surface topography.

Dynamic mode imaging is done using cantilevers of various frequency ranges which are described in [27].

Often as the cantilever resonant frequency goes up, they get stiffer and have a higher quality factor (Q)

[251]. The higher Q provides greater amplitude amplification of the drive signal and better frequency

discrimination for small shifts due to surface interaction. However, the extra stiffness of the cantilever

might damage some materials, so there is a trade-off to be made on increasing the cantilever resonance.

Because dynamic mode produces lower sheer forces on the sample than contact mode, the imaging of

biological samples, is often done using this technique.

Although dynamic mode operation of AFMs is favored for imaging of soft samples, this operation is

hampered by its slow speed. There are several reasons for this, as described in [27]:

• The Q factor of the cantilever affects the time response. The cantilever is usually oscillated near

its resonant frequency to get reasonable deflection amplitudes with low levels of input signal. Due

to nonlinear interactions with the surface, the tip oscillation amplitude responds almost instanta-

neously to a step up in the surface. (see the left side of Figure 7.61). However, when there is a

step down in the surface height, the response time of the cantilever oscillation will be proportional

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
449

Winter 2022-2023
December 31, 2022

Signals & Noise

to Q/ωo, where ωo is its resonant frequency (see the right sides of Figure 7.61 and 7.62) [252].

(The effect is exaggerated due to space considerations.) The flywheel action (which the author

likes to call the Wiley E. Coyote effect), also introduces a limitation on the imaging speed without

imaging artifacts. In general, imaging speed is limited by the slower rate.

• In AC mode, information about the surface is only available during the contact interval, which

happens once every period of the oscillation. Consequently, the duty cycle of tip/surface interaction

is considerably reduced as compared with contact mode. To have statistical significance, it is typical

to average over multiple contact points, typically on the order of 10. Thus, the time constant of the

vertical control loop is limited by the frequency of oscillation and the number of periods required.

• The surface information of interest is typically at a frequency well below that of the oscillation

frequency and must be extracted from the oscillatory return signal via demodulation.

It is the role of the demodulator to extract surface information from the return signal. Typically there

is a trade-off between the fidelity of the extracted information and shortening the demodulation time.

Speeding up dynamic mode operation depends upon having a high fidelity, low latency demodulator.

Consider driving the cantilever with a sine wave:

d(t) = D0 sin(ω0t). (7.100)

The signal, s(t), from the optical sensor, is composed of harmonics of sin(ω0t), i.e.

s(t) = A0 +

∞∑

k=1

(Ak sin(kω0t) + Bk cos(kω0t)) . (7.101)

We can expect that if the drive signal is large enough and the tip/surface interaction is set to be a

small fraction of the free space oscillation, then the majority of the signal will be dominated by the first

harmonic,

s(t) ≈ A1 sin(ω0t) + B1 cos(ω0t) = C1 sin(ω0t + φ1). (7.102)

where

C1 =

√

A2
1 + B2

1 and φ1 = arctan
A1

B1
. (7.103)

Because dynamic mode typically operates near the cantilever resonance [253], there is a relationship

between the amplitude shift, phase shift, and frequency shift seen due to the surface/tip interaction.

Thus, both the imaging and the Z-axis servo loop can be driven by one of several demodulated signals.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
450

Winter 2022-2023
December 31, 2022

Signals & Noise

Deflection

Surface

Demodulated
Amplitude

Figure 7.61:Open-loop deflection of the AFM tip in dynamic (AC) mode. Interaction with the surface
will generally affect the amplitude and phase of the measured cantilever oscillation. The demodulated
amplitude is shown here.

• Amplitude Modulation (AM): In this mode, the change in the amplitude of the return signal

oscillation is detected and used as the error signal for the feedback loop. The speed of AM-AFM is

often limited by the high Q-factor of the cantilever. , which slows the detection of surface features

through the Wile E. Coyote effect seen in Figure 7.61, in which a the tip goes off a cliff on the

surface but doesn’t detect it for a while [27].

• Phase Modulation (PM): In this mode, the change in the difference between the reference

phase of the cantilever drive oscillation and the phase of the returned deflection signal is detected.

While feedback on the amplitude is easier to implement, the phase signal can be used to measure

other surface properties like energy dissipation [254].

• Frequency Modulation (FM): In this mode, the change in the oscillation frequency of the

returned deflection signal is detected. FM-AFM typically requires extremely high-Q cantilevers so

that the frequency shift can be detected. This has meant that FM-AFM is most often done in a

vacuum where the lack of air damping makes the cantilever Q seem much larger. However, non-

vacuum operation has been made possible by recent improvements in instrumentation Reference.

Several standard forms of demodulation have been used for AFMs. Non-coherent, or non-synchronous

demodulation, using an analog RMS-to-DC circuit [224](or its digital equivalent) can extract the signal

magnitude, but not the phase. Both magnitude and phase can be extracted using a lock-in amplifier,

which is a synchronous device that mixes in-phase and quadrature signals with the input signal and then

integrates for a known period of time. Typical external lock-in amplifiers are slow, since tracking speed

is often secondary to accuracy. Like the RMS-to-DC circuit, they often integrate over at least 10 periods

of the input signal. For example, the 36 ms settling time of the AD736 [224] is 3,168 periods of the 88

kHz signal used in the examples of Sections 7.19.5 and 7.20. A 36 ms settling time sets the Nyquist

frequency at 0.5*(1/36e-3) = 13.89 Hz. From this a reasonable closed-loop bandwidth limit would be

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
451

Winter 2022-2023
December 31, 2022

Signals & Noise

Deflection

Surface

Demodulated
Amplitude

Control Signal

Figure 7.62:Deflection of the AFM tip in dynamic (AC) mode under feedback control. In this AM mode,
the drop in oscillation amplitude results in the feedback loop raising the position of the actuator, which
restores the oscillation amplitude. A rise in oscillation amplitude results in the controller lowering the
position of the actuator. The control signal can then be used as a representation of the surface.

1/10 of the Nyquist frequency or about 1.4 Hz, which severely limits scanning speed. There has been

a push among AFM manufacturers to include digital lock-in amplifiers in their AFM controllers. To be

useful for high speed control, however, these lock-in amplifiers need to both have low latency and high

fidelity. This is demonstrated in this paper.

Once the demodulation has been accomplished [85] producing in-phase and quadrature signals, these

must be converted to magnitude and phase. This is essentially a transformation from rectangular to

polar coordinates which seems simple until one has to compute it in real time. The second half of this

paper will describe two methods for efficiently computing the magnitude and phase of those integrated

signals. The first implements a minimal latency table lookup with automatic scaling of signals. The

second method involves using a phase-locked loop (PLL) to align the mixing signal with the average

phase of the return signal. In this case, the magnitude and phase calculations become trivial [86].

Minimal latency demodulation for AFMs presents unique challenges. Lock-in-amplifiers (LIAs) and co-

herent demodulation have typically been used in a variety of communication and measurement systems

[75, 53, 70, 84, 87] (more communication, DSA references). The difference is that those systems did

not close the feedback loop and thus were not affected by latency. In prior demodulation schemes for

disk drive feedback systems, the author was able to use the fact that the timing of the magnetic servo

patterns to be demodulated had already been recovered, allowing for amplitude demodulation with no

need to extract magnitude from in-phase and quadrature integrals [213, 211, 212] In the AFM example,

latency is one of the key limiting factors in overall loop bandwidth [19], and so the desire to limit latency

means that our LIA has to minimize integration time. Furthermore, many LIAs require post-integration

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
452

Winter 2022-2023
December 31, 2022

Signals & Noise

low pass filtering to minimize the effects of harmonics [225, 226]. However, this paper will also show two

post-integration filtering methods that remove the effects of harmonics without significantly affecting

the achievable signal bandwidth.

Note that since the conference version of this material was first published [85, 86], other papers have

delved into similar areas, including [225], which essentially creates a high speed analog LIA, as opposed

to the high speed digital LIA of this work. The results in this paper show several advantages of the

digital technique, and when done properly, this digital LIA has significant noise immunity, in contrast to

the limited description in [226].

7.19.3 Practical Implementation of the Discrete Integration

In those papers, a trapezoidal rule integration is used. This seems to provide a reasonable compromise

between minimizing latency and integration accuracy. Consider the trapezoidal rule implementation of

our integral:
∫ tN

t0

y(t)dt ≈
N−1∑

k=0

(yk+1 + yk

2

)

TS , (7.104)

where TS and N are defined as in Equation 7.99. Between N and N + 1, we will have a partial interval

integral that must be computed
∫ tk+TS h

tN

y(t)dt ≈
(yN+1 + yN

2

)

hTS , (7.105)

where 0 ≤ h ≤ 1 and

h =
MT0 − NTS

TS
. (7.106)

Note that hTS is the integration time needed to complete the Mth period of oscillations at f0, so the

fraction of a sample period that this represents is given by h. Putting these together and looking back

in time rather than forward, we get
∫ kTS

kTS−MT0

y(t)dt ≈ S k where (7.107)

S k

TS
=

N−1∑

j=0

(yk− j + yk−(j+1)

2

)

+

(yk−N + yk−(N+1)

2

)

h. (7.108)

S k

TS
=

yk

2
+

N−1∑

j=0

yk− j +
yk−N

2
+ h

(yk−N + yk−(N+1)

2

)

. (7.109)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
453

Winter 2022-2023
December 31, 2022

Signals & Noise

Equation 7.109 is very instructive because it shows us that the integral can be simply constructed as a

FIR filter. We can factor out a single scale factor, TS , and then we have a main integral corresponding

to the terms before the term scaled by h and the fractional portion, scaled by h. It is also instructive that

very little about this formula is dependent upon the sample interval, fS , and the oscillation frequency,

f0. Basically, a change in f0, fS , and/or the number of periods in the integral, M, changes only N and

h. For a given M, T0, and TS , we pick N from Equation 7.99 and h from Equation 7.106.

It is worth noting the computational and practical importance of this result. A high speed, coherent

demodulation problem has been turned into a simple “multiply and integrate” operation, and the in-

tegration has been turned into a simple finite impulse response (FIR) filter. Furthermore, most of the

FIR coefficients are 1, two of them are 1/2 (easily accomplished via a right shift of the signal value by

one bit for fixed point notation), leaving only one non-trivial multiplication. That multiplication has a

coefficient that is less than 1 (h/2), which is pre-computed a single time whenever the oscillation period

(T0) is adjusted. Even when T0 changes, the only parameters of the integral that change are N and h.

We see that this integration problem can be put in the general form of an FIR filter, providing we can

handle the bookkeeping for the computation. At each time step, new data comes into one side of the

FIR and old data is discarded from the other side. Actually doing this in real-time hardware presents

three issues:

1) First, shifting all the values of y(j) back one step in time can be expensive in terms of

computation time. At each time step, N values have to be shifted in their memory locations

so that they line up with the coefficients of the filter at the next time step. For long values

of N, this can be quite a chore. More importantly, as the value of N changes, say due

to the user selecting a new oscillation frequency or a new number of periods over which to

integrate. Thus, the delay in the computation due to the bookkeeping changes with different

frequencies. How this is handled depends upon the hardware architecture chosen for the task.

For example, in a processor with a CPU and memory (such as a microprocessor or a Digital

Signal Processor (DSP)), circular addressing can be used to change the starting point of the

φ vector at each step. Thus, only one value needs to be updated in φ and the coefficient

vector does not move.

2) Second, the longer the filter, the longer the number of computations. Varying latency is a

problem for feedback systems and must be avoided. Simply computing the output of the

filter as a new sample comes in means that there is a N dependent delay in the time between

the filter input and output. This particular issue can be handled using precalculation [15].

That is, all the computations that do not depend upon the current sample information

are computed before the current sample arrives. When the current sample arrives, a last

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
454

Winter 2022-2023
December 31, 2022

Signals & Noise

computation is done and the filter output is generated. Not only does the precalculation

method have less latency than methods without precalculation, but that latency does not

vary with increasing N.

3) Third, any new frequency requires loading a new set of N + 1 coefficients. How this is done

changes dramatically, depending upon the hardware implementation of the algorithm. For

example in a DSP, the coefficients can simply be loaded into RAM and the loop limits can

be changed. However, in a FPGA implementation, this becomes much more difficult. To

take advantage of the parallel computation nature of the FPGA, we have to avoid putting

such operations through a serial process as much as possible.

In reference to the point (3) above, Equation 7.109 shows that the only one of the N+1 coefficients that

changes is h. To address points (1) and (2),it is worth looking at an incremental or iterative method,

that is, a method that uses a running sum for the integral and only makes adjustments to this running

sum at each time step.

Advancing Equation 7.109, forward one step in time, and taking the difference with the current value

yields

S k =
TS

2

yk + 2

N−1∑

j=1

yk− j + yk−N + h (yk+1 + yk)

, so (7.110)

S k+1 =
TS

2

[

yk+1 + 2
N−1∑

j=1

yk+1− j + yk+1−N + h

(

yk+2 + yk+1

)]

. (7.111)

Now,

S k+1 − S k =
TS

2

[

yk+1 − yk + 2
N−1∑

j=1

yk+1− j − 2
N−1∑

j=1

yk− j

+ yk−(N−1) − yk−N + h
(

yk−N − yk−(N+1)
)

]

(7.112)

=
TS

2

[

yk+1 − yk + 2yk − 2yk−(N−1) + 2
N−1∑

j=2

yk+1− j

−2
N−2∑

j=1

yk− j + yk+1−N − yk−N + h (yk+2 − yk)

]

. (7.113)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
455

Winter 2022-2023
December 31, 2022

Signals & Noise

which reduces to

∆S k+1 = S k+1 − S k =
TS

2
[

yk+1 + yk + yk−(N−1) − yk−N + h
(

yk−N − yk−(N+1)
)]

. (7.114)

This is a wonderful result, because Equation 7.114 has a form that uses a small, fixed number of terms.

Even if higher-order integration methods are used, this form would have a larger, but fixed number of

terms, independent of N. We need to keep track of old values of the integral, but they are used sparingly

in the calculation. If we start with S 0 = 0, then we can compute S k from

S k = ∆S k + S k−1. (7.115)

However, this incremental form is dependent upon having a precise calculation of h. Any errors in h can

accumulate resulting in a divergence between the true integral value and the calculated value. Setting ĥ
as our fixed point estimate of h,

∆S k+1 =
TS

2

[

yk+1 + yk + yk+1−N − yk−N + ĥ (yk+2 − yk)
]

+
TS

2

[(

h − ĥ
)

(yk+2 − yk)
]

, (7.116)

= ∆̂S k+1 + ∆̃S k+1, (7.117)

where ∆̂S k+1 is our estimate of ∆S k+1 based upon ĥ and ∆̃S k+1 is the error introduced by the mismatch,

h − ĥ. That is,

∆̃S k+1 =
TS

2

[(

h − ĥ
)

(yk+2 − yk)
]

. (7.118)

Finally, the difference between the true sum, based on the true value of h, and the estimated sum, based

on the estimate ĥ, will be

S k − Ŝ k =

k∑

j=1

∆̃S k, (7.119)

which will grow linearly (and without bound) with each time step, k.

Looking at Equation 7.110, we see that we can break up the sum for S k into

S k =
TS

2
[

Ik + h (yk+1 + yk)
]

, where (7.120)

Ik = yk + 2
N−1∑

j=1

yk− j + yk−N (7.121)

Ik is based entirely on input and output samples that have not been multiplied by anything number that

cannot be represented exactly in a digital system. That is, 1 and 2 are easy to represent exactly in

any digital processor. Because of this, we can make the incremental portion of our integral based on a

difference of Iks.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
456

Winter 2022-2023
December 31, 2022

Signals & Noise

Ik+1 = yk+1 + 2
N−1∑

j=1

yk+1− j + yk+1−N , so (7.122)

∆Ik+1 = Ik+1 − Ik (7.123)

= yk+1 − yk + 2
N−1∑

j=1

yk+1− j − 2
N−1∑

j=1

yk− j + yk+1−N − yk−N , (7.124)

= yk+1 − yk + 2
N−1∑

j=1

yk−(j−1) − 2
N−1∑

j=1

yk− j + yk+1−N − yk−N , (7.125)

= yk+1 − yk + 2
N−2∑

j=0

yk − 2
N−1∑

j=1

yk− j + yk+1−N − yk−N , (7.126)

= yk+1 − yk + 2yk + 2
N−2∑

j=1

yk − 2
N−2∑

j=1

yk− j − 2yk−(N−1) + yk+1−N − yk−N , (7.127)

= yk+1 + yk − (yk+1−N + yk−N). (7.128)

(7.129)

Now, we compute Ik from ∆Ik by

Ik = ∆Ik + Ik−1. (7.130)

and S k is computed from Equation 7.120.

After a lot of algebra, we got to the remarkably simple incremental computation for the integral:

S k =
TS

2
[

Ik + h (yk+1 + yk)
]

. (7.131)

This relationship was relatively straightforward to program into an FPGA, with the fractional portion of

the integral removed from the iteration. Thus, the additions and subtractions from the incremental sum

in Equation 7.128 are exact, preventing the possibility of small errors in h accumulating in the recursion.

Some will recognize that this form is essentially the same form as a Cascaded Integrator-Comb (CIC)

Filter [164].

We can see that the recursion for computing Ik from ∆I,k involves no scaled values of the previous inputs.

So, if we only keep old values of yk in memory, we can compute Ik exactly, and any errors due to mismatch

in ĥ from h are limited.

We still need to keep track of a potentially large set of prior sample values. If we were to move each

sample back one time step in memory, this would create large amounts of bookkeeping computations.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
457

Winter 2022-2023
December 31, 2022

Signals & Noise

Instead, we can use the same circular addressing methods mentioned above for the microprocessor/DSP

case. A memory buffer is used as a storage mechanism for old sample values. New data is written into

the memory and old data is read out of it. The memory addresses at which this happens are computed

using circular addressing, with the indices of these addresses moving at each time step. Thus, the update

of the memory buffer at any one time step requires reading the oldest value in the filter from memory

and writing the newest value into memory.

In short, we have implemented a quadrature integration as an FIR, and compute the values of that FIR

recursively as if it were an IIR. What keeps this an FIR is that at a later time we subtract off exactly

the same value that was added to the cumulative sum. We still need to keep track of a potentially

large set of prior sample values. If we were to move each sample back one time step in memory, this

would create large amounts of bookkeeping computations. Instead, we can use circular addressing of a

memory buffer of old sample values as is often done in DSP calculations. New data is written into the

memory and old data is read out of it. The memory addresses at which this happens are computed using

circular addressing, with the indices of these addresses moving at each time step. Thus, the update of

the memory buffer at any one time step requires reading the oldest value in the filter from memory and

writing the newest value into memory. This can be done as easily in a Field Programmable Gate Array

(FPGA) as in a processor and is illustrated in Figure 7.63.

N+2 Sample Points in Memory at Time k

End of memory
block.

End of memory
needed for filter.

k k-1 k-N

k-(N+1)

N+2 Sample Points in Memory at Time k+1

k k-1 k+1k-N

k-(N-1)

N+2 Sample Points in Memory at Time k+2

k k-1 k+1k+2

k-(N-1)

k-(N-2)

Figure 7.63:Circular addressing of filter memory

In Figure 7.63 we see that we can use a single large memory block and put the filter in part of it. The

use of a larger block allows the filter length to be quite flexible, so that it is easy for the user to change

oscillation frequency or the number of periods of oscillation that are needed for the calculation. Changing

these simply results in a change in the size of the memory used in the block. We see here that for the

N chosen as above, we only have N + 2 words of memory allocated for the filter. At any time k, a new

sample will be written at a memory location denoted by k, and an old sample will be read from memory

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
458

Winter 2022-2023
December 31, 2022

Signals & Noise

at location k − (N + 1). When the next sample comes in it should go to the left of sample k, but since
our drawing shows this at the beginning of the memory block, the writing index is chosen to be at the

end of the block, where the no longer useful data from k − (N + 1) is held. Thus, the sample from

k + 1 is written there, while the index for reading decrements so as to point to location k − N. We can

see that this process can go on easily, simply by initializing the indices in the right locations and then

moving them in synchrony together. Again, the importance of this is that the most difficult portion of

the coherent demodulation has been turned into a computationally trivial circular memory shift.

The partial interval integral is necessitated in some cases by needing to precisely match a predetermined

oscillation frequency. This is often due to a physical parameter – such as the cantilever resonance in the

AFM demodulator. Note that if the exact frequency match is not critical, as with a built in sine-dwell

[87], then we can adjust T0 so that h = 0 in Equation 7.106. This simplifies the sum terms above.

ÑTS = MT̃0. (7.132)

In that case, M was generally assumed to be at least 8, as implemented in the HP 3562A Dynamic Signal

Analyzer [53]. Furthermore, the measurement frequencies in that use were servo system frequencies,

generally significantly lower than the frequency of a cantilever tip oscillation. Finally, the generation of

an accurate frequency response function measurement did not hinge on maintaining a single frequency.

This allowed the set of oscillation frequencies to be adjusted slightly, so that for each measurement

frequency, f0 = 1
T0
, equality in Equation 7.132 held.

The adjustments to T0 to make equality hold in Equation 7.132 can be kept small if N and M are made

large. While this approach may be feasible for an off-line measurement described above, or for producing

signal processing results that are not used in the feedback loop, this choice will add to latency in the

integral calculation, so we are better off integrating over the fractional interval as described above.

Digital quadrature is documented in many numerical computation texts [80, 255]. Generally, the algo-

rithms for quadrature will make use of a polynomial fit over some number of sample points to approximate

the function. The fit of a Lth order polynomial will involve L + 1 points. In applications where latency

(time delay) is not an issue, one can achieve higher accuracy by conducting the integral between samples

k and k + 1 using samples on either side of this interval.

For example, the Hewlett-Packard 3562A computes the integral of its mixed sinusoids by using a fifth

order polynomial fit over 6 points [53]. It uses 3 points on either side of the interval in question. As the

interval of integration slides forward in time, points to the left and right of it are used to give a more

accurate approximation of the function being integrated. Note that the interval over which the integral

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
459

Winter 2022-2023
December 31, 2022

Signals & Noise

is done is delayed by two and a half sample intervals (compared with simply using only the latest sample

point).

For use in generating the error signal for a feedback controller, we want to minimize the latency of

the integral and for this the simplest discrete integral approximations are the forward and backward

rectangular rule approximations, and the trapezoidal rule approximation. Because of their small amount

of delay, these are often used in generating discrete equivalents of analog controllers [15]. The forward

rectangular rule has a single period delay. The backwards rectangular rule has zero delay. Finally, the

trapezoidal rule has a half sample period delay.

Standard practice in digital lock-in amplifiers is to use one of the rectangular rule approximations and rely

on integrating over many periods of oscillation to drive the error to 0. However, by using a higher-order

approximation and a partial sample integral, we can cut the error down with significantly fewer periods

of integration.

7.19.4 Pre and Post Integration Filtering

Optical
Sensor

Sine
Drive

AC
Actuator AC Demod

Deflection

Sine

Cosine

Mag.

Phase

I

Q

Mag.

Phase

DC
Removal

Filter

Filter

Figure 7.64:Coherent demodulation for AFM. DC removal and post integration filtering included.

If the integrals of Equations 7.142 and 7.143 were done in continuous time with infinite precision, then

there would be need to filter DC components or harmonics of the input frequency from the integral.

However, the sampling of the data means that the sinusoids are approximated by a stair step function,

and the integration is approximated as described in Section 7.19.3 [85]. This means the rejection of

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
460

Winter 2022-2023
December 31, 2022

Signals & Noise

Optical
Sensor

Deflection

Zero Centered
DeflectionHigh Pass

Filter

Zero Centered
Deflection

Optical
Sensor

Deflection

Average
DeflectionLow Pass

Filter

S
-

Figure 7.65:Different methods of removing DC value from return signal. While a high pass filter is
conceptually simpler, it may incur more computational complexity.

DC offsets and higher harmonics is not complete. Several simple fixes, including DC removal and post

integration filtering, significantly improve the behavior of the integration.

The DC removal can be accomplished using a simple high pass filter, and there are several different

methods available for implementing this. For a discrete time ideal high pass filter, we would have

H(z) =
α(z − 1)

z − α = 1− (1− α)z
z − α = 1− L(z). (7.133)

In other words, a high pass filter can be implemented by subtracting a low pass value from the original

signal. While these are theoretically equivalent, there are some latency advantages to the second method

in that the low pass value can be computed in the background (it changes slowly) and only the subtraction

is in the “latency” path.

Post integration filtering helps remove artifacts of the integral approximation from the computed mag-

nitude and phase. In particular, harmonics of the original drive frequency often show up, although at a

greatly reduced level. Some authors make the case that this need to reduce higher harmonics requires

a low pass filter that significantly limits the bandwidth of the demodulator and therefore the feedback

loop [225, 226].

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
461

Winter 2022-2023
December 31, 2022

Signals & Noise

This illustrates one of the key advantages of an all digital demodulator built into the same processing chip

as the oscillation signal generator. There is no guesswork or estimation about the drive signal since it

can be routed to the demodulator as well as the cantilever driver. Furthermore, while digital quadrature

must account for sampling issues, it is exactly repeatable, unlike multiplication, addition, integration,

filtering, and therefore demodulation relying on an analog circuit implementation of the mathematics.

In our case, the precise real time sinusoid generation and integration described here allows us to avoid

using such an overly conservative filter. Since we have precise knowledge of the frequency, we can create

a very narrow digital notch precisely at each harmonic we wish to attenuate.

S S

S S

-

u(k)

z
-1

z
-1

a1

d (k)0 y(k)

b1

a2 b2

d (k)1

d (k)2

b0

Figure 7.66:A second order polynomial filter in Direct Form II, known as a digital biquad filter.

A notch filter can be implemented simply using a single biquad digital filter as described in [54] and

shown in Figure 7.66. Biquads are simple to program and relatively well behaved numerically.

N(s) =
Y(s)
U(s)

=
ω2

d

ω2
n

(

s2 + 2ζnωns + ω2
n

s2 + 2ζdωd s + ω2
d

)

, (7.134)

which can be discretized using the matched pole-zero mapping used in [54] and [33] to yield

N(z−1) =
Y(z)
U(z)

=
b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2
. (7.135)

This gets implemented in the time domain as:

y(k) = −a1y(k − 1)− a2y(k − 2)+ b0u(k)

+b1u(k − 1)+ b2u(k − 2) (7.136)

It turns out that it is easier to implement this using the delay format [169] which resembles a controller

canonical form [171] in control or a direct form II IIR filter [167, 172, 173]:

d(k) = −a1d(k − 1)− a2d(k − 2)+ u(k) (7.137)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
462

Winter 2022-2023
December 31, 2022

Signals & Noise

y(k) = b0d(k) + b1d(k − 1)+ b2d(k − 2) (7.138)

Biquads are nice because the growth in values can be limited by the short nature of the filter. Thus,

finite word length problems are minimized as the sums from the numerator and denominator can balance

each other out for a well designed filter [169].

While [54] describes minimal latency ways of cascading biquads, and [33] describes a method of improving

the accuracy of the fixed point coefficients when the sample frequency is substantially larger than the

dynamics to be filtered, neither of these should be necessary here. The main residual harmonic after

the original integration appears at twice the mixing frequency, i.e. 2 f0, and so a single notch can be

generated by setting the numerator and denominator to have the same center frequency

ωn = 2π fn = ωd = 2π fd = 2π2 f0 = 2ω0, (7.139)

and by setting

ζn ≪ ζd. (7.140)

The adjustments of [33] are not needed because the frequency of the notch, 2 f0 is within two orders of

magnitude of the sample frequency and therefore the jamming of filter poles and zeros near z = 1 does

not occur.

The calculations in a single biquad, can be implemented with a handful of multiplies and additions (five

of each), in fixed point arithmetic. Now, while the choice of the tip oscillation frequency, f0 is determined

by the physical characteristics of the particular cantilever, once this is set we know any harmonic, K f0,
precisely because we are generating f0 to drive the tip. This means that we can have great confidence

in the accuracy of (7.139). For simplicity, this discussion will focus on the second harmonic, 2 f0, but it
is well understood that any harmonic can be filtered, up to the limitations placed on us by the Nyquist

Rate. In principle, we could use a biquad cascade such as the multinotch [54], although it is unlikely that

we need more than one or two biquads. Also, the fact that we are filtering harmonics of an AC drive

frequency means that we are unlikely to encounter the sample rate issues which motivate ∆ coefficients

[33, 165].

In designing this filter, we should realize that the residual signal amplitude will be fairly small, so there

is no need for extra precision in the calculation.

If we use (7.139), then at frequency 2 f0, Equation 7.134 reduces to

N(j2ω0) =
ζn

ζd
=

Qd

Qn
, (7.141)

where Q = 1
2ζ is the well known resonance quality factor. Because we can be so confident in our

knowledge of 2 f0 we can set both Qd and Qn relatively high, limiting the effect of the notch filter to the

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
463

Winter 2022-2023
December 31, 2022

Signals & Noise

frequency “vicinity” of 2 f0. The phase effects of the notch filter will stay far away from f0 and so have

no real effect on the servo system. In the examples of Sections 7.19.5 and 7.20, Qd was set to 4 and Qn

was set to 40, to produce an attenuation factor of 10 (20 dB) at f = 2 f0. This is in contrast to the low

pass filters alluded to in [225, 226], which are claimed to have a significant phase impact on the control

system.

Alternately, an FIR filter similar to the demodulator integrator of Sections 7.19.1 and 7.19.3 can be

used. The main difference in this FIR is that there is no mixing of the input signals. The output of the

demodulator is fed into another FIR integrator, which integrates over a single period of the original wave.

This is best understood as follows. For the original integral, it was necessary to mix the return signal

from the tip with in-phase and quadrature signals at the same frequency in order to generate a baseband

and a 2 f0 signal. The integration over an integer number of periods of f0 removed most but not all of

the 2 f0 component. Integrating the output signal of the integration averages both the baseband and the

2 f0 components, leaving the baseband largely unchanged and nulling the not only the 2 f0 component,

but also any other residual higher harmonics of the integrator output signals. In the examples of Sections

7.19.5 and 7.20, an oscillation frequency of f0 = 88 kHz was chosen with a sample frequency of fS = 1
MHz, which meant that each oscillation was 11.36 sample periods long. This means that in Equation

7.99, if we choose M = 1 we get N = 11. From Equation 7.106, we get h = 0.36 which we need to

represent in 2’s complement arithmetic. The FIR averager has the same length as the M = 1 integration,

but without the mixing of sinusoids.

This FIR averager lengthens the delay associated with the demodulator by at least half the period of

the original oscillation (depending upon the length of the filter and the period of oscillation). A notch

filter implemented as a digital biquad only removes a single harmonic at a time, but the added latency

is fixed and minimal (typically a few clock periods). In Section 7.20, we see that combined with the DC

removal, the notching of the 2 f0 harmonic closely approximates the performance of the FIR.

For the amplitude modulation of the AFM cantilever, we are mostly concerned about the magnitude

of the signal. In the case of a frequency-response function (FRF), we need both the magnitude and

phase. However, while the integrals must be computed in real-time to keep up with the signals, these

latter quantities can be computed off line on the results of the integrals, as they comprise a finite set of

frequency results.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
464

Winter 2022-2023
December 31, 2022

Signals & Noise

0 50 100 150 200 250 300

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (µ S)

In
pu

t a
nd

 D
em

od
ul

at
ed

 A
m

pl
itu

de

f
O

 = 88 kHz using f
S
 = 1 MHz, M = 1

Demodulator Input
Demodulated Magnitude

Figure 7.67:Matlab simulation demonstrating speed of convergence.

Relevant
Figures

Input
Noise (σ)

Magnitude
σ

Phase
σ

Fig. 7.68& 7.69(no filt.) 0 1.066493e-03 0.2428932
Fig. 7.68& 7.69(FIR) 0 3.410869e-06 7.756699e-04
Fig. 7.70& 7.71(no filt.) 0.01804220 1.172526e-03 .3127864
Fig. 7.70& 7.71(FIR) 0.01804220 1.057135e-03 .2950216

Table 7.2:Computed steady state noise values extracted from integrator simulations. The last 20%
of the data was used to get steady state values. The input noise to the simulation was a uniform
distribution.

7.19.5 AFM Demodulation Examples

Equations 7.114 and 7.115 are easy to implement simply in real-time processors such as DSPs or FP-

GAs. In this section are simulation examples to illustrate the behavior of the integration portion of the

demodulator. Similar results are shown in Section 7.20 to illustrate the extraction of magnitude and

phase from the integrated quantities.

An illustration of the convergence of the integrator is shown in the simple Matlab simulation of Fig-

ure 7.67. The input signal (blue curve) is at 88 kHz and is switched “on” and “off” with the magnitude

stepped up with each “on” period. The demodulated magnitude (red curve) is plotted on the same axis

as the input signal. As predicted by the analysis, the integrator yields I and Q in one integration period

(M = 1), which is mapped to magnitude in the plot.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
465

Winter 2022-2023
December 31, 2022

Signals & Noise

4.5 4.55 4.6 4.65 4.7 4.75

x 10
−4

0

0.1

0.2

0.3

0.4

Time (s)

D
ef

le
ct

io
n

Deflection: Freq: 88000.0 Hz, Amplitude: 0.25, Phase Offset 15 Deg, Offset: 0.2

No noise injected.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

0

0.05

0.1

0.15

0.2

0.25

Time (s)

I

σ(I): 0.0011
σ(I

FIR
): 0.0000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

−0.1

−0.05

0

0.05

0.1

Time (s)

Q

σ(Q): 0.0011
σ(Q

FIR
): 0.0000

I
I with FIR

Q
Q with FIR

Figure 7.68:Output of ModelSim Simulation of FPGA based demodulator. The oscillation frequency
is 88 kHz. The normalized deflection amplitude is 0.25. There is a normalized offset of 0.2 in the
signal level, and the phase of the signal driving the deflection is 15◦ ahead of that of the in-phase
(sine) mixing signal at the beginning of the simulation.

The demodulator architecture, implemented in FPGA hardware, was simulated using ModelSim 6.6b [256],

and signals were normalized back to real numbers. The signals of interest to this method were saved to

an ASCII file, which was processed in Matlab. The last 20% of the data was used to compute the steady

state averages (µ) and standard deviations (σ) of these signals. The means for the I and Q signal do

not mean much to the reader, but the small σ for these signals does show the accuracy of the integrator.

In the case of the magnitude and phase µs and σs, the values can be compared to the original inputs.

Note that the σ value for phase is in degrees.

Figures 7.68 –7.71 show the results of the simulator when driven with an 88 kHz signal, which had an

amplitude of 0.25, an offset of 0.2 and a phase advance (as compared to the in-phase mixing signal) of

15◦ (in Figures 7.68 and 7.69) or a delay of 30◦ (in Figures 7.70 and 7.71). The top plots of Figures 7.68

and 7.70 are zoomed in to better show the effects of noise on the signal. The lower two plots show

the results of the I and Q branch integrations. The in-phase (I) and quadrature (Q) branches converge

quickly, although small imperfections in the integration result in some ripple in these signals. With

no noise injected, the standard deviation (σ) is minuscule. The rejection of white noise while using a

single integration period is small. The rejection can be increased by integrating over multiple oscillation

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
466

Winter 2022-2023
December 31, 2022

Signals & Noise

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

0

0.1

0.2

0.3

0.4

Time (s)

M
ag

ni
tu

de

Freq: 88000.0 Hz, Amplitude: 0.25, Phase Offset 15 Deg, Offset: 0.2

µ
ss

(Mag): 0.2508, σ(Mag): 0.0011
µ

ss
(Mag

FIR
): 0.2516, σ(Mag

FIR
): 0.0000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

−60

−40

−20

0

20

Time (s)
P

ha
se

 (
de

g)

µ
ss

(Phase): 15.0004o, σ(Phase): 0.2429o

µ
ss

(Phase
FIR

): 15.0000o, σ(Phase
FIR

): 0.0008o

Magnitude
FIR Magnitude

Phase
FIR Phase

Figure 7.69:Floating point magnitude and phase extracted from the simulation in Figure 7.68.

periods, but at the cost of more latency.

While the simulation accurately simulates synthesizable blocks of the FPGA, it can also simulate blocks

that cannot be put into logic. Thus, Figure 7.69 and 7.71 show real values of magnitude and phase

extracted from the integrator outputs. Simulations that show magnitude and phase extracted using

synthesizable blocks are shown in Section 7.20.

Note that with no noise injected, the deviation (σ) of the magnitude and phase from their steady state

values (µ) is extremely small (and virtually non-existent after the application of the FIR). The effect of

signal noise, n(t), is diminished despite the short integration time.

7.19.6 Magnitude and Phase Calculations

Prior sections have shown how to approximate the integrals of the in-phase and quadrature signals so as

to obtain

Isum ≈ 1
MT0

∫ MT0

0
I(t)dt ≈ C1

2
cos(φ1) and (7.142)

Qsum ≈ 1
MT0

∫ MT0

0
Q(t)dt ≈ C1

2
sin(φ1), (7.143)

where C1 and φ1 are the magnitude and phase, respectively of the cantilever return signal from Equation

7.102.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
467

Winter 2022-2023
December 31, 2022

Signals & Noise

4.5 4.55 4.6 4.65 4.7 4.75

x 10
−4

0

0.1

0.2

0.3

0.4

Time (s)

D
ef

le
ct

io
n

Deflection: Freq: 88000.0 Hz, Amplitude: 0.25, Phase Offset −30 Deg, Offset: 0.2

σ(n(t)): 0.0180

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

0

0.05

0.1

0.15

0.2

0.25

Time (s)

I

σ(I): 0.0027
σ(I

FIR
): 0.0019

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

−0.2

−0.15

−0.1

−0.05

0

Time (s)

Q

σ(Q): 0.0027
σ(Q

FIR
): 0.0020

I
I with FIR

Q
Q with FIR

Figure 7.70:Output of ModelSim Simulation of FPGA based demodulator. The oscillation frequency
is 88 kHz. The normalized deflection amplitude is 0.25. There is a normalized offset of 0.2 in the
signal level, and the phase of the signal driving the deflection is 30◦ behind of that of the in-phase
(sine) mixing signal at the beginning of the simulation.

The classic method of computing magnitude and phase is from a coordinate transformation from rect-

angular to polar coordinates , i.e.,

C1 = 2
√

I2
sum + Q2

sum and φ1 = Arctan

(

Qsum

Isum

)

. (7.144)

The difficulty comes in the resources needed to compute these relationships in real time with high sample

rates. For example, a highly efficient algorithm is the so called CORDIC algorithms [227, 228, 257]. This

algorithm computes magnitude and phase by rotating the frame of reference until the frame of reference

and the signal have a matching magnitude and phase. The CORDIC algorithm is computationally simple,

and is at the heart of the trigonometric calculations in the original HP-35 calculator [228]. It is even

available now in logic cores for FPGAs, [258]. However, to compute magnitude and phase, a CORDIC

algorithm requires one computational cycle per bit of accuracy, so a 16 bit accuracy would require an

extra computational delay (on top of that done by the integral itself) of 16 clock cycles. In a standard

computer, this might be considered fast, but in a DSP or FPGA which typically complete table lookup

operations, additions, and multiplies in one or two cycles, this is considered slow. Alternately, some

have chosen to offload the magnitude and phase calculation to a DSP chip once the I and Q branch

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
468

Winter 2022-2023
December 31, 2022

Signals & Noise

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

0

0.1

0.2

0.3

0.4

Time (s)

M
ag

ni
tu

de

Freq: 88000.0 Hz, Amplitude: 0.25, Phase Offset −30 Deg, Offset: 0.2

µ
ss

(Mag): 0.2509, σ(Mag): 0.0026
µ

ss
(Mag

FIR
): 0.2517, σ(Mag

FIR
): 0.0018

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

−80

−60

−40

−20

0

Time (s)
P

ha
se

 (
de

g)

µ
ss

(Phase): −29.9683o, σ(Phase): 0.6356o

µ
ss

(Phase
FIR

): −29.9735o, σ(Phase
FIR

): 0.4820o

Magnitude
FIR Magnitude

Phase
FIR Phase

Figure 7.71:Floating point magnitude and phase extracted from the simulation in Figure 7.70.

demodulations are done, [259].

A more time efficient calculation involves a table lookup. However with two different numbers to look up

and the high precision desired in these calculations, the tables can become huge. A 16-bit quantity would

nominally require 216 = 64K values. A few well placed adjustments to and restrictions of the calculation

make it possible to use a relatively small table to give reasonably good estimates. The process for doing

this involves two steps:

• Scaling the numbers so as to restrict the input range of the table, and then unscaling them after

the table has been used.

• Interpolating between points in the lookup table using extra bits from the calculation.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
469

Winter 2022-2023
December 31, 2022

Signals & Noise

7.19.7 Calculating Magnitude Using Table Lookup

It is certainly possible to do a simple table lookup to compute the magnitude, C1, from the left side of

Equation 7.144. The question becomes how to do this to efficiently make use of memory. The first thing

that we notice from Equation 7.144 is that the number under the square root sign is a sum of squares.

This means that the number inside is positive. Several other features of the calculation are useful to

realize:

• Sums of squares of a number are easy to compute using in most real-time computer hardware,

including DSPs and FPGAs which have built in hardware multiplies.

• Square roots are hard to compute quickly.

• The slope of the
√

x2 changes very rapidly near x2 = 0, which makes interpolation less accurate.

• Limiting the input range of the
√

x2 lookup table to the range from 0.5 to 2.0, makes
√

x2 well

behaved.

• Since I2
sum + Q2

sum is in 2’s compliment notation, it will have one or more leading 0s.

Furthermore, we want one lookup table for all values of I2
sum + Q2

sum. We can minimize the entries in the

table lookup by shifting to the left until the leading two bits are 01, 10, or 11, and keeping track of the

left shifts. A left shift by 2n bits effectively multiplies the number by 22n. This pins the 2’s compliment

number in the table to be between 0.5 and 2, i.e. if

x2
in2

2n =
(

I2
sum + Q2

sum

)

22n, then (7.145)

0.5 ≤ x2
in2

2n < 2. (7.146)

Once the square root of the shifted sum of squares is looked up, we shift the result to the right by n
bits, since

y =

√

x2
in2

2n

22n
then y =

√

x2
in2

2n

2n
. (7.147)

What was shifted by left by 2n bits (i.e. multiplied by 22n), is shifted to the right by n bits (i.e. divided

by 2n) once the square root has been looked up.

With a memory that has 2M locations and a smooth curve, improved accuracy can be achieved by splitting

the address space and using part of the values for interpolation. For example, with 210 locations, a lookup

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
470

Winter 2022-2023
December 31, 2022

Signals & Noise

table of square roots of input values between 0 and 2 has an accuracy of only 4 bits. Using 29 locations

for lookup points and 29 locations for slopes to do linear interpolation (for a total of 210 locations) leads

to an accuracy of 6 bits the same number of memory locations. Restricting the input range to being

between between 0.5 and 2 for a lookup table with 210 locations gives an accuracy of 9 bits. Using

29 locations for lookup points and 29 locations for slopes to do linear interpolation (for a total of 210

locations) gives an accuracy of 19 bits as seen in Figure 7.72. This is made possible in large part by

the shift away from values near 0 with steep slopes and by the smoothness of the square root function

between input values of 0.5 and 2.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.05

0.1

x2

x

Comparison of Square Root Calculations

0.49 0.492 0.494 0.496 0.498 0.5 0.502 0.504 0.506 0.508 0.51
0.7

0.705

0.71

x2

x

Zoomed In View

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.01

0.02

0.03

0.04

Input X

E
rr

or
 in

 1
/X

Error in Lookup Methods

True Square Root
10 bit Lookup, No Interpolation
9 bit Lookup, Linear Interpolation

10 bit Lookup, No Interpolation
9 bit Lookup, Linear Interpolation

Figure 7.72:Comparison of table lookup and errors for
√

x, 0.0 ≤ x ≤ 2. Plots are zoomed in to show
more interesting aspects of the data. Note the significant drop in error away from x = 0.

Making a relatively mild assumption that a single computation can be done in a single clock cycle of the

FPGA or DSP, the procedure and the estimated latency are:

1) Square Isum and Qsum (1 clock cycle).

2) Add them together yielding x2
in (1 clock cycle).

3) Shift left by the maximum even number of leading 0s, (2n) to yield x2
in,2n where 0.5 ≤ x2

in,2n < 2
(1 clock cycle).

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
471

Winter 2022-2023
December 31, 2022

Signals & Noise

4) Look up the square root in a table (1 clock cycle).

5) (Optional) Look up interpolation slope in table (1 clock cycle, in parallel with other lookup).

6) (Optional) Interpolate square root value between lookup points (2 clock cycles, 1 for multiply

and 1 for addition).

7) Shift square root value right by half as many bits as the previous left shift (n) (1 clock cycle).

So, this table lookup computes the square root in 7 clock cycles, irrespective of the number of bits in

the input. For data widths of greater than 7 bits, this is faster than the CORDIC algorithm.

7.19.8 Calculating Phase Using Table Lookup

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
1

1.2

1.4

1.6

1.8

2

Input X

1/
X

1/X, 0.5 <= X < 1

0.698 0.6985 0.699 0.6995 0.7 0.7005 0.701 0.7015 0.702

1.426

1.428

1.43

1.432

Input X

1/
X

Zoomed In View

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
−1.5

−1

−0.5

0
x 10

−3

Input X

E
rr

or
 in

 1
/X

Error in lookup table for 1/X, 0.5 <= X < 1

True 1/X
No Interpolation
Linear Interpolation

No Interpolation, 9 bits accuracy
Linear Interpolation, 19 bits accuracy

Figure 7.73:Comparison of table lookup and errors for 1
x , .5 ≤ x ≤ 2. The lookup with interpolation

once again significantly outperforms the straight table lookup.

We also need to compute the arctangent of Qsum

Isum
digitally. Again, the CORDIC may be too slow for our

purposes and we want to use a table lookup. We want a unique table and a little bit of trigonometry

knowledge allows us to use a single table. We can limit the operation to the first quadrant (0 ≤ Qsum

Isum
< π2)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
472

Winter 2022-2023
December 31, 2022

Signals & Noise

by keeping track of the signs of the input values and then simply working with the absolute values. We

then shift the result back into the proper quadrant by some simple math. The problem is that it is hard

to be accurate in a table for the ArctanQsum

Isum
when Isum is close to 0. However, we can easily look up

Arccot

(

Qsum

Isum

)

=
π

2
− Arctan

(

Isum

Qsum

)

, (7.148)

and so we operate in the first half of the first quadrant (0 ≤ Qsum

Isum
< π4):

• If |Isum| = |Qsum|, then Arctan(1)= π4.

• If |Isum| > |Qsum|, then lookup Arctan
(

Qsum

Isum

)

.

• If |Isum| < |Qsum|, then lookup Arctan
(

Isum

Qsum

)

and compute Arccot
(

Qsum

Isum

)

= π2 − Arctan
(

Isum

Qsum

)

.

Now, we see that before we can look up an Arctan, we need to compute either |Qsum |
|Isum | or

|Isum |
|Qsum | , depending

upon whether |Qsum| or |Isum| is larger. This means looking up 1
|Qsum | or

1
|Isum | .

Say we want to compute the value Y
X where X is the larger of |Qsum| and |Isum|. We have to look up 1

X in

a table and multiply this by Y. 1
X is badly behaved when X is close to 0, but we can shift both numerator

and denominator:
Y
X
=

2nY
2nX
, (7.149)

so that the leading 0s in X have been eliminated. We have already assumed that X > Y so in a 2’s

complement format Y should have at least as many leading 0s as X. This means:

a) The value of 2nX in the lookup table for 1
2nX is always between 1 and 2 so The looked up

value is always between 1
2 and 1.

b)
(

1
X

)

Y is always between 0 and 1.

c) Therefore the looked up and interpolated values should be quite accurate as seen in Fig-

ure 7.73. Without interpolation, the 210 location table achieves 9 bits of accuracy. Splitting

the table into two 29 location tables where the first part is for lookup and the second part is

for linear interpolation results in 19 bits of accuracy. Again, we have made use of shifts in

the original values and the smoothness of 1
X for X ≥ 1.

For simplicity, we can look up values between 0 and 1 and scale them by π4 in post processing. So, our

procedure is as follows:

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
473

Winter 2022-2023
December 31, 2022

Signals & Noise

1) Compute |Isum|, |Qsum|, sgn(Isum), and sgn(Qsum) (1 cycle).

2) Determine if |Isum| or |Qsum| is larger. If |Isum| = |Qsum|, the Arctan is 1 (1 cycle).

3) Shift both |Isum| and |Qsum| left to eliminate leading zeros in larger value (1 cycle).

4) Look up 1
X , where X is the larger of |Isum| and |Qsum| (1 cycle).

5) (Optional) Look up interpolation slopes for 1
X (1 cycle).

6) (Optional) Interpolate values between lookup points of 1
X (2 cycles, 1 for multiply and 1 for

addition).

7) Multiply 1
X by Y, where is the smaller of |Isum| and |Qsum| (1 cycle).

8) Look up ArctanY
X where 0 ≤ Y

X < 1 (1 cycle).

9) (Optional) Look up interpolation slopes for ArctanY
X (1 cycle).

10) (Optional) Interpolate values between lookup points of ArctanY
X (2 cycles, 1 for multiply and

1 for addition).

11) Calculate ArccotX
Y =

π
2 − ArctanY

X if needed (1 cycle).

12) Use sgn(Isum) and sgn(Qsum) to put the Arctan or Arccot in the proper quadrant (1 cycle).

This computation takes 14 cycles, which is more than the original integration from Section 7.19.3 [85].

However, it seems to be the fastest method of directly computing the phase for any numbers of bits

greater than 14, unless one trivializes the magnitude and phase operation. The next section shows just

how to do just that.

7.19.9 Using a PLL to Simplify Magnitude and Phase Calculations

The previous sections on computing magnitude and phase point out the issue that even the fastest

methods of computation generate a significant amount of serial steps in the process. Assuming that

each step can be done in one computation clock cycle (not always the case with FPGAs, and even

more rare with DSPs), we still have quite a few cycles. For fast sampling, this can be a large fraction

of a sample period. Furthermore, these calculations take significant resources, either in time – if the

computation is done on a standard processor or a DSP – or in space if the computation is done in

programmable logic – such as with a FPGA.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
474

Winter 2022-2023
December 31, 2022

Signals & Noise

There is a way to circumvent these extra computations, and this is by noticing that if the mixing signal

is in phase with the signal to be demodulated, then the magnitude drops out trivially from the integral.

In other words, if the I mixing signal is in phase with the signal to be demodulated, then the Q mixing

signal is 90◦ out of phase meaning that on average, Qsum is very close to 0. This means that the left

side of Equation 7.144 is reduced to

C1 ≈ 2
√

I2
sum = 2Isum. (7.150)

Digital
Loop
Filter

Digital
Integrator

Phase Detector

Numerically
Controlled
Oscillator

Phase
Adjustment

Sampled
Signal

Phase-Locked
to Reference

Signal

Sampled
Reference

Asin(t +)w qi ik

cos(tw qo ok +)

Figure 7.74:A digital mixing PLL including post mixing integration. Note that our demodulator mixes
the input signal with numerically generated sinusoids and integrates them over an integer number of
periods, [85]. The end result is an output that has very little of the 2X frequency component in the
classical mixing loop. In other words, the Q branch of our demodulator calculates the phase error
between the input signal and the sinusoid.

Furthermore, in place of the right side of Equation 7.144, we know that the average phase difference

between the return signal and our driving signal is equal to the phase difference between our I mixing

signal and our driving signal, and this can be read off trivially. The integral of Qsum has an elegant

interpretation as the instantaneous phase difference between the return signal and the average phase.

The difference between the phase of the mixing Numerically Controlled Oscillator (NCO) and the drive

NCO represents the average phase.

However, since the average phase of the return signal is unknown, we need some way to identify it. The

classic way is with a phase-locked loop (PLL). A block diagram of a digital PLL is shown in Figure 7.74.

Each PLL has a reference signal and an oscillatory signal which will lock to it, [30]. The oscillatory

signal is presumed to be at a frequency close enough to the reference signal so that differences between

the frequencies can be considered phase errors. A phase detector extracts the baseband phase difference

between the two signals as well as some higher frequency information to be filtered out. The properties

of the loop, set by the combination of the phase detector and the loop filter, determine the phase

changes that can be followed and which changes will be treated as disturbances to reject. Note that

Figure 7.74 shows an NCO, but in general for a PLL, this can be replaced by a variety of oscillators

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
475

Winter 2022-2023
December 31, 2022

Signals & Noise

including numerical sinusoid generators, numerical square wave generators, and clock generators. In our

case, precise generation of numerical sinusoids greatly reduces the generation of extra harmonics and

therefore lowers the integration error. Of equal importance is that there is a means for adjusting the

phase of the oscillator.

Detector
Output vs.

Phase
Error

qep

-p -p/2

p/2

Ad

AdmSignal
(f)

Reference

2f
Signal

NCO
Signal

(f)

Baseband
Phase
Error

Filtered
Baseband

Phase
Error

Digital
Integrator

Figure 7.75:Input output properties of digital mixing phase detector. The multiplication (mixing) pro-
duces signals at the baseband and at twice the input frequency (2 f). The digital integration over
an integer number of periods of f theoretically eliminates the 2 f signal. On the right is the detector
output versus the phase error. It can be shown that with the right choice of filters, this PLL will lock to
any slowly changing phase.

Looking at the details of Figure 7.74, the input signal is sampled, just as our return signal from the AFM

is sampled. A sampled oscillatory signal is multiplied (mixed) with this sampled signal and the output

passes through the loop filter to adjust the phase of the NCO, which generates the mixing signal. It

turns out that this is very similar to the form that we already have in the demodulator.

Our demodulator mixes the input signal with numerically generated sinusoids and integrates them over

an integer number of periods. The end result is an output that has very little of the 2X frequency

component in the classical mixing loop. In other words, the Q branch of our demodulator calculates

the phase error between the input signal and the sinusoid. All we need to add to the pieces in our

demodulator are the ability to adjust the phase of the sine drive (our NCO) and a loop filter to regulate

the bandwidth of this loop adjustment.

Note that our sine drive/NCO produces two signals that are 90◦ out of phase with each other, a sine

and a cosine. The cosine is used to generate and minimize the phase error as described above. The sine

is used to extract the amplitude of the signal, since it will be in phase with the input signal.

The signal properties of a digital mixing phase detector are shown in Figure 7.75. The left diagram

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
476

Winter 2022-2023
December 31, 2022

Signals & Noise

Optical
Sensor

Sine
Drive

AC
Actuator AC Demod

Deflection

Sine I

Q

Cosine

Loop
Filter

Mag.

Phase

PA Sine
Drive

Figure 7.76:Coherent demodulation for AFM using a PLL. The phase adjustable (PA) sine drive is our
NCO.

shows schematically the time domain operation of the mixer. Multiplication (mixing) produces signals at

the baseband and at twice the input frequency (2 f). The digital integration over an integer number of

periods of detector output versus the phase error. It can be shown that with the right choice of filters,

this PLL will lock to any slowly changing phase.

A block diagram that shows the PLL as a part of the overall demodulator is shown in Figure 7.76. A

block diagram that also includes the post integration filtering of Section 7.19.4 is shown in Figure 7.77.

We now see that in the magnitude and phase computation blocks have been eliminated by this method.

From a delay point of view, this means that the delay through the demodulator is governed only by

the integration portion. Furthermore, the adjustment of the mixer’s phase by the PLL is done as a sort

of background process, outside the time critical flow. Finally, the resources occupied by this method,

whether they be CPU time or space on a FPGA are far smaller than the previous method.

Finally, it is often the case with AFMs that the equations are written so that the driving sinusoid is

considered a cosine rather than a sine. This doesn’t change the behavior, but does change the style of

the mathematical analysis.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
477

Winter 2022-2023
December 31, 2022

Signals & Noise

Optical
Sensor

Sine
Drive

AC
Actuator AC Demod

Sine I

Q

Cosine

Loop
Filter

Mag.

Phase

PA Sine
Drive

Filter

Filter

Deflection DC
Removal

Figure 7.77:Coherent demodulation for AFM using a PLL. DC removal and post integration filtering
included.

7.19.10 Surface Stick Detection

In responding to the amplitude of the tip oscillation, the controller responds by trying to keep the

amplitude to some set fraction of the free oscillation amplitude, as diagrammed in Figure 7.62. A rise

in the oscillation amplitude is interpreted as moving away from the surface, and the controller corrects

by moving the tip closer. A drop in amplitude is viewed as moving closer to the surface, and the

controller responds by moving the tip away. Coming completely off of the surface, while not desirable,

does not damage the system and the tip will keep oscillating. However, if the tip sticks to the surface,

all oscillations will stop, meaning the PLL based magnitude and phase detection described in Section

7.19.9 will lose lock. While the lack of oscillation should make the demodulated integrals go to 0, there
may be concerns about the transient behavior. The magnitude detection method of Section 7.19.7 will

still work, but that involves a lot of extra computation for a safety measure. However, we can use the

fact that for a vector, x,
‖x‖2 ≤ ‖x‖1 (7.151)

and so if the l1 norm of Isum and Qsum goes to 0, then the l2 norm must also go to 0. While the l1 norm

does not give an accurate amplitude measure, it does bound it from above and is trivial to compute,

with no need for a CORDIC method or table lookup.

1) Compute |Isum| and |Qsum| (1 cycle).

2) Compute |Isum| + |Qsum| (1 cycle).

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
478

Winter 2022-2023
December 31, 2022

Signals & Noise

3) Compare the sum to some lower bound threshold (1 cycle).

Not only is this calculation simple, but it can be done in parallel with the PLL based extraction of

magnitude and phase. In fact, the 3-cycle stick detection is available much sooner than it would be with

either a CORDIC method or the table lookup method of Section 7.19.7.

7.20 Magnitude and Phase Calculation Examples

The demodulator architecture, implemented in FPGA hardware, was simulated using ModelSim 6.6b [256],

and signals of interest to this example were saved to an ASCII file. The ASCII data was normalized using

MATLAB so that the number format was back in a more convenient form. Also, small gain differences

between the I and Q phase outputs before and after filtering have been normalized out. The last 20%

of the data was used to compute the steady state averages (µ) and standard deviations (σ) of these

signals. In these simulations, the units of Q map to radians, since Q is used as the phase error.

Relevant
Figures

Input
Noise (σ)

Isum
σ

Qsum
σ

Fig. 7.78& 7.79(no filt.) 0 1.774407e-03 1.763996e-03
Fig. 7.78& 7.79(notch) 0 0 6.920047e-05
Fig. 7.78& 7.79(FIR) 0 0 1.318177e-04
Fig. 7.80& 7.81(no filt.) 0 1.763196e-03 1.765161e-03
Fig. 7.80& 7.81(notch) 0 2.094685e-05 7.814222e-05
Fig. 7.80& 7.81(FIR) 0 0 1.340324e-04

Table 7.3:Computed steady state noise values extracted from integrator simulations. The last 20%
of the data was used to get steady state values. The input noise to these simulations was set to 0
to better view the convergence of the PLL based Isum and Qsum to the magnitude and phase values,
respectively.

Figure 7.78 shows an 88 kHz oscillation frequency, sampled at 1 MHz. The effect of the PLL based

demodulator is that the mixing signals are shifted so that the in-phase (I) signal aligns with itself with

the average phase of the input signal. The quadrature signal (Q) is aligns itself so that it is 90◦ out of
phase with the average of the input signal. This simulation has no offset in the level of the deflection

(input) signal, but a +30◦ initial phase offset which the PLL portion quickly tracks. Thus, the magnitude

calculation is obtained trivially from the in phase integral. In the lower two plots of Figure 7.78, we also

see that the I term matches the computed magnitude and the Q term is very close to 0, which confirms

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
479

Winter 2022-2023
December 31, 2022

Signals & Noise

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

−0.5

0

0.5

Time (s)

D
ef

le
ct

io
n

Freq: 88000.0 Hz, Amplitude: 0.25, Phase Offset 30 Deg, Offset: 0.0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

0

0.1

0.2

0.3

0.4

Time (s)

N
or

m
al

iz
ed

 S
ig

na
ls

Demod I Branch and Magnitude

µ
ss

(mag): 0.2500, σ(Mag): 0.0017
µ

ss
(I): 0.2500, σ(I): 0.0018

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

−2

0

2

4

6

Time (s)

N
or

m
al

iz
ed

 S
ig

na
ls

Demod Q Branch and Phase

µ
ss

(Phase): 0.0026, σ(Phase): 0.0453
µ

ss
(Q): −0.0141, σ(Q): 0.0018

I Demod
Magnitude
PLL Lock

Q Demod
Phase
PLL Lock

Figure 7.78:Output of ModelSim Simulation of FPGA based demodulator. The oscillation frequency
is 88 kHz. The normalized deflection amplitude is 0.25. There is no offset in the signal level, but the
phase of the signal driving the deflection is 30◦ ahead of the in-phase (sine) mixing signal at the be-
ginning of the simulation. Note how the I and Q phases converge to the magnitude and instantaneous
phase, respectively.

phase tracking. The black curves there are the PLL lock indicator, which shows when the PLL error is

considered small enough for it to be considered locked.

Figure 7.80 show a similar simulation but with an offset of 0.1 and a −179◦ phase offset. Note how the

PLL lock signal corresponds to the mixing signals being close enough to ideal in-phase and quadrature

such that I and Q equal the magnitude and phase.

Figures 7.79 and 7.81 show the effects of using post integration filtering on the demodulated signals. In

particular, Figure 7.79 which has particularly small phase error throughout, is scaled such that one can

really see the improvement of the filtered signals.

The top plots of both figures show the I branch, while the lower plots show the Q branch. The unfiltered

output of the demodulator is shown in blue. That output, post processed with an FIR filter which

removes all the harmonics of the oscillation frequency, are shown in green. Looking at the Q outputs

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
480

Winter 2022-2023
December 31, 2022

Signals & Noise

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

0

0.1

0.2

0.3

Time (s)

I

Freq: 88000.0 Hz, Amplitude: 0.25, Phase Offset 30 Deg, Offset: 0.0

µ
ss

(I): 0.2500, σ(I): 0.0018
µ

ss
(I

FIR
): 0.2500, σ(I

FIR
): 0.0000

µ
ss

(I
Notch

): 0.2500, σ(I
Notch

): 0.0000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

−0.03

−0.02

−0.01

0

0.01

0.02

Time (s)
Q

µ
ss

(Q): −0.0141, σ(Q): 0.0018
µ

ss
(Q

FIR
): −0.0145, σ(Q

FIR
): 0.0001

µ
ss

(Q
Notch

): −0.0143, σ(Q
Notch

): 0.0001

I
I FIR
I Notch

Raw
Q FIR
Q Notch

Figure 7.79:Output of ModelSim Simulation of FPGA based demodulator. The oscillation frequency
is 88 kHz. The normalized deflection amplitude is 0.25. There is no offset in the signal level, but
the phase of the signal driving the deflection is 30◦ ahead of the in-phase (sine) mixing signal at the
beginning of the simulation. This plot shows the effect of adding post post integration filtering to the
demodulator.

which are zoomed in due to the small size of output signals, we can see that the unfiltered demodulator

outputs have a component at twice the oscillation frequency, f0. Thus, a simple notch filter, shown in

red, can be used to remove this component from the output. The choice between the FIR and the notch

depends upon the number of harmonics that one is concerned with versus the additional computational

latency that one is willing to accept. However, in this case, the notch at 2 f0 performs indistinguishably

from the FIR, and the latency is clearly less than the FIR, although slightly more than the unfiltered

results.

One more signal of interest is the PLL locked indicator. This is applied in the demodulator when the

integral of the I branch stays positive and significantly larger than the absolute value of the Q branch

integral. Note that once this signal becomes positive, the I branch integral is very close to the input

signal magnitude.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
481

Winter 2022-2023
December 31, 2022

Signals & Noise

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

−0.5

0

0.5

Time (s)

D
ef

le
ct

io
n

Freq: 88000.0 Hz, Amplitude: 0.25, Phase Offset −179 Deg, Offset: 0.1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

−0.5

0

0.5

Time (s)

N
or

m
al

iz
ed

 S
ig

na
ls

Demod I Branch and Magnitude

µ
ss

(mag): 0.2500, σ(Mag): 0.0017
µ

ss
(I): 0.2500, σ(I): 0.0018

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

−50

0

50

Time (s)

N
or

m
al

iz
ed

 S
ig

na
ls

Demod Q Branch and Phase

µ
ss

(Phase): 0.0026, σ(Phase): 0.0454
µ

ss
(Q): −0.0141, σ(Q): 0.0018

I Demod
Magnitude
PLL Lock

Q Demod
Phase
PLL Lock

Figure 7.80:Output of ModelSim Simulation of FPGA based demodulator. The oscillation frequency
is 88 kHz. The normalized deflection amplitude is 0.25. There is a normalized offset of 0.1 in the
signal level, and the phase of the signal driving the deflection is 179◦ behind that of the in-phase
(sine) mixing signal at the beginning of the simulation. Again, the I and Q phases converge to the
magnitude and instantaneous phase, respectively.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
482

Winter 2022-2023
December 31, 2022

Signals & Noise

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

−0.4

−0.2

0

0.2

0.4

Time (s)

I

Freq: 88000.0 Hz, Amplitude: 0.25, Phase Offset −179 Deg, Offset: 0.1

µ
ss

(I): 0.2500, σ(I): 0.0018
µ

ss
(I

FIR
): 0.2500, σ(I

FIR
): 0.0000

µ
ss

(I
Notch

): 0.2500, σ(I
Notch

): 0.0000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

Q

µ
ss

(Q): −0.0141, σ(Q): 0.0018
µ

ss
(Q

FIR
): −0.0145, σ(Q

FIR
): 0.0001

µ
ss

(Q
Notch

): −0.0142, σ(Q
Notch

): 0.0001

I
I FIR
I Notch

Raw
Q FIR
Q Notch

Figure 7.81:Output of ModelSim Simulation of FPGA based demodulator. The oscillation frequency
is 88 kHz. The normalized deflection amplitude is 0.25. There is a normalized offset of 0.1 in the
signal level, and the phase of the signal driving the deflection is 179◦ behind that of the in-phase
(sine) mixing signal at the beginning of the simulation.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
483

Winter 2022-2023
December 31, 2022

Signals & Noise

7.20.1 Summary of Coherent Demodulator for AFM

This section demonstrates a low latency, high accuracy, AC mode demodulator that is applicable for high

speed, real-time applications, such as dynamics mode control of Atomic Force Microscopes (AFMs) The

algorithm can be considered as either classical coherent demodulation or a lock-in-amplifier (LIA), but

implemented in a clean and flexible structure with minimal computational overhead.

Since the original publications of these algorithms, they have been used in the Keysight 9500 AFM

Controller [260]. This controller samples the Z-axis loop at 10 MHz. Using the demodulator described

here, it is able to produce samples for a 1 MHz feedback rate. The method is robust to the variations

involved in the mass manufacture of a commercial product.

The use of block RAM to hold old values of signal does provide a practical limit on how long our

integration can be. For example, with a 50 MHz sample rate and a 100 kHz tip oscillation frequency, a

single period of oscillation would require 500 samples, so 4K words of block RAM would allow us only 8

periods of oscillation. However, there are two mitigating factors. First of all, the entire scheme described

here is designed to allow the number of oscillation periods to be small, providing for minimum latency.

Secondly, 500 samples per oscillation is almost certainly overkill, and thus the demodulator sample rate

could be kept closer to 20 times the oscillation frequency, allowing even a 1K word block to enable 500

periods of oscillation.

Furthermore, while not the original use of this work, the efficiency of the methodology allows it to be

duplicated for multiple frequencies of oscillation on the same FPGA chip with little or no loss of bandwidth.

That is, because the method is completely implementable in programmable logic, these blocks can be

multiplexed in space on the chip, rather than in processing time, and with minimal recombination, can

be used for stimulating, and demodulating multimode oscillations such as described in [261].

The other major difference between the precision IQ demodulation used in real-time feedback and that

used in say a stepped-sine calculation is in extracting the magnitude and phase from the output of the

precision integrators. In Figure 7.64, the standard rectangular to polar computations are done.

To extract the magnitude in real-time for a feedback calculation requires the computation of Equation

7.82. The difficulty comes in the resources needed to compute these relationships in real time with high

sample rates. For example, a highly efficient algorithm is the so called CORDIC algorithms [227, 228].

This algorithm computes magnitude and phase by rotating the frame of reference until the frame of

reference and the signal have a matching magnitude and phase. The CORDIC algorithm is computation-

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
484

Winter 2022-2023
December 31, 2022

Signals & Noise

ally simple, and is at the heart of the trigonometric calculations in the original HP-35 calculator [228].

However, to compute magnitude and phase, a CORDIC algorithm requires one computational cycle per

bit of accuracy, so a 16 bit accuracy would require an extra computational delay (on top of that done

by the integral itself) of 16 clock cycles. In a standard computer, this might be considered fast, but in a

DSP or FPGA which typically complete table lookup operations, additions, and multiplies in one or two

cycles, this is considered slow.

A more time efficient calculation involves a table lookup. However with two different numbers to look

up and the high precision desired in these calculations, the tables can become huge. A 16-bit quantity

would nominally require 216 = 64K values. A few well placed adjustments to and restrictions of the

calculation make it possible to use a relatively small table to give reasonably good estimates. A fuller

discussion is found in [86].

A a faster way is to use the knowledge of phase-lock techniques to simplify the calculation. The

quadrature branch (Q) of the integral is very close to a PLL, if we allow the mixing oscillator to have

its phase adjusted in response to the phase error in that branch. With the mixing signal phase-locked,

the in-phase (I) branch is aligned so that the output of that integral is proportional to the cosine of the

phase difference. As that phase difference is driven to the vicinity of 0, the cosine is approximately 1,
and the magnitude drops out trivially.

Some examples of the demodulator from Figure 7.77 in action are shown in Figures 7.78 and 7.79.

We see in Figure 7.78, the original oscillation signal on top, with the I and Q branch integrals below.

Because of the PLL structure of the lower, Q branch, we see that the Q integral converges to 0 as the

loop locks, leaving the I branch locked to the magnitude. In Figure 7.79, we examine the behavior of

post integration filtering on the result, and we can see (especially in the lower Q plot) that a little bit of

filtering removes a residual 2 f0 frequency left over from imperfect integration.

Since this was originally published, even more exotic methods of demodulation for AFM oscillations have

been published [218, 219, 262].

7.21 Example: Servo Signal Demodulation in Hard Disk Drives

Hard disk drives (HDD) are still in use to store the majority of online data in the world. The HDDs encode

servo position information in magnetic domains offset from the track center. Hard disk drives (HDD)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
485

Winter 2022-2023
December 31, 2022

Signals & Noise

Dedicated
Servo

Sectored
Servo

Track
Eccentricity

Figure 7.82:HDDs use either Dedicated Servo surfaces (left drawing) or Sectored Servo (center draw-
ing) to provide position information so that the head can follow the track eccentricity (right drawing).

provide a breadth of examples of modulation and demodulation schemes used to encode position. We

can trace an evolution of demodulation methodologies from looking at different methods we might apply

to the same basic signals. Dedicated Servo uses one surface of disk stack (left drawing of Figure 7.82)

and has a relatively high sample rate, but using a reference position on a center disk to track position

on one of the outer surfaces can cause issues due to physical offsets caused by thermal expansion and

contraction, as well as any small clamping slippage over time. Sectored or Sampled Servo (center drawing

of Figure 7.82) multiplexes servo information with user data in periodic samples along the track known

as servo bursts. Because the servo information takes away data storage capacity, there is always a

tension between the desire to lower the sample rate to make more room for data and the need for higher

sample rates. However, Sectored Servo has the physical advantage that the position sensing is co-located

with data on the disk. In either case, the servo information should allow the head to follow the track

eccentricities (right drawing of Figure 7.82).

To the best of my knowledge, the thermal offset issues mandate that almost all modern drives use

Sectored Servo. This gives rise to a track layout pictured in Figure 7.83. The servo burst itself will

consist of several fields: a clock sync field, servo position information, and an edit gap (Figure 7.83).

The clock sync field is merely a pattern of alternating magnetic polarities along the track. These fields

are consistent across the cross-track direction. This allows the PLL to minimize any phase drift that

may have occurred during the data portion of the track. After this, there are the offset patterns that

give the position information.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
486

Winter 2022-2023
December 31, 2022

Signals & Noise

ASync BASync B

Figure 7.83:The layout of an HDD track. The sync field allows the PLL to recover its timing so that
the fields can be detected at the right time. In this simplified form, there are just A and B fields offset
by half a track from the track center. After the A and B fields comes the user data, which typically
comprises a much larger proportion of the track.

The magnetic domains that encode position are at different cross track offsets. In this image we only

show the A and B fields. but most drives have C and D fields offset by a quarter track width from A

and B. Some of them divide these offsets into sixths, so there are E and F fields for better linearity. No

matter how many fields are present for position linearity, the mixed signal chip that converts the servo

burst opens up a timing window based upon a clock synchronized on the last servo burst, then looks for

certain marks that delineate a burst. Finally, there is a space included (either at the beginning or end of

the user data) known as the edit gap, which is there to make certain that any residual timing errors do

not result in the user data overwriting the information in the next servo burst. (It is this lack of edit gap

in the DVD-ROM format that made it difficult to create a rewritable DVD format that was compatible

with the DVD-ROM [263].) A highly simplified view of this for our discussion is shown on the left side

of Figure 7.84. The top drawing shows the relative position of the read/write head relative to the offset

position information. The goal is to track the center of the track and if the head is too far over one field

(A or B), then the return signal is larger for that portion, as shown in the lower drawing.

With the clock recovered, the servo processing portion of the chip opens up windows for the A field and

the B field, separately. The output signals from the electronics are illustrated in the lower drawing. We

can see that when the readback head is off to one side of track center (in this illustration more towards

A), that the corresponding readback will produce a higher amplitude in the signals illustrated in the lower

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
487

Winter 2022-2023
December 31, 2022

Signals & Noise

A Burst B Burst

R
e

a
d

b
a

c
k

S
ig

n
a

l

A Field

B Field

R/W
Head

D
is

k
S

u
rf

a
c

e

Data

Ideal
Burst

Corrupted
Burst

Peak
Detect
Circuit

Integrator

Integrator

Integrator

(a) (b)

Peak
Detection

Area
Detection
(Rectify &
Integrate)

Square
Wave
Mixing

Custom
Harmonic
Mixing

Rectifier

Rectifier

Mixer

Mixer

(c)

(d)

(e)

(f)

Figure 7.84: Modulated servo patterns on a hard disk drive and common demodulation methods
used in decoding disk drive position bursts.

drawing. Now, assuming that the clocking allows us to separate the A “signal” from the B “signal”, we

have some options on how to extract their relative amplitude. A measurement from an HP Lynx 2 HDD

made in 1995 is shown in Figure 7.85, along with a manual model fit. (HP exited the HDD business in

1996, so it has been harder to get HDD lab data since then.) The measurement itself was made using a

digital oscilloscope at 120 MHz, which is fast enough to accurately record the shape of the signal. The

signal itself is based on a 10 MHz fundamental oscillation. A manual model fit using the first three odd

harmonics, the first, third, and fifth harmonics of a fundamental sine wave, is shown in blue.

Consider the hard disk drive servo signal example of Figure 7.84. In what was standard practice in hard

disk control problems for many years, the position signals were written to straddle the track center.

On the left we show a simplified pattern using only two fields, labeled A and B, but in practice more

fields were used to help with cross track nonlinearity. The resulting signals were a combination of odd

harmonics (ideally) and their amplitude was higher or lower depending upon the relative position of the

read head. On the right are different candidate demodulation schemes:

a) Shows the ideal readback signal.

b) Shows a signal corrupted by noise and biases.

c) Shows a rectifier followed by peak detection. That is, the peak detector circuit picks the

highest peak from the rectified pulses. The two-sided, zero-mean signal becomes a one-

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
488

Winter 2022-2023
December 31, 2022

Signals & Noise

0 1 2 3 4 5 6 7 8

x 10
−7

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Time (sec)

B
ur

st
 A

m
pl

itu
de

 (
V

)

Burst (average and single)

Single Noisy Burst Noise Free Burst

Burst_Amp = 1, Noise_Sig = 0, N_avg = 21
No Low Pass, Burst_Scale = 0.02

Demod_Sig_SM = 0.931111 %
Demod_Sig_Pure = 0.908672 %

RI_Sig_SM = 1.10988 %
RI_Sig_Pure = 2.17725 %

 Harmonic Table
 # Active Amplitude
 0 0 0
 1 1 1
 2 0 0
 3 1 −0.333333
 4 0 0
 5 1 0.2
 6 0 0

Sample rate is 1200 MHz,
which is 120 X the
fundamental frequency
of the burst.

Figure 7.85: Measured Servo Burst on HP Lynx 2 HDD, Sampled at 120 MHz. Notice that the
noise-free burst shape seems adequately modeled using the first, third, and fifth harmonics of the
fundamental frequency of 10 MHz.

sided, non-zero-mean signal. This is not susceptible to noise around the zero crossings, but

is highly sensitive to noise at the top of a peak, since there is no averaging there.

d) Shows a rectify and integrate circuit. The integration helps with the noise, but the rectifier

has guaranteed that any noise or biases that might have been zero mean are now part of the

integrated signal. Furthermore, every harmonic of the signal, good or bad, is included in the

integral.

e) Shows a coherent demodulation in which a square wave of the same frequency and in phase

with the servo carrier is mixed in with the return signal. This has one great advantage over

the rectify and integrate circuit and that is that it does not give a nonzero bias to zero mean

noise.

f) Shows a customizable coherent demodulator circuit. In this case, only the harmonics known

to be clean (e.g. with a more linear cross track response) are mixed in with the return signal.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
489

Winter 2022-2023
December 31, 2022

Signals & Noise

0 1 2 3 4 5 6 7 8

x 10
−7

−0.06

−0.04

−0.02

0

0.02

0.04

Time (sec)

B
ur

st
 A

m
pl

itu
de

 (
V

)

Single Burst with Input Noise Sigma = 0

Sigma Values:

 Sine Mix = 0 %
 Rectify and Integrate = 0 %

 Custom Harmonic = 0 %

Figure 7.86: Ideal servo burst with no noise. Note that beyond the fundamental, the signal shape
contains third and fifth harmonics.

It provides superior performance to all the others [211, 212, 213].

We can remove the rectification of noise by multiplying the signal in the window with a square wave

aligned with the pulses. We see (in line (e)) that this rectifies the servo signal while the noise can still

average towards its zero mean level. Besides requiring a coherent square wave, the main downside of

this is that the square wave mixing admits all harmonics of returned servo burst signal. Finally (in line

(f)) we see that if we are selective about which harmonics we use in the mixing signal, we can remove

some of the nonlinear distortion while capturing the best features of the servo signal [213, 212, 211].

We can look at the relative improvement in the different demodulation schemes with some pretty straight-

forward simulations in which we generate the ideal noise free burst pattern (Figure 7.86) and then add

things that distort it. In the simulation leading to the noisy pattern of Figure 7.87, we see that the

“Rectify and Integrate” method allows in a lot of broadband noise. Coherently demodulating with a sine

wave at the fundamental frequency (labeled Sine Mix) removes most of that dependency (by a factor of

4), and adding in the third and fifth harmonics (labeled Custom Harmonic) improves the performance

slightly, as it admits in more true signal, while eliminating the same broadband noise. The effect on the

noise admitted into the system can be summarized in Figure 7.88, which plots the computed demodulated

noise sigmas versus the input noise sigmas.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
490

Winter 2022-2023
December 31, 2022

Signals & Noise

0 1 2 3 4 5 6 7 8

x 10
−7

−0.06

−0.04

−0.02

0

0.02

0.04

Time (sec)

B
ur

st
 A

m
pl

itu
de

 (
V

)

Single Burst with Input Noise Sigma = 0.5

Sigma Values:

 Sine Mix = 5.97134 %
 Rectify and Integrate = 24.6424 %

 Custom Harmonic = 5.50911 %

Figure 7.87:Ideal servo burst with significant noise. Note that beyond the fundamental, the signal
shape contains third and fifth harmonics. We see how coherent demodulation adds significant immu-
nity to noise in the servo position signal.

However, the advantages of intelligently picking harmonics to use in the demodulation mixing signal go

well beyond noise immunity as shown in some of the following simulations. Figure 7.89 shows the effects

of a thermal asperity – a heating of the readback head, usually caused by momentary contact or near

with some minor bump on the disk surface – on the readback signal. This acts as a temporary offset

which strongly affects Rectify and Integrate because this method admits signals at DC. Sine Mix and

Custom Harmonic are almost completely immune to this, as they ignore signals at DC.

In the case of a baseline shift, shown in Figure 7.90, the DC level suddenly jumps, causing an offset in

return signal which strongly affects anything that includes the baseband signal (in our case Rectify and

Integrate). Advanced demodulation can reduce the effects of baseline shift in the burst signal. In this

case a large baseline shift (100% of the fundamental signal amplitude) is added in. Again, we can see

the effects of different levels of baseline shift on various demodulation scheme sigmas in Figure 7.91.

Another effect that happens to the servo burst is called baseline pop, in which part of the shape of part

of the burst signal is altered. An example motivated by discussions with the HP drive team in the 1990s

is shown in Figure 7.92. Again, the Sine Mix and Custom Harmonic methods are largely immune tot his.

Another dramatic demonstration of the advantages of being able to pick out “only good harmonics” for

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
491

Winter 2022-2023
December 31, 2022

Signals & Noise

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

Input Noise Sigma

N
o
rm

a
liz

e
d
 D

e
m

o
d
u
la

ti
o
n
 E

rr
o
r

S
ig

m
a

Plots of Error Sigmas

Rectify and Integrate

Sine Mix

Custom Harmonic

Figure 7.88:Advanced demodulation can reduce the noise of the signal, and therefore minimize the
noise circulating in the feedback loop. Using coherent demodulation made up of specific harmonics of
servo burst (modeled on HP Cougar I servo signals) dramatically diminishes effects of noise. Rectify
and integrate admits far more noise than either demodulating with the first harmonic (sine wave) or
multiple matched harmonics.

our mixing signal is shown when a second harmonic is added to the burst signal, as shown in Figure 7.93.

Because the second harmonic is even, it corrupts the offtrack push-pull error signal, which should be

strictly an odd signal to be most effective. This model was motivated by the disk drive readback heads

at the time, where early magneto-resistive sensing (MR) were being used. These showed much higher

data sensitivity than the older inductive read heads, but had nonlinear behavior in the offtrack signals.

HP had alleviated this to first order with a Dual-Stripe MR (DSMR) head, where two MR sections were

flipped relative to each other (thus, the dual stripe) resulting in an offtrack signal that was more linear.

However, it still suffered from some nonlinearity manifesting itself in the second harmonic of the readback

signal, which got worse as the head was more offset from the center of the magnetic region. The irony

is that when the head is at track center, then it is 50% offset from both the A and the B patterns.

Intelligent coherent demodulation dramatically diminishes effects of bad harmonics. In the case of Figure

7.93 a large second harmonic (60% of the fundamental signal) is added in. This strongly affects Rectify

and Integrate approach but had no effect on Sine Mix or Custom Coherent since both of these ignore

the second harmonic. What surprised a lot of engineers well steeped in signal processing theory was that

the Matched Filter approach (which provides the most immunity to AWGN) is clearly not a good choice

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
492

Winter 2022-2023
December 31, 2022

Signals & Noise

0 1 2 3 4 5 6 7 8

x 10
−7

−0.06

−0.04

−0.02

0

0.02

0.04

Time (sec)

B
u

rs
t
A

m
p

lit
u

d
e

 (
V

)

Single Burst with Nonideality

Sigma Values:

Sine Mix = 0.972967 %
Rectify and Integrate = 43.6312 %

Custom Harmonic = 0.769017 %

Thermal Asperity at 100 % of burst fundamental

Figure 7.89:Thermal asperity acting on HDD servo burst. A thermal asperity is a heating of the
readback head, usually caused by momentary contact or near with some minor bump on the disk
surface.

here, since it would include the second harmonic in its mixing signal. The ability to intelligently pick

and chose the components of the mixing signal based on the observed physical behavior of the system

allows us a much cleaner response. A plot of the error sigmas versus the input amplitudes of the second

harmonic (as a fraction of the fundamental) is shown in Figure 7.94. As for the Matched Filter approach,

it isn’t optimal if it doesn’t work.

The point of reviving these old plots is not to revive the HDD industry, but to show that modulating

sensed signals can provide immunity to a lot of bad effects, especially if the demodulation is done

intelligently. High speed, real-time, digital signal processing algorithms give us the ability to remove a

lot of the effects of noise and nonlinear or other non ideal behavior from the signals, thereby leaving our

control design far freer to do what it is supposed to do. This particular demodulation scheme was able

to rely on the timing being locked due to the presence of the sync field at the start of the servo burst.

When this is not the case, we need to use some form of precision lock-in demodulation, as described in

Section 7.19. If we can combine this with a PLL to minimize the phase difference, then the in-phase (I)

signal can trivially extract the signal amplitude.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
493

Winter 2022-2023
December 31, 2022

Signals & Noise

0 1 2 3 4 5 6 7 8

x 10
−7

−0.06

−0.04

−0.02

0

0.02

0.04

Time (sec)

B
u

rs
t
A

m
p

lit
u

d
e

 (
V

)

Single Burst with Nonideality

Sigma Values:

Sine Mix = 0.040471 %
Rectify and Integrate = 70.2429 %

Custom Harmonic = 0.0159149 %

Baseline Shift at 100 % of burst fundamental

Figure 7.90:Ideal servo burst with significant baseline shift added. A baseline shift is essentially noise
added at DC.

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Normailized Baseline Shift Amplitude

N
o
rm

a
liz

e
d
 D

e
m

o
d
u
la

ti
o
n
 E

rr
o
r

S
ig

m
a

Plots of Error Sigmas

Rectify and Integrate

Sine Mix

Custom Harmonic

Baseline Shift

Figure 7.91:Advanced demodulation can reduce the effects of baseline shift in the burst signal. In
this case a large baseline shift (100% of the fundamental signal amplitude) is added in. This strongly
affects Rectify and Integrate demodulation.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
494

Winter 2022-2023
December 31, 2022

Signals & Noise

0 1 2 3 4 5 6 7 8

x 10
−7

−0.06

−0.04

−0.02

0

0.02

0.04

Time (sec)

B
u

rs
t
A

m
p

lit
u

d
e

 (
V

)

Single Burst with Nonideality

Sigma Values:

Sine Mix = 0.00601102 %
Rectify and Integrate = 8.89945 %

Custom Harmonic = 0.0027853 %

Baseline Popping

Figure 7.92:Ideal servo burst with significant baseline pop added. A baseline pop changes the shape
of one polarity of the burst.

0 1 2 3 4 5 6 7 8

x 10
−7

−0.06

−0.04

−0.02

0

0.02

0.04

Time (sec)

B
u
rs

t
A

m
p
lit

u
d
e
 (

V
)

Single Burst with Nonideality

Sigma Values:

Sine Mix = 3.67595e−14 %
Rectify and Integrate = 56.4166 %

Custom Harmonic = 0 %
Matched Filter = 37.9969 %

Second Harmonic at 60 % of burst fundamental

Figure 7.93:Ideal servo burst with significant second harmonic added. Because the second harmonic
is even, it corrupts the offtrack push-pull error signal.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
495

Winter 2022-2023
December 31, 2022

Signals & Noise

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

Normailized Second Harmonic Amplitude

N
or

m
al

iz
ed

 D
em

od
ul

at
io

n
E

rr
or

 S
ig

m
a

Plots of Error Sigmas

Rectify and Integrate

Sine Mix

Custom Harmonic

Matched Filter

Second Harmonic

Figure 7.94:Advanced demodulation can reduce the effects of bad harmonics in the burst signal. In
this case a large second harmonic (60% of the fundamental signal) is added in. This strongly affects
Rectify and Integrate and a Matched Filter approach, as the latter would include all harmonics in the
mixing signal.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
496

Winter 2022-2023
December 31, 2022

Signals & Noise

7.22 Example: Optical Disk Precision Clocking: DVD+RW

N

N fr

Write Clock

Phase-Locked

to Reference

Bandpass

Filter

Loop

Filter

High

Frequency

LP Filter

Voltage

Controlled

Oscillator

Phase

Detector

Reference

Clock

Signal

fr

fr

fr

y y
f

Objective

Lens

Beam

Splitter

Columnator

Laser Controller

Optical Medium

A B

CD

Detector

Laser

Figure 7.95:Rewritable optical disk drive system with a Harmonic Locking PLL to generate the write
clock [264].

On optical drives such as CDs and DVDs, there are two main servo loops, one to maintain focus of the

optical beam and the second to keep that beam over the correct track. However, because the tracks

are distinguished by physical features on the disk, the tracking loop has the potential for much higher

sample rates than are found in the HDD loops described in Section 7.21. In these problems the more

difficult problem is that of establishing sub-bit accurate timing down the track for making rewritable

optical disks that are compatible with the ubiquitous DVD ROM format. The latter has none of the edit

gaps mentioned in the discussion of HDDs in Section 7.21, and so being able to write new data in the

correct down-the-track location requires precise synchronization with sub-bit accuracy.

The essential technology is a high frequency, high fidelity reference signal embedded into the disk surface

itself, as illustrated in Figure 7.96. With this so-called high frequency wobble, a digital phase-locked

loop can correct the timing to enable read/write operations without edit gaps. A gapless edit of a 6T

pattern into a 4T-8T pattern is shown in Figures 7.97–7.99. The lack of jumps in phase errors in a

clock derived from the data (Figure 7.98) as well as the lack of any 5T or 7T patterns in the histograms

of Figure 7.99 indicate a bit perfect edit, where T is the bit clock period. The continuous nature of

the high fidelity reference signal simplified the PLL design which enabled the DVD+RW (and DVD+R)

formats [264, 263, 265, 266]. By having a continuous, high fidelity reference clock signal across the

entire length of the track, the internal timing of the read and write circuits was within fractions of a bit

(allowing the desired read/write functionality with no edit gaps. By the year 2013 the DVD+RW and

DVD+R businesses enabled by this amounted to 25% of a $559M market (according to a website called

Storage.com which now has been re-purposed for finding self-storage units).

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
497

Winter 2022-2023
December 31, 2022

Signals & Noise

Figure 7.96: High frequency wobbles used in the DVD+RW optical disk format.

Edit in Point

D
a

ta
 A

m
p

lit
u
d

e
 (
V
)

Figure 7.97:DVD+RW, gapless edit. A 6T pattern spliced into a 4T-8T pattern. This represents the
time response at the edit-in point.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
498

Winter 2022-2023
December 31, 2022

Signals & Noise

N
o

rm
a

liz
e

d
 B

it
Sh

ift

Edit In Point

Figure 7.98:DVD+RW, gapless edit. A 6T pattern spliced into a 4T-8T pattern. This represents the
phase error for a data clock generated from the data. (Note the absence of any phase jumps.)

0 1 2 3 4 5 6 7 8 9
0

50

100

150

200

250

300

350

400

450

500

Bit Interval

H
is

to
gr

am

Measurement cr_6tinss_a: Histogram of Bit Intervals

Histogram of Bit Intervals

Figure 7.99:DVD+RW, gapless edit. This is a set of histograms of the bit intervals. The absence of
any 5T or 7T bits is an indication that no bit errors have occurred.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
499

Winter 2022-2023
December 31, 2022

Signals & Noise

7.23 Example: Laser Interferometry

Half-Silvered
Mirror

Detector
Note: Beams have been
displaced for clarity.

d1

d2

Reference
(Fixed)

Reflector

Reflector
on Moving

Object

Monochromatic
Light Source

Figure 7.100: Basic Michelson interferometer.

This section is largely excerpted from the author’s A Tutorial on Laser Interferometry for Precision

Measurements [207]. The full equation derivations are in that reference, but a few key points will

be used here to describe laser interferometers in the context of demodulation systems. The operation

of an interferometer depends upon optics performing some of the same equations that we have been

discussing above. It is in understanding the relationship of the optics equations that we see that the

optics are performing a demodulation of two signals at the same frequency interfering with each other

and therefore producing a phase difference that we can detect with something akin to a Costas loop.

The basic Michelson interferometer (Figure 7.100) uses a half silvered mirror to split a monochromatic

light source into two beams. Each beam reflects off of a mirror, to be recombined at the half-silvered

mirror. The recombined beam contains an interference pattern that changes when either of the mirrors

move. Keeping one mirror fixed allows one to attribute all of the interference pattern changes to motion

of the other mirror.

Many texts show the an interference pattern such as the one in the far left of Figure 7.101. However,

in the absence of the beam being cropped, the detector will see a collimated beam on its center axis.

Typically, this is modeled as a Gaussian beam and as the measure mirror moves the intensity of this pulse

will vary, as shown in the right three figures of Figure 7.101. The detector then acts to integrate the

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
500

Winter 2022-2023
December 31, 2022

Signals & Noise

Typical interference
pattern in texts

More accurate variation of central
Gaussian lobe with interference

Figure 7.101: Effects of interference on detector. On the far left is the typical diagram one sees in
books. However, the banding is typically caused by the beam being cropped and not the effect of the
interferometry. A better picture comes from the three diagrams on the right, in which the intensity of
the central Gaussian lobe is modulated by the interference pattern.

intensity of the beam over its spatial extent, and – assuming the integration is faster than the change

in the interference pattern – this integrated intensity can be used to measure distance, modulo the

wavelength of the laser used.

The Michelson interferometer is one of the most basic models of interferometry available. It is not a

practical interferometer, in that there are significant issues with the actual implementation. However,

it provides an easy to understand conceptual model for understanding precision measurement interfer-

ometers. Generally, for every imperfection of the Michelson interferometer, there is a practical fix that

expands the range of usefulness of the interferometer [207]. Each of these fixes essentially returns the

interferometer back to a more ideal Michelson behavior.

We start our analysis of the Michelson IF equations by looking at Figure 7.102. For our purposes, the

source beam can be considered to originate at position 1, right before contact with the half silvered

mirror. At the mirror, half of the beam is reflected to the reference mirror (path r2-r3-r4) where it is

reflected back towards the half silvered mirror. At this interface, half of the beam is passed through to

position 5, while half reflects back to the source. Meanwhile, the transmitted portion of the beam goes

to the measurement mirror (path m2-m3-m4) and reflects back. At the half silvered mirror, half of the

measure beam is reflected to position 5, while half passes back to the source. We are concerned with

the two beams that meet at position 5 and are imaged on the detector.

A few things are important to understand interference as it is used in our measurements. First, since

both the reference beam and the measure beam originate from the same laser, they are coherent with

each other. Second, every time a beam goes through a reflection, it undergoes a 180◦ phase shift. A

look at the diagram of Figure 7.102 indicates that each beam at position 5 has gone through 360◦ in
phase shifts and thus they are still in phase with each other. Third, by the time both beams reach

position 5, their amplitude has been reduced to 1
4 of their original amplitude. (This is fixed in practical

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
501

Winter 2022-2023
December 31, 2022

Signals & Noise

Beam
Splitter

Source

5

m2

1

r2

r3

m3

r4

m4

ReferenceMirror

M
e

a
s
u

re
 M

ir
ro

r

Lref

2

Lmeas

2

Figure 7.102: Some details on the beams of a Michelson interferometer.

interferometers via use of polarizing beam splitters, quarter wave plates, corner cubes, and a second

frequency so that a far greater percentage of the beam power hits the detector [207].) Conceptually,

if the reflection/transmission is exactly 50/50 and if the mirrors are perfectly aligned, then both beams

add through linear superposition and have the same amplitude. Thus, we can attribute the variation at

the detector to interference.

The equations for the interference pattern are derived in classic optical texts [267], [268] from application

of the vector electromagnetic wave equations [269, 270]. Consider the electric field of the source beam

at position 1:

Ez,source(z, t) = A cos(kz − ωt + φ) (7.152)

where z is the direction of travel, k = 2π
λ
is the wave number, λ is the wavelength of the light, and A is

the amplitude of the beam. From position 1, the reference beam travels a distance Lre f = 2d1 to get

back to position 5, while the measure beam travels a distance Lmeas = 2d2 to get back to position 5. If

we consider position 1 to be z = 0, then the two beams are thus,

Ere f (t) =
A
4

cos(kLre f − ωt + φ) (7.153)

for the reference beam and

Emeas(t) =
A
4

cos(kLmeas − ωt + φ) (7.154)

for the measure beam. Through linear superposition, the beams add, so that the electric field of the

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
502

Winter 2022-2023
December 31, 2022

Signals & Noise

combined beams at position 5 is

Etot(t) =
A
4

[

cos(kLre f − ωt + φ) + cos(kLmeas − ωt + φ)
]

. (7.155)

A word about notation is useful here. Normally, when one is working with wave equations [269, 270],

the equations are set up as vector quantities along some frame of reference. This works very well in

analysis of plane equations, point sources, etc. but in an interferometer, the direction of the beams are

switched so often that keeping track of all the vector frames becomes confusing. For this tutorial, we

will assume that the source electric field is in the X-Y plane, and the source magnetic field is rotated

90◦ in that plane. This means that the Poynting vector which describes the energy density is in the

Z direction. Every time we go through a reflection, polarizer, or beam splitter, the reference frame is

changed, but our signals will end up so that the Poynting vector is normal to the detector plane. For the

sake of simplicity, we will leave off the unit vector designations on the equations.

The detector is sensitive to signal intensity, not amplitude, and we can calculate this from the Poynting

vector. If we assume that the electric field is in the x direction and the magnetic field is in the y direction,

then

Htot(t) =
A
4

√

ǫ

µ

[

cos(kLre f − ωt + φ) + cos(kLmeas − ωt + φ)
]

. (7.156)

We now have two choices to simplify this: proceed with trigonometric identities or switch gears to saying

that Equations 7.155 and 7.156 are the real parts of a complex exponential notation. For pedagogical

purposes, we will plug through the trigonometric equations here. With the polarizations we have assumed,

the Poynting vector, P(t), will be in the direction normal to the detector with

Ptot(t) = ~Etot(t) × ~Htot(t)

=
A2

16

√

ǫ

µ

[

cosα + cosβ
]2 (7.157)

=
A2

4

√

ǫ

µ

[

cos2α + cos2 β + 2 cosα cosβ
]

(7.158)

where α = kLre f − ωt + φ and β = kLmeas − ωt + φ. With this and some trigonometric identities, we end

up with

cos2α =
1+ cos 2(kLre f − ωt + φ)

2
, (7.159)

cos2 β =
1+ cos 2(kLmeas − ωt + φ)

2
, and (7.160)

2 cosα cosβ = cos
(

k(Lmeas + Lre f) − 2ωt + 2φ
)

× cos
(

k(Lmeas − Lre f)
)

.
(7.161)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
503

Winter 2022-2023
December 31, 2022

Signals & Noise

Putting these all together,

Ptot(t) =
A2

32

√

ǫ

µ

[

1+ cos 2(kLre f − ωt + φ) + 1+ cos 2(kLmeas − ωt + φ)

+2 cos
(

k(Lmeas + Lre f) − 2ωt + 2φ
)

+ 2 cos
(

k(Lmeas − Lre f)
)]

(7.162)

If we average over an integer number of periods, T = 1
f =

2π
ω

then the time varying portion integrates

out, leaving only the DC portion:

Ptot,avg =
A2

16

√
ǫ
µ

[

1+ cos
(

k(Lmeas − Lre f)
)]

(7.163)

This rationale should remind the reader of the high precision IQ demodulator of Section 7.19. As a

practical matter, the laser frequency is so much faster than the integration time of our detector that we

are always getting the “DC portion”. Thus, the relationship that is most commonly used for this type

of interferometer is that for the intensity:

I ∼ K
[

1+ cos
(

k(Lmeas − Lre f)
)]

W/m2 (7.164)

This is often rewritten in terms of the wavelength, λ, as

I ∼ K
[

1+ cos
(

2π
λ

(

Lmeas − Lre f

))]

W/m2 (7.165)

This provides the power density at the detector in Watts/m2. The detector integrates the energy density

(intensity) over the detector surface. Thus, it is not the pattern on the surface that matters so much

as the amount of intensity on that surface. Equation 7.164 gives the density at a given point. In fact

for a highly collimated beam, the distribution is likely Gaussian and effect of a change in Lmeas is to

cause the height of this Gaussian distribution to rise and fall. If all other variables are held constant,

one can measure a change in distance by counting the passing of these light and dark times. From

Equation 7.164 we see that we are still missing an ability to discern direction of motion. This is fixed in

a single frequency IF by splitting the the beam and adding a phase delay to one portion, thus allowing

for in-phase and quadrature demodulation (IQ), again reminiscent of Section 7.19.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
504

Winter 2022-2023
December 31, 2022

Signals & Noise

We start with the reminder that all position measurements with an interferometer are relative. The

fringes give a change in position from some starting position. This is analogous to trying to measure

position from velocity measurements: one must assume a starting position.

IF measurements rely on knowing the wavelength of light, λ, and the wavelength being stable. This

is why commercial interferometers did not emerge until lasers were invented. It is important to know

that as pressure, temperature, humidity,and gas composition change, so does λ. Thus, an IF system is

making measurements with a somewhat elastic ruler.

Reference
Reflector

λ/4

λ/4

Reflector
on Moving

Object

f1
f2

f -2 f1

Reference
Detector

Laser
Source

Beam
Splitter

Polarizers

f - (2 f)1 1± fΔ

Measurement
Detector

f2

f1 1± fΔ

f1 1± fΔ

f1

f2

Figure 7.103: Two frequency (heterodyne) Michelson interferometer configuration.

All the modifications to the Michelson interferometer discussed thus far essentially are designed to

desensitize the interferometer to non-ideal behavior and restore the accuracy of Equation 7.165. However,

even when things are properly aligned, the interferometers described so far operate in the baseband. They

use a single frequency of light, also known as homodyne interferometry, and the “difference” between

measure and reference only shows up as a baseband phase and Equation 7.165 is a variation away from

DC. DC detection is slow and suffers from 1
f and other noise in the detectors, mainly signal intensity

variations (due to air turbulence or accumulated contaminants on mirror and optic surfaces) being

indistinguishable from position changes.

Borrowing from the world of radio communications, it is more advantageous if the interference shows up

at some intermediate frequency. To achieve this, modern IF measurement systems typically operate with

multiple wavelengths [271], where the interference pattern is not a baseband signal, but in fact an AC

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
505

Winter 2022-2023
December 31, 2022

Signals & Noise

signal, as diagrammed in Figure 7.103. Thus, distance becomes a measurement of the difference between

two signals, one of which (known as the measurement signal) is modulated by the moving object, while

the other (known as the reference signal) is generally fixed. The reference signal is usually composed

of the difference between the two frequencies before one of them has been modulated, but can also be

another modulated signal to create a differential measurement between two moving mirrors.

Assuming the two laser frequencies are ω1 and ω2, we get the equation for the Poynting vector [207]. If

the measurement mirror is moving, then that movement will appear as a Doppler Shift in ω1 = 2π f1, so
that ω1 =⇒ ω1 + ∆ω1 becomes:

~EIF,LP × ~HIF,LP = PIF,LP(t) ≈ A2

2

√

ǫ

µ

[

1+ cos
(

k1Lmeas − k2Lre f 2 − (ω1 + ∆ω1 − ω2)t
)]

. (7.166)

f -2 f1

f - (2 f)1 1± fΔ

Reference
Detector

Measurement
Detector

Up CounterZero Crossing
Detector

Zero Crossing
Detector

Down Counter

SAC
Amplifiers

-

Fringe
Counts

Figure 7.104:Generating distance from AC frequency differences.

arctanmod(2)π

()dt∫
0

T1
T

()dt∫
0

T1
T

cos

sin

Phase
Input

φ

ΔΔ

LO

Figure 7.105: Phase generation from interference pattern input. Note the structural similarity to the
Costas loop of Figure 7.53.

In the end, the optics have generated an intensity that is proportional to a 1+ cos(θ) where θ is periodic
and related to the distance between the reference reflector and the moving reflector. The fundamental

accuracy is inversely proportional to the laser wavelength (λ).

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
506

Winter 2022-2023
December 31, 2022

Signals & Noise

In Equation 7.166, θ becomes a shift in the frequency difference between the two signals, and results

in new oscillatory signal that once again needs to be demodulated. To be an instrument for measuring

distance and velocity we need devices for counting either peaks in intensity (a peak finding demodulator,

Figure 7.104) or to accurately and quickly measure the phase of the intensity signal (Figure 7.105).

Note how Figure 7.105 closely matches the Costas loop of Figure 7.53. The peak counter (peak finding

demodulator) has an accuracy limited to half the wavelength, while the IQ demodulator is capable of

much finer resolution.

X-Y Stage

Mirrors
Y

X

Laser Source
Receiver

Non-Polarizing
Beam Splitter

(NPBS)

50%

50%

Dual Pass
Plane Mirror

InterferometersR
e

c
e

iv
e

r

Figure 7.106:Two-axis plane mirror interferometer configuration.

Wafer Stage

Figure 7.107:Wafer stage system measured with interferometer.

One of the great benefits of precision interferometry for position measurement is that because the

measurements are done at a distance, multiple axes can be measured with the same system, by splitting

the laser beam and directing it off of different surfaces and back to multiple receivers. This can be

seen in the two-axis configuration shown in Figure 7.106, where a single beam is split and directed at

polarizing beam splitter based interferometers. Each of these beams is reflected off of a planar mirrors

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
507

Winter 2022-2023
December 31, 2022

Signals & Noise

on the side of a moving stage, resulting in position measurements for the x and y axes.

The bulk of interferometers systems are used in the IC photolithography industry [272, 273]. Here, very

precise machines move an X-Y stage under an optical column. What is critical is the location of the

stage relative to the optical column, and the repeatability of this measurement. So these systems use

laser interferometers to measure the X and Y positions of the stage and the column, as well as the pitch

and yaw of these items. Some even measure the vertical direction of the stage. Figure 7.107 shows the

basic setup without the optical column which would obscure the stage.

This section has gone through more math than most of the others combined, but it shows that at the

end, to a clean position and velocity signal, we again need to understand modulation and demodulation.

A huge amount of the improvement in the interferometry measurements are made by an understanding

of the optical paths, but at the end, the final bit of accuracy is limited by signal conversion done in the

electronics. Mixing (multiplying) and digitally integrating/low-pass filtering a signal usually requires at

least 10 samples per second. If we consider the upper range of FPGA fabric circuitry to be around 500

MHz, then we can consider processing a 50 MHz signal, but only if we use only one clock cycle per

sample. More reasonably, we might expect a heavily pipelined algorithm to have 10 cycles of signals up

to 5 MHz. Faster signals would require either custom signal processing circuitry or analog processing for

the front end.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
508

Winter 2022-2023
December 31, 2022

Signals & Noise

7.24 Demodulation Summary

Modulated signals are rarely considered a main part of control design. It is rare that the carrier itself has

significant information for the loop. It is probably for this reason that this subject is not well studied by

control engineers. However, the form of modulation, and the method by which we demodulate it can

have a significant effect on the quality of the demodulated signal returned to the loop.

This tutorial has given a brief, non-exhaustive overview of demodulation methods for modulated signals

found in control applications. The emphasis was placed on a conceptual understanding, but with a view

to how to execute the different demodulation computations. There may well be a wide variety of cases

for which the simplest modulation/demodulation – such as amplitude or pulse encoding demodulated

with a simple rectifier and low-pass filter are sufficient. This is really a requirements question: when the

speed and accuracy of the demodulation scheme is an order of magnitude above the needs of the loop,

there is no reason to do anything more sophisticated. However, in understanding the more advanced

methods, we have the option to speed and clean up the sensor signals before they get into the feedback

loop, thus avoiding the limitations imposed by Bode’s Integral Theorem [1, 158].

The demodulation methods we see often have a lot of commonality. An understanding of Fourier integrals

is extremely helpful, but to make them practical, we have to seriously look at the information content of

the signals and the computational structures needed to extract them. The payoff here is the potential

to dramatically lower the sensor noise (and nonlinearities) injected into a loop, as well as dramatically

speeding up the acquisition of the signal. As we know from our earliest controls principles that sensor

noise goes right through to the output [13, 14], the extra work has a direct payoff.

7.25 Chapter Summary

Bode’s Integral Theorem, as illustrated by Stein’s Dirt Digging, tells us that noise we see at measurement

points is really closed-loop filtered noise from sources around the loop. To understand which of these

is most influential on our loop, we need some sort of regular methodology for measuring, isolating, and

analyzing these noise inputs.

• PES Pareto gives us a way (under “mostly linear” assumptions) to measure, isolate, and quantify

noises as inputs, and for their effects (relative and cumulative) at some measurement point.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
509

Winter 2022-2023
December 31, 2022

Signals & Noise

• Measurements and models used to create Pareto can be used to extrapolate.

Once we have quantified the key sources of broadband noise, we can look for simple design changes

that might limit this source or we can see if some improved processing can reduce it. In the former

case and our disk drive example, redesigning the air flow inside the drive itself was seen to dramatically

change the buffeting that the head experienced and therefore eliminate much of this input disturbance.

In the latter case, applying coherent demodulation to the signal could dramatically reduce the effects

of both broadband noise and nonlinear signal behavior. The cost of this type of work was doing more

sophisticated math closer to the physical system.

In a separate discussion, the linear filtering done on our input signals also can have a dramatic effect on

the latency and noise that enters the loop. Our noise will be shaped by our closed-loop, loop shaping

filters (for better or worse) but there is no way to algorithmically remove latency once it has been

inserted. Understanding the noise inputs and effects through a system and minimizing input noise and

latency can often provide a much larger boost in achievable performance than any particular loop design

improvement.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
510

Winter 2022-2023
December 31, 2022

Chapter 8

Integrating in Feedforward Control

8.1 In This Chapter

One of the more particular features of feedforward control is that it has so many different meanings,

depending upon which control engineer is using the term. In this chapter, we will discuss a wide variety

of classes of control that all get refereed to as feedforward control. In this chapter, we will try to tie

together as many of these various modes of “feedforward” control in an understandable way. Whether

the term refers to adjusting the filters from the reference input into the closed-loop or the plant, or

applying some sort of repetitive or harmonic correcting method, or using auxiliary sensors, feedforward

control has three universal features.

• They work with far less phase delay than classic feedback loops allowing them to be far more

aggressive in their region of operation.

• Noise amplification by the loop rarely affects the feedforward signal, again allowing for more

aggressive control.

• They depend upon accurate modeling to work properly, but that modeling can be limited to only

the range of the feedforward signal being used.

511

Feedforward

8.2 Chapter Introduction

S
Reference

Input

Physical
SystemActuateCompare

Feedforward
(Plant Input)

Feedforward
(Closed-Loop Input)

+

Measurement

Error

Measured Output

Output
Feedback

Figure 8.1: A generic feedforward/feedback loop configuration.

Feedforward control – especially as combined with feedback in feedforward-feedback controllers, has

enjoyed a resurgence in the past three decades. The seemingly less rigorous problem – compared to

feedback control only – found its way into many practical systems and then found itself into many

official algorithms. In the first version of this chapter, I was trying to simply provide unifying looks at

two forms of reference signal feedforward control, ones that inject the shaped reference at the plant

input and ones that inject the shaped reference at the closed-loop input. However, I kept remembering

different “feedforward” versions that deserved their own sections. Eventually, as the sections piled up like

points made by Inspector Colombo before he needs to leave, I realized that I needed to take a step back

and ask myself what feedforward control really is. With that in mind, my understanding is as follows:

When the controller’s input signal comes from sensing the signal to be controlled, then we call it feedback

control. When the controller’s input signal comes from any other signal, be it another sensor, or the

reference signal, or some heavily processed average of the controlled signal, then we call it feedforward.

In the modern world, we end up with systems that have some feedback signal(s) and possibly one or

more feedforward signals and that has become a thing.

The final overall question to answer is: Why is it a thing? What do we get from adding feedforward

control to our feedback systems that we did not have before? Here is where adding all those sections

actually paid off, because if one looks for a common advantage in all of these versions of feedforward

control, it is that feedforward controllers allow us to apply control with minimum of delay, and as I’ve

tried to point out in previous chapters, delay equals negative phase and negative phase erodes stability

margins. Feedforward from auxiliary sensors often has far less delay that waiting for a disturbance to

cause a loop error. In many cases, feedforward allows us to use acausal filtering because we “know the

future” of that signal. We know what the reference signal should be ahead of time. When we extract

repetitive components from an error signal, we can look forward or back on the cycle and so we can

literally look back to the future for our control signal. The repetitive controller then becomes like a

causal/acausal FIR filter with no net phase effects, which is pretty amazing. Phase lag is something

we cannot eliminate in a feedback system, but if we can shift more of the control responsibility to the

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
512

Winter 2022-2023
December 31, 2022

Feedforward

feedforward portion of the control system, we can gain some significant benefits. The ability to work

with less or no time delay for a significant fraction of the control actions is why I believe

feedforward control is a thing and why I believe that it has worked so robustly in practical

systems.

8.3 What Do We Mean When We Say “Feedforward Control”?

r y
P

Figure 8.2: Plant only control. Generally, we want the output, y, of the plant (physical system) to follow
the reference,r.

r u y
F P

Figure 8.3: Feedforward only control. Now, we’ve added a prefilter to shape the reference,r, so that the
output,y, can more easily follow it.

What is feedforward control? In some sense, it is what we designed before anyone though of using

feedback. If we had a physical system denoted by P in Figure 8.2, we would generally want to direct it

to do something by giving it a push (a reference signal, r) and hoping that the measured output of that

physical system, y would some how have a relation to r. Often the ideal was that y would exactly equal

r. Clever people realized that if we shaped the input with some sort of filtering, denoted by F in Figure

8.3, we might get a better result. In particular if we could set F = P−1, then we would have y = r and

could go home.

At this point, the main issues were sensitivity to parameter variations, disturbance rejection, and the

inability to truly invert P for all inputs, conditions, and frequencies. Feedback, as simply diagrammed in

Figure 8.4, allowed us to become less sensitive to plant variations and to disturbances, but the design

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
513

Winter 2022-2023
December 31, 2022

Feedforward

e u
S

-
C P

r y

Figure 8.4: Basic feedback control often ignores the possibility of using feedforward.

er u y
SS

-
C

FPI

FCLI P

Figure 8.5: A more generic, but basic diagram of possible feedforward/feedback loop configurations.
Here we see the two most likely feedforward blocks, so-called plant input (PI) and closed-loop input
(CLI).

energy spent designing C such that y = PC
1+PC r behaved well almost seemed to relegate feedforward to the

less of the two methods, often ignored in theoretical work – but finding many ad-hoc implementations

in industry.

Since the late 1980s, feedforward has regained it’s swagger in the academic/theoretical circles. Many of

these methods have been formalizations of methods that had proven successful, reliable, and beneficial

in practice. It’s the model I love of find a solution to the problem, then figure out if and why the

solution works in general.

So, what is feedforward control today? Well it is almost always used in conjunction with feedback control,

hence the term: feedforward-feedback control. It generally means control involving a signal that is not

from the sensor(s) used for the feedback portion. That is, we sense the controlled output and use it

in the control, that’s feedback, but if the signal is not the controlled signal, even if it’s from a sensor,

then it’s feedforward. This generally holds so long as one allows in repetitive controllers and adaptive

feedforward cancelers that use a quantity derived from the feedback signal (e.g. one or more repetitive

components that have been isolated) to calibrate an add-on controller that feeds forward a canceling

signal independently of the work of the feedback controller, C.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
514

Winter 2022-2023
December 31, 2022

Feedforward

Looking at the generic feedforward-feedback controller diagram in Figure 8.5 we can describe many of

the feedforward structures.

• From reference to the plant input, (FPI), circumventing the feedback controller in the forward

path.

• From the reference to the closed-loop input, (FCLI), reshaping the reference to effectively incresase

input-output bandwidth without amplifying sensor noise.

• From the reference to the closed-loop input, (FCLI), reshaping the reference to remove certain

poor components that adversely affect the closed-loop response (input shaping).

• From some repetitive component of the error signal, e.g. repetitive control (RC) or adaptive

feedforward cancellation (AFC).

• From an auxiliary sensor, often used to detect and remove a disturbance before the feedback loop

has to deal with it. (Noise canceling headphones do this, although the headphones themselves are

not in a feedback loop.)

Now, a high bandwidth signal from any sensor can have noise while our reference signals are largely

considered “noise free”. High bandwidth feedback loops can amplify noise (see Bode’s Integral Theorem)

but as there is “none” in our reference that’s not an issue for feedforward. Even if the signal comes

from an auxiliary sensor, the insertion point in the loop and thereby the noise amplification is different

(see PES Pareto). Even with repetitive control or adaptive feedforward cancellation, the repetitive

component is estimated via a slow averaging process, dramatically lowering the noise in the repetitive

signal used by the feedforward portion of the control loop.

Finally, we could add iterative learning control here, in which a new reference path is recomputed at each

time step based on the error results of the prior steps, but that is for another day or chapter.

The structure of this chapter is as follows:

• We start with the basic concepts of feedforward control in Section8.4.

• Section 8.5 describes measurements we can make on combined feedforward/feedback systems to

characterize them for control.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
515

Winter 2022-2023
December 31, 2022

Feedforward

•

• Section 8.6 starts with a practical example of input shaping feedforward control.

• Input Shaping Feedforward (Section 8.7) is simply a prefilter that can be thought of as either

shaping or removing input signal components or can be thought of as adjusting the input output

closed-loop transfer function of a system without broadening the feedback bandwidth.

• Another example of what is called feedforward involves Repetitive Control (RC) or Repetitive

Feedforward Control, discussed in Section 8.8. In this case, a repetitive portion of the error signal

is isolated – typically using some sort of learning or adaptation – and this is used in feedforward to

cancel out the repetitive error. Even though the correction signal is calibrated using old data, it

can be adjusted to minimize the error, and thus acts with little or no phase lag (for the repetitive

component).

• Another form of feedforward control involves using auxiliary sensors to augment the feedback loop

with some feedforward prediction. In this context, a filter is tuned to help predict a disturbance

(by sensing it with the sensor) and then add a calibrated correction to the feedback loop. The

correction is often calibrated using some sort of adaptive tuning scheme that adjusts the input filter

so as to minimize the error induced by the disturbance signal. This correction is faster than what

one might do in feedback because the sensor doesn’t have to wait for the disturbance to cause an

error in the primary feedback loop. Thus, there is far less phase lag between sensed disturbance

and correction. In fact, in chemical process control (CPC) this is the main thing they mean when

they say feedforward. This is described in Section 8.9.

• We summarize things in Section 8.10.

While these might seem disconnected, one thing that all feedforward schemes share is that their correction

signals have much less phase than a correction signal generated as a result of an error in a feedback

loop.

8.4 Basic Concepts in Feedforward Control

A generic SISO feedforward-feedback control system is diagrammed in Figure 8.5. We have included the

two most common feedforward blocks, labeled FPI (plant-input) and FCLI (closed-loop input). These

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
516

Winter 2022-2023
December 31, 2022

Feedforward

two feedforward blocks are different, but related. Usually, when someone uses the term feedforward,

they are implying one or the other of these exclusively. Often, FCLI is termed prefiltering, and is used to

remove dynamics from the input signal that might stimulate resonances in the close-loop system,

TCL = T =
PC

1+ PC
. (8.1)

With some blatant disregard for nonlinearities, sampling, and frequency domain notation, we can get some

general ideas about feedforward-feedback systems by generating the block diagram equations associated

with Figure 8.5.

y = Pu, (8.2)

u = FPIr +Ce, and (8.3)

e = FCLIr − y = FCLIr − Pu. (8.4)

From these we quickly get to:

e = FCLIr − P (FPIr +Ce) , (8.5)

e =
FCLI − PFPI

1+ PC
r, (8.6)

u =
[(C

1+ PC

)

[FCLI − PFPI] + FPI

]

r, and (8.7)

y =
[(PC

1+ PC

)

[FCLI − PFPI] + PFPI

]

r. (8.8)

Generally, either FCLI = 1 and FPI is used, or FPI = 0 and FCLI is used. Looking at these two cases, we

can summarize it as FPI being used to invert the plant, P, and FCLI being used to invert the closed-loop

transfer function (technically, the closed-loop, complimentary sensitivity function), T . Here is the back

of the envelope block diagram math to explain this.

Let FCLI = 1 and FPI = P−1. We will ignore any possible stability, sampling, or nonlinearity issues for

this “best we can hope for” ideal analysis. In this case,

e =
1− PP−1

1+ PC
r =

1− 1
1+ PC

r = 0, (8.9)

u = FPIr =
1
P

r, and (8.10)

y = PFPIr = r. (8.11)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
517

Winter 2022-2023
December 31, 2022

Feedforward

What the heck could ever be wrong with that? Well, a couple of things:

1) If P is a continuous-time plant, it may or may not have non-minimum-phase (NMP) zeros

or even instabilities. Either of these, but especially the NMP causes a problem for inversion.

Furthermore, returning a bit closer to the real world, our model of P, P̂ – which we will use

for inversion – may be a discrete-time model that has delays and NMP zeros not found in P.

2) There is a different issue many of the optimization methods ignore: for almost any physical

system, P is eventually low pass. This means that P−1 is eventually high pass. At some point,

even our perfect inversion of the plant must have tremendous high frequency amplification

to make (8.10) true. It is unlikely that anyone really wants this, even if it could be achieved

(which it probably can’t). The idea of a responsive car is good, but one that follows every

shake of the driver’s hand is not. Practically speaking, P̂−1 should flatten out or even roll off

at some frequency.

“Alright,” you say. “You’ve convinced me. I’ll set FPI = 0 and use FCLI. In perhaps the only time in

which it is appropriate to channel our inner Lee Corso, “Not so fast, my friend!” Assume we do so. Then

e =
FCLI

1+ PC
r, (8.12)

u =
CFCLI

1+ PC
r, and (8.13)

y =
PC

1+ PC
FCLIr. (8.14)

We are feeling good at this point and decide that inversion has to work here, so we set

FCLI =

(

1+ PC
PC

)

F
1+ F

. (8.15)

Cool. At this point,

y =
K

1+ K
r, (8.16)

and we have replaced the input-output behavior of TCL with a new TCL,new of arbitrary bandwidth.

1) We get the same issue as before that TCL may have NMP zeros.

2) Even if that is not the case, it is almost universal that TCL – unless it is designed by a

severely twisted individual, is also low pass at some point and thus 1+PC
PC runs into our

“infinite bandwidth high pass filter” issue. For any real system, we know that we can only

invert the dynamics over a limited frequency range before we call off the dogs and limit what

we ask of the system.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
518

Winter 2022-2023
December 31, 2022

Feedforward

These considerations should be clear for even the simplest example of block diagram math laced with

some common sense about control systems. Any high frequency amplification comes at the expense of

amplifying noise, or slamming actuators around. The famous “chatter” of the bang-bang control problem

for time-optimal control of a saturated double integrator is exactly this. The system asks for huge gain

at high frequency to achieve its optimal result.

At the same time, our simple analysis (and plenty of experience) tells us that we can achieve significant

improvements to real control systems with a little bit of feedforward and some common sense.

8.5 Measurements for Feedforward-Feedback Control

Adjusted
Reference

Reference

Error
(e)

Control
(u)

Position
(y)

S

-
FCLI

FPI

Controller
Reference
Generator

Physical
System

ADC

DAC Amps

Sensor

S S

S

SS

Stim Stim

Stim

Stim

PlantDigital Controller

Closed-LoopFeedforward

F OutputCLI

F OutputPI

Figure 8.6: The basic diagram of possible feedforward/feedback loop configurations on steroids. Here we
see the two most likely feedforward blocks, so-called plantinput (PI) and closed-loop input (CLI). We also
have locations where one might stimulate and measure the system in order to extract model information.

A key to being able to integrate feedforward control with feedback is once again, good system modeling

based on good system measurements. In our newly augmented problem, we have added two extra blocks,

plus their associated connections. We need to be able to make accurate loop measurements in order to

do accurate design of these systems. An example of such a block diagram is shown in Figure 8.6.

In order to use the FPI block, we need a good measurement of the plant, either via opening a closed-loop

measurement or via a three-wire measurement (Section 3.18). To make proper use of FCLI, we need to

set FCLI = 1, FPI = 0, and then do a straightforward measurement of the closed-loop response.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
519

Winter 2022-2023
December 31, 2022

Feedforward

8.6 A Practical Example of Using FCLI Based Feedforward with
Feedback

exref
xout

S

-
CFCLI

TCL

P

Figure 8.7: Combined feedback-feedforward control using the FCLI input.

10
1

10
2

10
3

10
4

−80

−60

−40

−20

0

Frequency (Hz)

M
ag

. (
dB

)

Closed−Loop Responses

10
1

10
2

10
3

10
4

−1500

−1000

−500

Frequency (Hz)

P
ha

se
 (

de
g)

Extracted from Closed−Loop Meas.

Measured Closed Loop Response
Linear Model
Delay Model
Linear + Delay Model

Figure 8.8: Measurement and curve fit of closed-loop response of nPoint NPXY30 x stage. The measured
response can be fit well with a simple second-order linear filter plus delay.

One more section shows how these methods can be used to simplify, augment, and parallel model-

based work. There is a fair body of work on feedforward control, including the Zero Phase Error

Tracking Controller (ZPETC) of Tomizuka [193] and the Zero Magnitude Error Tracking Controller

described but not called such in [274, 118] and discussed in Rigney et al. [275]. Feedforward has

also been a driving effort in the X-Y control of AFMs [239, 240, 241, 242]. The series of work on

combined feedforward-feedback control for mechatronic systems such as X-Y positioners for atomic force

microscopes [243, 113, 244, 245, 246, 247, 248, 249, 250] point very strongly to the advantages of using

feedforward when the system is presented with a reference signal. These methods largely depend upon

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
520

Winter 2022-2023
December 31, 2022

Feedforward

10
1

10
2

10
3

10
4

−80

−60

−40

−20

0

20

Frequency (Hz)

M
ag

. (
dB

)

Equalizing Closed−Loop Response

10
1

10
2

10
3

10
4

−1500

−1000

−500

0

Frequency (Hz)

P
ha

se
 (

de
g)

Extracted from Closed−Loop Meas.

Measured Closed Loop Response
Linear Model
Inverse Filter
F_CLI compensated Tcl

Figure 8.9: FCLI implemented as as simple double lead filter more that doublesthe bandwidth while
keeping the controller simple.

first generating an effective feedback controller based on a plant model and then designing a feedforward

controller based on the closed-loop model generated from the plant and controller models. The work

in [246] and [250] did not assume knowledge of the plant model, but only of the closed-loop response,

as diagrammed in Figure 8.7. Still, as described in [244, 245] the objective was described as perfect

tracking, in which FCLI = T−1
CL. While this might seem reasonable to do if TCL was minimum phase,

most engineers would realize that this result requires infinite bandwidth from FCLITCL, which would not

only violate the Nyquist Criterion, but also cause the actuators to operate at high speed on amplified

quantization noise. A more practical look at this yields a much simpler and more practical design method.

Realizing that the tools described earlier, particularly the built in stepped-sine of Section 3.26, with a

digital patch panel that allows us to make measurements from wherever we want in Figure 3.30, we can

easily make a stepped-sine measurement of our closed-loop system. If we have adhered to the design

approach of making the open loop look like an integrator and preserving 60◦ of phase margin, then our

closed-loop FRF, TCL(f) is likely to have the response of a low-pass filter.

From here, we can measure TCL and generate our desired transfer function shape (say a low-pass filter

with more bandwidth). Our fitting routines can then adjust a multinotch to provide what ends up being

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
521

Winter 2022-2023
December 31, 2022

Feedforward

10
1

10
2

10
3

10
4

−60

−40

−20

0

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

T_cl, F_cli, & T_ff_fb: x_feedforward response

T_cl −3 dB point = 205 Hz
T_cl Peak = 0.5 dB at 199.9 Hz
T_ff_fb −3 dB point = 594 Hz
T_ff_fb Peak = 2.1 dB at 199.9 Hz

10
1

10
2

10
3

10
4

−400

−300

−200

−100

0

P
ha

se
 (

de
gr

ee
s)

Frequency (Hz)

Measurement: sweep_2011_03_02__11_04_22

Measured T_cl
Measured F_cli
Measured T_ff_fb

Figure 8.10: MeasuredTCL, FCLI, andTFF,FB on nPoint NPXY100 stage. The x axis feedback controller
was autotuned to produce theTCL response. A new measurement was done, and from this a feedforward
tune was done to generateFCLI. The measurement was repeated to generate the combinedTFF,FB =

FCLITCL response.

a combination of lead-lag filters and notch/bump filters. An example of this is shown in Figure 8.10,

where an nPoint NPXY100 stage was measured in the X axis. A feedback controller was generated using

a combination of PID and multinotch filters as described in Section 4.15. From there, the feedforward

controller was generated as described above to almost triple the input-output bandwidth. Note that

unlike the perfect tracking filter, we do not try to for infinite bandwidth. We can see this in the plots of

Figures 8.11, where the improvement of reference tracking is very clear beyond the bandwidth of TCL.

The use of a double lead also means that the requested increased bandwidth can be limited to something

reasonable for the physical system to achieve. Returning to our model-based approach, we see that this

is equivalent to asking for FCLITCL to have a shape of a new low-pass filter with approximately triple the

reference to position bandwidth of TCL alone.

FCLITCL with perfect tracking and infinite bandwidth is optimal, but sucks. FCLITCL with improved

tracking and high bandwidth is excellent.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
522

Winter 2022-2023
December 31, 2022

Feedforward

0 2 4 6 8 10 12 14 16 18

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (ms)

X
 P

os
iti

on
 S

ig
na

l (
V

)
10 µm scan at 60 Hz

No FF
With FF

0 2 4 6 8 10 12 14 16 18

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (ms)

X
 P

os
iti

on
 S

ig
na

l (
V

)

10 µm scan at 100 Hz

No FF
With FF

0 2 4 6 8 10 12 14 16 18

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (ms)

X
 P

os
iti

on
 S

ig
na

l (
V

)

10 µm scan at 200 Hz

No FF
With FF

0 2 4 6 8 10 12 14 16 18

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (ms)

X
 P

os
iti

on
 S

ig
na

l (
V

)

10 µm scan at 300 Hz

No FF
With FF

Figure 8.11: Time response data measured using an Agilent (now Keysight) Infiniium 54831M digital
scope on the physical system shows the effect of the feedforward. From upper left to lower right, the
reference input is a triangle wave of 60 Hz, 100 Hz, 200 Hz, and300 Hz. At 60 Hz, both pure feedback
and combined feedforward/feedback controllers can match the first and third harmonicsconstituting the
triangle wave, but as the reference frequency goes up, only the combined controller can keep up. The
combined controller can match the fundamental of the 300 Hz reference, but the third harmonic is about
10 dB down, leading to rounding of the response. On the left, the response differences between the pure
feedback and combined feedforward-feedback controllers are minimal when the reference frequency is
within the bandwidth ofTCL at 100 Hz. The differences become severe when the triangle wave bandwidth
is raised to 300 Hz. The combinedTFF,FB response is able to match the fundamental, but the higher
harmonics of the triangle wave are attenuated.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
523

Winter 2022-2023
December 31, 2022

Feedforward

8.7 Input Shaping Feedforward

Up to now, we have thought of input-filter feedforward as a way to get the input into the closed-loop

system either by bypassing the compensator in the forward path (FPI) or by compensating for and

extending the input-output behavior of the closed-loop system (FCLI). In both cases, we have tried to be

reasonable: we cannot perfectly invert most plants using FPI and we cannot perfectly invert most closed

loops using FCLI. Even when perfect inversion is theoretically possible, we want to roll off our transfer

functions at higher frequency if only to not as for infinite input-output bandwidth or violate the Nyquist

criterion.

Both of these have – in a large sense – relied on the ideas that we have:

a) identified all the main resonances and anti-resonance of the plant for FPI and

b) largely flattened out any critical resonances in the closed-loop response.

In doing so, we can improve the input-output response of the system without incurring extra sensor noise.

However, there is another use of the input filter, FCLI, and that is to shape the input so as to remove

signals and/or artifacts that might affect the closed-loop behavior. This use was somewhat obscured by

our example where the original closed-loop response was shaped to be a nice low pass filter. Instead,

many closed-loop responses have some artifacts at higher frequency (or even in their pass band) which

might be stimulated by signals such as step functions at r. We can design FCLI then to remove those

components from rso that the problematical closed-loop dynamics never get stimulated.

In the diagram of Figure 8.5, FCLI appears as a causal prefilter, but if the reference input is known in

advance, the functionality of FCLI can be accomplished in a causal/acausal filter, removing any possible

phase effects from the application of FCLI. This prefiltered input can be applied in place of the original

r with the idea that it will not stimulate any of the residual resonances in TCL.

One version of this input shaping, in which a specific set of pulses is convolved with the input to

remove particular frequency components of that signal, was pioneered by Neal Singer and Warren Seering

[276, 277]. However, it can be argued that this is simply applying a very specific prefilter to the input

signal to remove those signal components.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
524

Winter 2022-2023
December 31, 2022

Feedforward

8.8 Repetitive Feedforward Control

Hard Disk
Tracks

Optical Tracks
(Circular)

Optical Tracks
(Spiral)

Figure 8.12: Track eccentricity in hard disks (left), optical disks with circular tracks (center), and optical
disks with spiral tracks (right). In the case of the hard disk, the media is attached to the spindle and
the tracks written, resulting in a smaller overall eccentricity but an eccentricity that includes the spindle
frequency and harmonics, often related to the number of balls in the ball bearings. (Modern hard disks
now have fluid bearing spindles, but mostly for audio noise minimization.) In the case of the optical drives,
the tracks are nearly perfect around the disk hole, but this hole is can be put off center on the spindle – as
it’s removable media. Thus, there are few harmonics, but a large fundamental frequency eccentricity.

Rotating machinery, e.g. magnetic and optical disk drives, motors, milling machines, generators, jet

engines, propellers, tend to have disturbances that are at the rotational frequency and harmonics of that

frequency. In many of these machines, such as the disk drives and the milling machines, the disturbance

itself is not so important (within bounds) as the error generated by the disturbance. A familiar example

is that of track eccentricity in optical and magnetic disk drives, diagrammed in Figure 8.12 and described

in the caption. While these disturbances are often within the controller bandwidth, a normal feedback

controller may lack the gain at the harmonic frequency to reject the disturbance sufficiently. This looks

like a job for repetitive control and unlike many advanced techniques, this has been simple and effective

enough to enjoy wide usage in industry.

One of the most common versions of feedforward control is repetitive control, diagrammed in two different

forms in Figures 8.13 and 8.14. Looking at either of these forms, one would immediately sputter that

they are not feedforward, but augmented feedback controllers. One would be right, except that these

controllers are designed to only act on the repetitive portion of the error signal, and by converging on

and acting on the repetitive portion, they are in fact doing feedforward, causal/acausal control with no

delay on the future errors which have already occurred in the past. (Somewhere, Yogi Berra is smiling.).

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
525

Winter 2022-2023
December 31, 2022

Feedforward

er u y
SS

-
C

CRC

P

Figure 8.13:The model structure for add-in repetitive control (RC) when the designer can only read
and inject at the error signal.

er u y
SS

-
C

CRC

P

Figure 8.14:The model structure for add-in repetitive control (RC) when the designer can read the
error signal but inject beyond the feedback (FB) controller.

The form in Figure 8.14 is that of an add-in repetitive controller, while the second form is most often

associated with what is known as an adaptive feedforward canceler (AFC). In its most common usage,

the Fourier coefficients of a periodic disturbance are estimated and then a feedforward cancellation term

is generated using sinusoidal signals with the estimated coefficients [190, 278]. Note that this assumes

that the disturbance is sinusoidal. If not multiple cancelers will be needed.

The form in Figure 8.13 is that of an add-in repetitive controller. The basic idea behind this is the

internal model principle[279]. Briefly, the internal model principle states that to cancel a particular

repetitive disturbance with a feedback loop, one should include a model of that disturbance within the

loop. (Hence the name internal model.) The idea is to have an N-tap delay in positive feedback inside

the loop, where NTS is the period of the disturbance. This integrates/averages the repetitive portion of

the error signal generating an internal model of the periodic disturbance to cancel it out.

That being said, the two structures above augment the main controller, C, in different ways. In Figure

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
526

Winter 2022-2023
December 31, 2022

Feedforward

8.13,

CTot = (1+CRC) C, (8.17)

while Figure 8.14 produces

CTot = CRC +C. (8.18)

In either case, we need to make certain that the repetitive controller doesn’t destabilize the loop. In

Equation 8.17, the repetitive controller’s multiplying effect on C, and so if in particular 1 + CRC has

an integrating action (as things that average do), we need to make certain that they integrator action

happens at a low enough frequency not to affect loop stability.

In Equation 8.18, the structure adds on to C, and again we need to make certain that it doesn’t affect

the loop at crossover. The structure of an AFC is to tune a sine and cosine generator at the repetitive

frequency to cancel out a sinusoidal disturbance at that frequency. From a frequency domain perspective,

this is equivalent to having a very narrow filter with little or no phase effect. Thinking about this filter

on the open-loop response, we would want it to be applied somewhere well away from the open-loop

magnitude crossover frequency. This often can be handled because the repetitive signals to be canceled

are typically at far lower frequency that the open-loop magnitude and phase crossover frequencies.

8.8.1 An Adaptive Feedforward Canceler

An adaptive feedforward canceler can be implemented as follows. The matching portion consists of

modeling the disturbance as a Fourier series and identifying the relevant Fourier coefficients. From here,

the cancellation portion merely injects this matched signal into the loop at an appropriate spot to either

cancel the signal (ignoring the error) or follow the signal. The harmonic corrector for a once around

disturbance (at the first harmonic) could take the form of

OAcorr = A1 cos(ω0t) + B1 sin(ω0t) (8.19)

For a Fourier series expansion of the disturbance, the first Fourier coefficients can be computed as

A1 =
2
T

∫ T

0
cos(ω0t)φ0(t)dt (8.20)

B1 =
2
T

∫ T

0
sin(ω0t)φ0(t)dt, (8.21)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
527

Winter 2022-2023
December 31, 2022

Feedforward

where T = 1
f0
= 2π
ω0
. As this will almost certainly be done in a digital system, the integral needs to be

approximated by a sum such as

a1 ≈
2
T

N−1∑

k=0

cos(ω0tk)φ0(tk) (8.22)

b1 ≈
2
T

N−1∑

k=0

sin(ω0tk)φ0(tk) (8.23)

where N is the number of samples in a revolution. Similarly, the Fourier coefficients for the nth term of

the Fourier series can be approximated by

an ≈
2
T

N−1∑

k=0

cos(nω0tk)φ0(tk) (8.24)

bn ≈
2
T

N−1∑

k=0

sin(nω0tk)φ0(tk). (8.25)

The analysis here will be done for the first Fourier coefficients (i.e. for the first harmonic), but it

is understood that it could easily be done for any linear combination of harmonics that were deemed

important to cancel.

Some refinement of these terms is possible for programming a digital system. Given that ω0 = 2π f0 is

the spindle frequency in radians/second, then the period of a revolution would be T0. Assuming that the

phase error is sampled N times per revolution, then for time sample tk, the following are equivalent.

ω0tk = 2π f0tk (8.26)

= 2π
tk

T0
(8.27)

= 2π
k
N
. (8.28)

Equations 8.22 and 8.23 become

a1 =
2
N

N−1∑

k=0

cos

(

2π
N

k

)

(8.29)

b1 =
2
N

N−1∑

k=0

sin

(

2π
N

k

)

. (8.30)

This can be implemented by updating a running sum for a1 and b1 at each sample time around the

disk. At the end of a revolution, the sums are scaled to give that revolution’s estimate of the Fourier

coefficient. This scaled sum is then used in a regression to adapt the actual coefficients.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
528

Winter 2022-2023
December 31, 2022

Feedforward

Pseudo-code for a computer algorithm to implement this can take the following form:

At each step, k:
if ((k mod N) == 0) % At the end of each revolution

a1 =
2
N ∗ aΣ % Scale running sum for cosine

b1 =
2
N ∗ bΣ % Scale running sum for sine

A = A + µa1 % Adapt coefficients using portion of sums

B = B + µb1

aΣ = 0 % Reset running sums for next revolution

bΣ = 0
end

aΣ = aΣ + cos
(

2π
N k

)

% Update the sums

bΣ = bΣ + sin
(

2π
Nmk

)

OAcorr(k) = A ∗ cos
(

2π
N k

)

+ B ∗ sin
(

2π
N k

)

% Update the corrector

end

The advantages of a converged sine/cosine generator are:

1) The effect is very narrow about ω0 (f0). Remembering the concept of resolution bandwidth,

the longer T0 and the smaller µ, the longer the ”integration time,” so the narrower the

frequency width of the “filter.”

2) Because it works on repetitive stuff, it has no phase delay. “Everything old (and periodic),

is new again.” It is akin to a causal/acausal FIR filter with symmetric taps.

3) Which means that we have a very narrow band filter spike at ω0 (f0) with no phase delay on

the repetitive controller. A log of gain to reject the fundamental, which is great so long as

f0 is well below the open-loop gain crossover frequency or lots of notching (with no phase

hit) if f0 is well below the crossover.

4) The keys are to converge and generally stay away from the open-loop gain and phase crossover

frequencies.

5) We can add as many of these as we need for each k f0 harmonic.

6) Generally, the parallel structure has a simpler stability properties than the add in structure

of Equation 8.17 and Figure 8.13.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
529

Winter 2022-2023
December 31, 2022

Feedforward

The disadvantages of a converged sine/cosine generator compared to a repetitive controller are:

a) It requires one sine generator component for each harmonic of f0. This can become compu-

tationally expensive if we have a lot of harmonics.

b) The computations here are relatively simple, except that one has to calculate sines and

cosines. This is a library call in most computation cases, which can cost 30-70 CPU clock

cycles, based on the CORIC algorithms [227, 228]. For fast real-time computation, these may

need to be substituted with look-up-tables (LUTs) which can be used to get fairly accurate

estimates of the sines and cosines in around 10 clock cycles.

8.8.2 Add-In Repetitive Controller Primer

The basic form [280, 281, 282] of the discrete time version of this controller comes from putting a delay

chain in a positive feedback loop as shown in Figure 8.15. This comes from the notion that in discrete

time, any periodic signal with period N can be generated by a delay chain with a positive feedback loop.

W (z)W (z)
0

S z -1 z -1z -1 z -1

+

+

N

Figure 8.15: Repetitive control can be implemented by putting a string ofN unit delays in a positive
feedback loop. Note that this version has the delays in the forward path of the feedback loop.

S
+

+

W (z)W (z)
0

z -1 z -1 z -1 z -1

N

Figure 8.16: An alternate implementation of repetitive control puts the string ofN unit delays in the
feedback path of the positive feedback loop.

Let the discrete time sequence for {w0(k)} be defined as

w0(k) = {w(0),w(1),w(2), . . . ,w(N − 1),0,0,0, . . .} . (8.31)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
530

Winter 2022-2023
December 31, 2022

Feedforward

Then the discrete time Z transform of this sequence will be

W0(z) = w(0)+ w(1)z−1 + w(2)z−2 + . . . + w(N − 1)z−(N−1) (8.32)

In Figure 8.15, W(z) will be a transform of {w(k)} which is the repetition of {w0(k)}. That is to say,

when {w0(k)} is injected, nothing will emerge at w(k) for N time samples. At that point, the {w0(k)}
sequence appears at w(k) and reinjects back into the feedback summer. The {w0(k)} sequence going into

the reference input is then 0, so all we have is the recirculating sequence. In the case were the {w0(k)}
sequence repeats itself after N samples, we see this positive feedback structure as providing a periodic

integrator structure with period N. This periodic integrator, when coupled into a feedback loop will work

to drive out all disturbances of period N, just a single integrator would drive out a constant disturbance.

C (z)-1

r

add on repetitive
controller

discrete
time

system
model

-
S S C(z)

-1 P(z)
-1

k r
z

-N

1- z
-N

e
u

r

Figure 8.17: Discrete time repetitive controller added to adiscrete time closed-loop system. Note that the
positive feedback loop is now compressed into thez−N

1−z−N term.

Now,

W(z) =
z−N

1− z−N
W0(z). (8.33)

Note that if we want to avoid the first N delays before the repetitive controller has an output, we can

take the W(z) signal off immediately after the summing junction. This can be drawn equivalently as

shown in Figure 8.16. In this case,

W(z) =
W0(z)

1− z−N
. (8.34)

This simple unit can be added as a repetitive control block to a nominal feedback system. This is shown

in Figure 8.17 when the nominal system has already been discretized and in Figure 8.18 when the nominal

system is viewed in a continuous time form. Note that in Figure 8.18, the repetitive controller has been

included in the single term Cr(z−1).

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
531

Winter 2022-2023
December 31, 2022

Feedforward

continuous

time

system

model

add on repetitive

controller

-
S S C(s) P(s)

C (z)-1

r
A/D D/A

e

u
r

Figure 8.18: Discrete time repetitive controller added to continuous time closed-loop system. Note that
from the perspective ofCr(z−1) the system looks unchanged.

Note that in general, the only required component of Cr(z−1) for complete cancellation is the 1
1−z−N factor.

Adding a term to the loop of the form

Cr(z
−1) = kr

z−N

1− z−N
(8.35)

does not guarantee stability of the new closed loop system. This is analogous to the fact that adding

an integrator into a standard control system does not guarantee that the new system is stable. In fact,

changes may be necessary to provide stability. That is to say, that even if the original closed loop system

were stable, the insertion of this repetitive controller may result in an unstable system. To compensate

for this, a more general form of the repetitive controller

Cr(z
−1) =

R(z−1)
S (z−1) (1− z−N)

(8.36)

is often used.

Looking from input ur to “output” e, the repetitive controller Cr(z−1) in Figure 8.19 sees the following

discrete time transfer function

e
ur
=
−P(z−1)C(z−1)

1+ P(z−1)C(z−1)
=

z−dB(z−1)
A(z−1)

= Gs(z
−1). (8.37)

The control design problem then becomes to find a repetitive controller, Cr(z−1) so that the overall closed

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
532

Winter 2022-2023
December 31, 2022

Feedforward

-
S S C(z)

-1 P(z)
-1

C (z)-1

r

e

u
r

Figure 8.19: Generating a model of the system for stability analysis.

-
S C (z)-1

r

e0 u
r

A(z)
-1

B(z)
-1

z
-d

Figure 8.20: Stability analysis version of the system.

loop discrete time system,

Trc(z
−1) =

R(z−1)z−d B(z−1)
S (z−1)(1−z−N)A(z−1)

1+ R(z−1)z−d B(z−1)
S (z−1)(1−z−N)A(z−1)

(8.38)

=
R(z−1)z−dB(z−1)

S (z−1) (1− z−N) A(z−1) + R(z−1)z−dB(z−1)
(8.39)

is stable. That means the denominator must have all it’s roots inside the unit circle.

Since it is often hard to solve this problem in real time, the original work on applying repetitive control to

disk drives [280] suggests a prototype repetitive controller. For a nominal closed loop system described

by

Gs(z
−1) =

z−dB(z−1)
A(z−1)

(8.40)

and assuming that this nominal system is stable (the roots of A(z−1) all lie within the unit circle), then as

long as B(z−1) and (1− z−N) are co-prime (i.e. they do not have any common factors) then the following

controller can provide perfect regulation for repetitive disturbances with a period of N:

Cr(z
−1) =

krz−N+dA(z−1)B−(z)
(1− z−N) bB+(z−1)

(8.41)

where b ≥ max
∣
∣
∣B−(e− jω)

∣
∣
∣
2
and kr ∈ (0,2). Note that B(z−1) = B−(z−1)B+(z−1) where B+(z−1) is the part

of B(z−1) that has roots inside the unit circle (so it can be safely inverted) and B−(z−1) is the part of

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
533

Winter 2022-2023
December 31, 2022

Feedforward

B(z−1) that has roots on our outside the unit circle (so it cannot be inverted). Since the latter part

can’t be canceled properly, the trick of putting B−(z) in the numerator takes the reciprocal roots of the

outside the unit circle portion and uses those to at least cancel the phase effects of the part of B(z−1)
that cannot be canceled completely.

+

S q(z)
-1

+
z -1z -1

N

k r

Figure 8.21: Addition of a “q filter” to the repetitive controller.

+

S q(z)
-1

+
z -1z -1

N

k r

R(z)
-1

S(z)
-1

Figure 8.22: Generalized repetitive controller.

One final addition is generally made to relax the stability requirements in a practical system. In this

case, a filter, q(z−1) is inserted into the
(

1− z−N
)

repetitive controller as shown in Figure 8.21 for the

simple controller and in Figure 8.22 for the generalized controller. In the latter case, using the prototype

controller means that

Cr(z
−1) =

krz−N+dq(z−1)A(z−1)B−(z)
(

1− q(z−1)z−N
)

bB+(z−1)
(8.42)

and
R(z−1)
S (z−1)

=
krz+dA(z−1)B−(z)

bB+(z−1)
. (8.43)

Typically, q(z−1) is a low pass filter which is interpreted as giving up some rejection of the higher frequency

harmonics for improved stability.

The Small Gain Theorem [283] states that the overall system will be stable if

∣
∣
∣
∣
∣
∣
1− kr

A(e− jω)B−m(e jω)B(−e jω)
bmB+m(e− jω)A(e− jω)

∣
∣
∣
∣
∣
∣
<

∣
∣
∣
∣
∣

1
q(e− jω)

∣
∣
∣
∣
∣
, (8.44)

for ω ∈ [0, π], and with Am, Bm, and bm representing the modeled quantities of the closed loop system

parameters.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
534

Winter 2022-2023
December 31, 2022

Feedforward

8.8.3 Repetitive Control Versus Adaptive Feedforward Correction

As mentioned in [190] repetitive control and adaptive feedforward correction are functionally equivalent

to each other from a long term analysis perspective. What determines which one is the better candidate?

Fundamentally, in a digital implementation, it comes down to a choice between computer cycles and

memory space. Typically, repetitive control takes fewer code cycles to implement. One merely implements

the positive feedback loop in rewritable memory (RAM) with a few possible filter additions (the R(z−1),
S (z−1), and q(z−1) filters). The main cost is the memory storage to contain all the taps in this positive

feedback loop. For a 50 kHz servo sample rate and a 50 Hz spindle rotation, one requires 1000 memory

locations for this filter. On the other hand, adaptive feedforward cancellation requires far fewer memory

locations. To cancel a single sinusoid, one would need two coefficients for the sinusoids (the Ā1 and B̄1

terms), one for the adaptation gain, and two for the running sums, for a total of 5 long term memory

storage locations. The tradeoff here is that one has use more CPU cycles to generate the sine and cosine

signals and do the parameter adaptation.

Both of these methods have design tradeoffs that can simplify them to bring them closer to the other. In

the case of repetitive control, the repetitive controller can be sampled at a slower rate than that of the

rest of the servo system. While this has a minor effect on the CPU cycles needed, the main savings is

that the memory requirements also decrease by the subsample factor. In the case of adaptive feedforward

cancellation the generation of the sine and cosine terms is the most computationally expensive and can be

adjusted depending upon the accuracy required in generating those terms. Furthermore, a subsampling

can also be used to save CPU cycles. (It will not cut the memory requirements.)

One of the advantages of the AFC is that one selects only those harmonics that one wants to cancel.

This allows the repetitive spikes to be very, very narrow (depending on the quality of the integration)

thus making the design very specific. If we stay away from the crossover frequencies, we can be pretty

confident that this will work. In the repetitive controller, it tries to cancel anything that is integrated in

by its delayed integrator. The analysis of the controller has to be done based on the nominal closed-loop

system, that can be more complex.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
535

Winter 2022-2023
December 31, 2022

Feedforward

Voice
Coil

Motor

Spindle

Disks

a1

a2

Disturbance

a = a + a1 R T

a = a - a2 R T

Figure 8.23:Diagram of hard disk drive (HDD) subjected to translational and rotational accelerations to
the head disk assembly (HDA). The individual accelerometers can be thought of as detecting the sum
and difference of rotational acceleration, aR, and translational acceleration, aT . If the accelerometer
gains are equal, then their difference gives 2aR.

S S

PES

- u y

Track
Reference

disturbances
modeled as

position errors
of disk

disturbances
modeled as

forces on actuator

Difference in this is a modeling one:
force on actuator needs to be integrated to get position disturbance,
force acts on HDA, not actuator.

but

Head
Position

TPES

C P

Figure 8.24:Disturbances entering a hard disk drive control loop. They are often modeled as dis-
turbances to the plant input, but in this case, the disturbances have no effect on the actuator and
instead move the track out from under the actuator. In this case, it is better to model the disturbance
as entering directly into the error signal (on the left).

Tracking Loop

External
Disturbance

Harmonic
Corrector

Adaptive
Feedforward

ΣΣ

- (e)
PC

u

(y)

uCPES
Track
Center

Head
Position

aR

Figure 8.25:Disk drive servo loop showing auxiliary loops.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
536

Winter 2022-2023
December 31, 2022

Feedforward

S S

PES

Disturbance

- u

uff

Track
Reference

Head
Position

Coefficient
Adaptation

Drive Loop

Auxiliary
Sensor(s)

TPES

TSensor

C

Cff

Fdh

P

Figure 8.26:Using extra sensors to detect disturbances in a hard disk drive (HDD) control loop. The
sensor detects the disturbance and compensates for it in the control signal. The auxiliary sensor
feedforward loop is calibrate by decorrelating the sensed disturbance with the PES.

8.9 Feedforward from Auxiliary Sensors

One more form of feedforward is by using a signal that comes from an auxiliary sensor, not in the

nominal feedback path, to improve disturbance rejection in the control system, mainly by “seeing” or

sensing the disturbance and injecting a canceling signal into the feedback loop. This frees the feedback

controller from every having to deal with the disturbance. An example I worked on comes from the hard

disk industry, where the nominal loop sample rate is limited due to the “sectored servo” approach that

multiplexes servo information with user data along the track. If you want to sample faster, you have to

loose some user data, which gets to a point of diminishing return fairly quickly.

The drives are often subject to external disturbances that move the Head Disk Assembly (HDA) out

from under the read/write head (which is at the end of the actuator arm). The servo can nominally

follow some of the disturbance, but it works better with one or more auxiliary sensors. In the diagram of

Figure 8.23, we see that this particular disk has two linear actuators mounted on the HDA. If properly

configured and balanced, their average gives a measure of the translational disturbance (which should

have minimal affect on the Position Error Signal, PES) while their difference gives a measure of the

rotational disturbance (which greatly affects PES). If we could properly sense the rotational disturbance,

we could reject the effects of this rotational disturbance. One idea is to use a rotational accelerometer

[187]. However, rotational accelerometers are more expensive than two linear accelerometers, shown in

Figure 8.23.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
537

Winter 2022-2023
December 31, 2022

Feedforward

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−2

0

2

Time (sec)

P
E

S
 (

vo
lts

)

Feedforward Gain = 0

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−2

0

2

Time (sec)

P
E

S
 (

vo
lts

)

Feedforward Gain Being Adapted

Offtrack Limits

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−2

0

2

Time (sec)

P
E

S
 (

vo
lts

)

Feedforward Gain Settled

Figure 8.27:Adaptive feedforward accelerometer compensation of rotary vibration on a KittyHawk disk
drive. The top plot shows the effects of rotary disturbance with no feedforward. The red dashed lines
are the offtrack limits. When adaptive feedforward is turned on in the middle plot, the effects of the
disturbance are quickly minimized. In the lower plot, the drive stays within the offtrack limits, despite
the external rotary disturbance.

In practice, it is hard to adapt entire control systems for mechatronic systems, largely because of the

previously discussed issues with physical properties being obscured in the discrete model. However,

certain problems decompose this way, and this is the case for accelerometer feedforward on disk drives.

Hard disks multiplex position information with user data [31], so there is a desire to minimize the position

information so as to maximize the user data. However, hard drives used in server farms encounter

disturbances from mechanical interaction with other hard disks in the same server. In particular, while

the drives have balanced actuators that makes the offtrack signal largely immune to translational shocks

and vibration, the very nature of a rotary actuator makes it highly susceptible to rotary shocks and

vibration in the plane of the disk. One would expect the main feedback loop to reject these disturbances,

but the sample rate restrictions due to the trade-off between servo information and user data limit this

capability.

One solution is to add an auxiliary loop using extra sensors to the basic drive control problem as shown

in Figure 8.25. Furthermore, these sensors have no effect on user data and so they can be sampled

faster than the main loop. These loops are adaptive [187, 284, 285]. Early on, it was thought that

rotary accelerometers would be the best choice for these problems, since they would pass only the rotary

disturbances and not the translational ones. However, rotary accelerometers are expensive, so two linear

accelerometers are differenced, as shown in Figure 8.23. The linear accelerometers are quite inexpensive,

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
538

Winter 2022-2023
December 31, 2022

Feedforward

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.5

1

1.5

Time (s)

k
1

a
n

d
 k

1
a

k
1

(Actual) and k
1a

(Estimated)

Measured

Estimated

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.5

1

1.5

Time (s)

k
3

a
n

d
 k

3
a

k
3

(Actual) and k
3a

(Estimated)

Measured

Estimated

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-0.5

0

0.5

Time (s)

P
E

S

As estimates converge, PES envelope shrinks.

Tied to a gain estimate.R

Tied to a gain estimate.T

Figure 8.28:Adaptation simulation using noise driven aR and aT , i.e., aR and aT are driven by noise
only. The parameters adjust to minimize PES. Note the rapid convergence of k3a to k3 (balancing
accelerometer gains) and k1a to k1 (adjusting feedforward gain from aR). The effects of disturbance on
PES rapidly goes away.

but that comes at the price of mismatch between the two, which can be in the range of ±15%. This often

limits the benefits of such a feedforward system [286]. This problem was recently solved by the author

by using the parasitic error signal caused by unbalanced accelerometers when subjected to translational

shock and vibration to calibrate those same accelerometers to each other [188].

The HP KittyHawk 1.3” disk drive was slated for mobile applications where shock and vibration would be

an issue. While translational disturbances were assumed to be decoupled because of the balanced rotary

actuator, rotational disturbances entered directly into the tracking loop. Furthermore, the sectored servo

[31, 287] employed by hard disks limited the sensor bandwidth of the PES signal. However, there was

no limit on accelerometer sample rates. This allowed for multi-rate feedforward cancellation using the

accelerometer, building on the development of [288, 289].

At a poster session at the 1996 IFAC World Congress in San Francisco [187, 284], Matt White was

presenting work on rejecting rotational disturbances in full size (5 1/4” at the time) disk drives [285, 290].

Matt’s work was a careful study with multiple adaptive parameters. At some point when the session

got quiet he turned to me and asked something to the effect of, “How the heck does your work look so

simple?” As we talked, a couple of differences emerged: First, the smaller KittyHawk disk had simpler

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
539

Winter 2022-2023
December 31, 2022

Feedforward

dynamics and I was able to formulate the problem into a single parameter adaptation of the unknown

rotary accelerometer gain. This allowed a simple Least Mean Squares (LMS) algorithm that switched on

only when there were sufficient levels of detected rotary disturbance for the algorithm to have guaranteed

persistence of excitation [45] (Figure 8.27). The other difference was that I had programmed the Banshee

Multivariable Workstation (BMW, Section 10.12.1) to sample the accelerometer 4 times as fast as the

PES. This simple exploitation of a physical feature of the system dramatically improved my rejection

bandwidth.

Years later this “physically inspired approach” would pay off again when I was doing some consulting

work on disk drives. Again the problem was rotary disturbance rejection, this time by differencing

two inexpensive linear accelerometers that might not be balanced, as diagrammed in Figure 8.23. The

mismatch between the two, which could be in the range of ±15% limited the benefits of such a feedforward

system [286]. Eric Miller had built a shaker system that inadvertently shook the drive with both rotation

and translation. He was chagrined by this, as the translational disturbances, aT , showed up in PES –

which should not have happened with a balanced actuator. The “Aha!” moment was when we realized

that the only way that aT showed up in PES was parasitically through mismatched accelerometers,

and this provided the key to an augmented adaptation algorithm. In this, the input from translational

disturbance, aT , to PES was used to equalize the accelerometer gains while the input from rotational

disturbance, aR, to PES could then minimize the effects of rotational disturbances [188], as shown in

the plots of Figure 8.28. While these experiences are by no means exhaustive, they do point once again

to the retention of physical parameters, this time for adaptation, as a means of dramatically simplifying

control problems.

8.10 Feedforward Control Summary

When I began writing this chapter, I figured I should throw in a few basic feedforward concepts, such as

the concept diagram of Figure 8.1 or the specific block diagram of Figure 8.5. Then, as things seem to

go with me, I remembered, “Oh, there was repetitive control. And there was feedforward from auxiliary

sensors. And . . . ”

Generally, we end up calling something feedforward control when we want to use it to help our servo

loop, but we don’t want it to affect the feedback loop much. These techniques end up being used more

than one might expect in industry because they have loads of physical intuition attached and they can

be added into a functioning feedback control system.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
540

Winter 2022-2023
December 31, 2022

Feedforward

I want to reemphasize a key unifying thread in all these different forms of “feedforward”

additions to a feedback loop. While these might seem disconnected, one thing that all feed-

forward schemes share is that their correction signals have much less phase than a correction

signal generated as a result of an error in a feedback loop. To paraphrase Meghan Trainor,

it’s all about the phase . . .

8.11 Change Log for Chapter 8

• 2019 07 03: Added in an outline for chapter near the beginning. Increased emphasis on unifying

feature of feedfoward methods being the lack of phase lag in the correction signal.

8.12 Chapter Summary and Context

This chapter has been all about trying to get a unified view of what is called feedforward control in the

context that we are normally discussing feedback as our fundamental driver.

One of the key unifying concepts in all the different control schemes that get labeled as “feedforward”,

we are talking about something that – when properly tuned – applies control signals with little or no

phase lag. This is a very powerful realization in that it means that the control signal itself can be far

more aggressive than what we would do if we had to worry about gain and phase margins. There is a

catch, though, and this catch is that this aggressive correction depends on model accuracy. So long as

we have an accurate (and representative of reality) model in the regions for which the signals will be

applied, then this stuff is pretty great.

What this means is that if we take the same diligence to deriving the models we use in our feedforward

methods as we do for those we use in our feedback methods, we have a very good chance of augmenting

the controller performance, while leaving the feedback controller free to handle those things that cannot

be predicted.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
541

Winter 2022-2023
December 31, 2022

Feedforward

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
542

Winter 2022-2023
December 31, 2022

Chapter 9

State Space: The Good, the Bad, and the
Practical

9.1 In This Chapter

In this chapter we will discuss state-space methods for control analysis and design. However, as there

is a huge amount of material already published on the subject, this chapter will first try to give insights

into what state space originally intended for (or sold as) and how it is used now.

We will introduce state-space control in a simple way that leads us to the methodology of full-state

feedback. While feedback from every state in the system is great, the control signal still has to pass

through the available system inputs, which leads us to the concept of controllability. Since we can only

rarely directly measure every state in a system, it is almost always necessary to to reconstruct/estimate

the state from available measurements. This leads observers and the concept of observability.

Observers are model-based measurement devices, and so this leads naturally to a tutorial on model-based

measurements. The issue with these is that the treatment is very different across different applications.

The observers take several forms, depending upon whether or not we know the input to the physical

system. Again, we return to the filtering versus feedback views of the world discussed earlier. Include

feedback versus filtering view in introduction, then reference that here. We will try to present a more

unified view of these. Model-based measurements are very dependent upon the model, not only the

543

State Space

accuracy of the model in representing input-output data, but also the internal parameterization from

which we get any insight (or not) into the internal workings of our physical system.

From an implementation perspective, we will stick with computer-based, discrete methods. For modeling

purposes, we will return to continuous-time representations, but as we are focused on implementing

control methods in this book, we will assume that the state-space implementation will have to be

digitized and will have to deal with “all that computer stuff”.

All that is well and good, but the devil is in the details and the details get messy. The “details portion”

have most recently been dominated by mathematics – matrix mathematics – in the texts. However, from

a practical point of view, much of this severely affects the connection between the physical understanding

and the discrete-time model states. That physical connection brings intuition and helps us debug our

implementation. The normal treatments leave us stranded here. The back end of this chapter deals with

this via state-space representations that strongly preserve physical intuition.

One more point made repeatedly throughout this book gets doubly emphasized in this chapter: modeling.

State-space methods are model-based methods and model-based methods depend upon . . . wait for it

. . . a good model. This seems like an absurd point to have to reiterate, but experience has shown that

one of the key factors limiting the practical use of state-space methods is that folks are so focused on

implementing “big ideas” that they do not go through the mind-numbing grind needed to get a computer

based model that is both representative of the system behavior and can be readily debugged.

9.2 Chapter Ethos

Going back to the start, explaining dynamic systems starts with physical observations that are compressed

into models via (usually for our purposes) differential equations. What we learned in those college math

classes was that the most general differential equations were very hard to solve analytically. First-order

equations were relatively easy and intuitive. Many second-order equations were difficult although we

could still make progress with special cases, such as linear, constant coefficient systems.

From here, we found that to handle higher-order equations, we usually needed to either use transform

methods or recast the equation as a system of first-order differential equations. That system turned the

differential equation into a linear algebra problem. “And then came the matrices . . . ”

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
544

Winter 2022-2023
December 31, 2022

State Space

When we move to state-space methods, we move to those systems of first order differential equations.

To handle this in a digital computer, we approximate the system model with a discretized version of the

system of differential equations.

Why go through all of this work? The three most obvious reasons are:

• If one could precisely measure each of the states in our system and apply feedback from all these

states, one could (in principle and with certain assumptions) easily control the system arbitrarily

well. There are reasons – both technical and practical – why we can’t actually live this dream.

There are specific technical conditions that we must meet in even the most ideal circumstances.

• Even if we cannot directly measure each of the states, we can often (again subject to certain

technical conditions in even the most ideal circumstances) estimate/recreate the behavior of the

states from signals that we can measure. If we are using this estimates for state-feedback control,

then we must remember that almost always we want to estimate the states at a far higher bandwidth

at which we want the full closed-loop system to operate

• This reconstruction of internal signals/states promises us something not easily accessible from

transform (a.k.a. transfer function) methods: the chance to reconstruct the inner workings of our

physical system based upon our available measurements and a model of the dynamic system.

There are lots of names for this reconstruction: estimator, observer, even the overly specific “Kalman

Filter”. We will tend to use the term, observer, since estimator is used in a lot of other contexts

and Kalman Filter is a very specific form of observer. In the classic sense, an observer is essentially

a model-based simulation of the system, where the simulation states are corrected by comparing the

model/simulation outputs with the corresponding measured outputs of the physical system. We’re going

to pause here to take all that in:

• First of all, the model-based measurement supposedly gives us an understanding of the internal

workings of the system. However, this internal understanding is entirely dependent upon the

internal states and dynamics of the model having some connection with the physical system.

Many versions of a model can give the same input-output behavior.

• The model quality matters. We cannot emphasize this enough. Any attempt to use a model to

understand the workings of a dynamic system depends upon how well that model captures the

behavior of that dynamic system.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
545

Winter 2022-2023
December 31, 2022

State Space

• Deriving an accurate model from a combination of first principles and measurements of an actual

physical system is hard. It is a massive data compression problem almost as soon as we are away

from textbook examples.

• However, the benefits of having a good model (modulo all the work it takes to get to one) may

very well make it worth it. If we didn’t have at least some hope that this was true, we would

dismiss state-space methods forever.

State space (SS) is the way to do things “right” in academia and yet seems to have limited used use

in industry, depending usually upon the size and expense of the system, and of course, the number of

resonances that have to be dealt with. To get industry folks to use SS, there has to be a clear set of

advantages, and there has to be a clear path around the gotchas. It has always been pitched as a way to

handle MIMO systems, but many MIMO systems are really handled as a decoupled set of SISO systems.

To really make the case, we need to show the specific advantages of state space over transfer function

methods in practical, ordinary SISO systems:

a) As noted above, state space potentially gives us a structural look inside the dynamics of a

system having order > 2, beyond the ones that we can typically measure with sensors, and so

the state space model should be realized in a way that the discrete form represents physical

reality. (Note: This is almost never the case for any standard discretization method. It is a

big part of why this chapter pushes the biquad state space (BSS) structure.)

b) State space can allow us to build a model framework for things like missing samples in a

system or integrating together multiple sensors of different rates and qualities.

c) State space can allow us to embed nonlinear relationships in the states that are more difficult

to represent by transfer functions. These modifications are more often useful in modeling and

simulation of the plant than in controls analysis, but perhaps useful as non-linear observers

(estimators).

At the same time, on the “non-fighter-jet problems”, i.e. those for which one cannot assign a team of

engineers to tune every single device, the use of state space is limited in physical systems. The exceptions

seem to be:

1) Systems that are adequately characterized by simple second order models.

2) Expensive “fighter-jet” systems.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
546

Winter 2022-2023
December 31, 2022

State Space

3) Slow dynamic systems for which analyzing with analog models and “sampling fast” work.

The common thread for all these systems is that the designers can get an adequate model, either by

system slowness/simplicity or by massive effort. We would like a more graceful way to do this for most

of our systems.

For these systems, a plant model is derived, typically via discrete-time model, time domain identification

(ID) or via fast Fourier transform (FFT) based frequency response methods followed by a curve fit.

Because these measurements lack the signal-to-noise ratios (SNR) of the stepped sine, there are a lot of

noise blips that get included into the models. For some systems, it is not uncommon to have 30 or 40

states in a physical system that really might just have a rigid body and 3 dominant flexible modes.

At this point, the high-order model is unsuitable for control design and some form of numerical model

reduction is done, typically by finding the principal components of the model – a.k.a. something singular

value of the state-transition matrix related – and removing those that fall below a numerical threshold.

It is important to note that at no point in this process have I mentioned the physical model parameters

entering into the model (except if one were to want to back out their values from the model-reduced

discrete-time parameters). This is the issue that I have. The physical intuition vanished long before the

first model reduction step. In fact, if one were to change the sample rate, there would be very little

intuition about the relationship between one discrete time, model reduced model and one at twice or

half the sample rate. I believe that this is the property that makes the use of state space a rarity rather

than standard practice in physical systems.

The structure of this chapter is as follows:

• A high level, very physical example used to teach high school STEM students the ideas of feedback

[291, 292]. It is the high level look at what we can do with full state feedback and why we need

estimators (Section 9.3).

• A tutorial on model-based measurements, which is another way of describing state-space measure-

ments. This section goes through the typical state-space structures, but adds a bit of completeness

about what they are all about and why some things that are called the same thing are so structurally

different (Section 9.7).

• A discussion on why actually implementing this stuff is a lot harder than it was in that first graduate

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
547

Winter 2022-2023
December 31, 2022

State Space

school linear systems class. Actually, this is an ongoing discussion, but it starts around (Section

9.10).

• An adaptation of the multinotch filter structure to state space is first discussed for a discrete-time

implementation (Sections 9.15, 9.16, and 9.17). There are some patterns to the matrices, and

those are discussed in Section 9.18.

• We put this structure together into a current estimator for state feedback in Section 9.19.

• In order to model actual structures, we need some rigid body models that are nor usually needed in

filters such as the multinotch [54]. A first cut at this is made in Section 9.20,where we discretize

a double integrator in a way so as to make it compatible with the rest of the BSS structure. We

show examples of how well this models a mechatronic lab system in Section 9.21.

• Section 9.12 describes how to add integration into state space via the use of auxiliary states.

• Section 9.13 covers the often ignored subject of how to inject a reference input into a state-space

controller.

• In Section 9.22, we start the move to discussing the analog BSS by first discussing continuous-time

biquads. This is followed in Section 9.23 which describes the Analog Biquad State Space Form.

• Because we will almost certainly run these in a computer, it makes sense to discuss discretization

of the Analog BSS (Section 9.24). We discuss some of the structural properties of the matrices

that make a difference here in Section 9.25.

• Now, for discrete-time models, we were able to trick our way into adding a double integrator using

a Trapezoidal Rule Equivalent which maintained the direct feedthrough that is characteristic of

the BSS structure, but we cannot guarantee direct feedthrough in an analog/continuous structure.

Thus, we discuss continuous-time rigid body dynamics and low pass filters in Section 9.26. In

particular, we need to understand what handling the lack of direct feedthrough means to our

structure (Section 9.27.

• The limitations of biquads, particularly in extracting the interior states of these rigid body systems

has inspired a different structure that allows better access to what would be the interior states of

a biquad. The bilinear state space (BLSS) form (Section 9.28, [5]) is particularly useful when the

dynamics of this second order block are not complex, and we want to track the signals. As with

biquads, we need to make some discretization choices in our structure (Section 9.29.

• We can then use the BLSS to generate new discrete-time rigid body models (Section 9.30). There

are some examples of this and what kind of interior signal looks it provides (as opposed to a pure

biquad) in Section 9.31.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
548

Winter 2022-2023
December 31, 2022

State Space

• Section 9.32 provides some continuous time biquad examples, showing how closely the states of

the continuous and discrete time BSS structures correspond. This is – as Joe Biden might say –

a big f***ing deal.

• Finally, we summarize the chapter and what we believe are the key advantages of the biquad state

space (BSS) structure in Section 9.33.

9.3 State Space Control for High Schoolers

An introduction to control principles for high school level students can be generated starting with the

physical schematic of a double integrator in Figure 2.11, which gives the block diagram of Figure 9.1.

f a v x1
m
_ 1

S
_ 1

S
_

Figure 9.1: The block diagram of the double integrator.

Modeling spring and damper feedback gives us the schematic of Figure 2.14, repeated in Figure 9.2.

f a v x
S

-

1
m
_ 1

S
_

b

k

1
S
_

Figure 9.2: The block diagram of the double integrator with velocity and position feedback.

A great way to take a step back and understand state space control is from an example used to introduce

control mathematics to high schoolers. We start with a simple double integrator diagram of Figure 9.1

and add spring and damper terms feeding back from the two integrators as in Figure 9.2. We are

all familiar with both of these systems, but viewed this way, we have gone from an open-loop double

integrator to one with feedback from both energy storage states in the model. That is, we have full state

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
549

Winter 2022-2023
December 31, 2022

State Space

feedback. The characteristic equation is defined as:

mẍ = f − bẋ − kx ←→ X(s)
F(s)

=

1
m

s2 + b
m s + k

m

,

Time Domain Transform Domain (9.1)

where we see these feedback terms showing up explicitly in the time domain equation and this is trans-

formed on the right into a relationship which we can introduce to them as a transfer function. On the

transfer function side, they see that if we set k and b to 0 we are back at our double integrator case.

Furthermore we can relate the second order relationships of k and b and m to those of an oscillatory

system by matching coefficients in Equation 9.2 which relates the spring and damper parameters to that

of a simple resonance:
X(s)
F(s)

=

1
m

s2 + b
m s + k

m

=
Kω2

d

s2 + 2ζdωd s + ω2
d

, (9.2)

where √

k
m
= ωd = 2π fd ⇐⇒ fd =

1
2π

√

k
m
, (9.3)

and
b
m
= 2ζdωd ⇐⇒ ζd =

b

2
√

km
. (9.4)

Now, we have gone, in very straightforward steps, from a double integrator system to one with feedback

from the outputs of both integrators. We have shown using some pretty basic math that we can model

the behavior of this very physical system. Equations 9.3 and 9.4 tell us about the behavior:

• k/m tells us how fast it rings.

• b/m (in relationship to k) tells us how long it rings.

• Making k bigger means the spring is stiffer, which results in higher frequency ringing.

• Making b bigger relative to k causes the ringing to damp out faster.

• Because denominator polynomial is 2nd order, we can get roots with quadratic equation.

• Any polynomials that are more than 2nd order are a lot harder.

To illustrate the changes we can make by changing k/m and/or b/m we can show some relatively

straightforward plots in Figure 9.3. Since we have described the damping and the oscillatory frequency

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
550

Winter 2022-2023
December 31, 2022

State Space

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

Compensated System: K_n = 1, f_d_fsf = 8, zeta_d_fsf = 0.1

Force
Position

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

Original System: K_n = 1, f_d = 8, zeta_d = 0.3

Force
Position

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

Original System: K_n = 1, f_d = 8, zeta_d = 1

Force
Position

Figure 9.3: Double integrator with spring and damper feedback. Resonant frequency (ωd) at 8 Hz. We
show the effect of changing the damping (ζd) from 0.1 on the far left, to 0.3 in the center, to 1 on the far
right.

as functions of b, k, and m, we can show how changing their relationship can change the damping and

dramatically change the behavior of the system. We have introduced these as properties of the physical

system itself. We are trying to understand/model the behavior with these equations and plots to gain

insight.

f a v x
S

-

1
m
_ 1

S
_

b

bf

k

kf

1
S
_

Figure 9.4: Adding our own feedback to the spring-mass-damper system.

At this point, we have shown them the effects of nature’s feedback parameters on the behavior of our

simple system, and it is natural to ask, “What if nature’s k and b are lame? Can we compensate?” The

obvious answer is to introduce augmented feedback into the system as shown in Figure 9.4. We can

describe this as adding our own signals to feed back the output of each energy collector (which we call

a state) back into the input of the system. We can analyze this to pick our parameters by looking at

modifications of Equations 9.2–9.4.

X(s)
F(s)

=

1
m

s2 +
b+b f

m s + k+k f

m

=
Kω2

d

s2 + 2ζd fωd f s + ω2
d f

, (9.5)

where

fd f =
1
2π

√

k + k f

m
and ζd f =

b + b f

2
√

km
. (9.6)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
551

Winter 2022-2023
December 31, 2022

State Space

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

Original Sys: K_n = 1, f_d = 8, zeta_d = 0, Compensated System: K_n = 1, f_d_fsf = 8, zeta_d_fsf = 0.1

Force
Position (original)
Position (compensated)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

Original Sys: K_n = 1, f_d = 8, zeta_d = 0, Compensated System: K_n = 1, f_d_fsf = 8, zeta_d_fsf = 0.8

Force
Position (original)
Position (compensated)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

Original Sys: K_n = 1, f_d = 8, zeta_d = 0, Compensated System: K_n = 1, f_d_fsf = 20, zeta_d_fsf = 0.8

Force
Position (original)
Position (compensated)

Figure 9.5:Our spring mass damper with ζd = 0 and fd = 8Hz. The cyan curve shows this response,
which rings without stopping. The blue curve shows the response of the system to the same input,
when we humans have augmented nature’s feedback. We then use our augmented feedback to
change ζd to 0.1 (far left), ζd to 0.8 (center), and even change the frequency, fd to 20 Hz.

The point is that this is very straightforward way that we can augment nature’s feedback with our own.

This is called “full-state feedback”, which is the proverbial “800-pound gorilla” [293] of control. Full-state

feedback, direct feedback from every energy storage node of the system (or state), is powerful because

we can drive the roots of the closed-loop characteristic equation to anything we want. It is also relatively

simple, conceptually. Now, for things beyond second order continuous time, linear time-invariant (LTI)

systems, it gets more complicated, but most state-space theory is taught from an LTI perspective.

The point of this is to illustrate how we can manipulate the feedback loop almost trivially if we can

access all the states and do full-state feedback. Almost all of the work in making state space methods

work is about getting to some approximation to that. The other point of the above is to see the amount

of physical intuition we can get into a feedback loop if we have this kind of a decomposition and are

looking at physical parameters. Unfortunately, there is less work done for this latter part, but we will try

to show a way out of that later in the chapter.

f1 f3

x1 x3

k1

k2 k3

k4

b1

b2 b3

b4

m1 m2 m3 m4

Figure 9.6:Extending our spring mass damper system to one with a lot more springs, masses, and
dampers.

Although we could spend more time on the theories of how and where to place the poles, the really

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
552

Winter 2022-2023
December 31, 2022

State Space

z1

S1

S2

Sno

z2

zno

u1

u1

y1

y1

v1

v1

w1

w1

u2

u2

y2

y2

v2

v2

w2

w2

uni

uni

yni

yni

vno

vno

wno

wno

z1

S1

S2

Sno

z2

zno

Entity
(x ,x ,...,x)1 2 n

Model
(, ,...,)x x x1 2 n

S

Error VectorAdjustment Vector

Input

Filter
Gain

+

-

Figure 9.7:A generalized view of model based filtering. On top is a conceptual view of the physical
system, being driven by a set of inputs (that we may or may not know). At the other end are outputs
which we can measure. On the lower end is our simulation (a.k.a. model of the system). Our model
is driven by the same inputs that we know and measured at the same outputs that we can measure
on our physical system. The key is forming an error and using this error to correct the simulation to
more closely predict the output of the physical system.

critical issue is that we almost never can feed back from every state because we do not have a perfect

measurement of every state. Looking at the example of Figure 9.6, we can ask:

1) What if we can’t measure every “state”?

2) What if physical system is more complicated than our model?

The trick is that since (2) is always true, then (1) is always true. This allows us to discuss really big,

big systems with lots of stuff that we can’t model exactly. Power grid, air traffic control, automated

highways, systems biology, have many more things (states) than can be measured. The general process

steps are:

• Build a simulation.

• Run that simulation in parallel with real world.

• Compare the simulation output(s) to the output(s) that we can measure in real world.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
553

Winter 2022-2023
December 31, 2022

State Space

• Correct the simulation with measurements from the real world.

This is shown schematically in Figure 9.7. In doing so, we get a lot of advantages, including that the

“inside” of our simulation will have useful information we could not measure in the real world, and even

try some things that we might not dare try on a real world problem. The simulation corrected with real

world estimates is an estimator. Building an estimator should allow us to try full-state feedback from the

estimated states. Conceptually, we have covered the issues of state-space systems. What really comes

up next is how we build them to make them useful.

It should come as no surprise that the quality of what one can do with state space control is governed

by a handful of things:

1) How well the model of the system used in the “simulation” actually captures the critical

behavior of the system.

2) How clean the measurements feeding the model corrections are.

3) How fast we can run the model and the measurements, relative to the critical time constants

of the system.

Pretty much everything one can do with state space is limited by these because state-space filtering and

control is model-based filtering and control and one cannot do good model-based filtering and control

without a good model. Sad but true.

9.4 A Note on Notation

It is said that folks can often tell where a control engineer went to grad school by their choice of state

matrix names. In one camp, state-space matrices are {A, b, c, d} for SISO systems and {A, B,C,D} for
MIMO systems. Whether these matrices correspond to continuous or discrete models is often taken from

the context. We have:
ẋ = Ax + Bu
y = Cx + Du

(9.7)

for continuous time and
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)
(9.8)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
554

Winter 2022-2023
December 31, 2022

State Space

for discrete time. In another camp, state-space matrices are {F,G,H, J} for both SISO and MIMO

systems. However, for moving to discrete-time systems, the authors use the so-called Roman-to-Greek

transformation where the state matrices for discrete-time representations become {Φ,Γ,H, J} for both
SISO and MIMO systems. One might note that H and J don’t go through the change in ancient

alphabets transformation as they do not involve any time progression of the states and therefore do not

need to transform (except that the states have been likely changed going from continuous to discrete

form). Thus we have

ẋ = Fx +Gu
y = Hx + Ju

(9.9)

for continuous time and

x(k + 1) = Φx(k) + Γu(k)
y(k) = Hx(k) + Ju(k)

(9.10)

for discrete time.

I personally find that the {A, B,C,D} matrices get used in a whole lot of contexts and is a bit confusing

out of context while I am not fond of typing all the escape sequences to get to Greek letters for the

{F,G,H, J}/{Φ,Γ,H, J} notation. I also thing that J gets used a lot in state equations and transfer

functions so, I prefer the D for the seldom used direct feedthrough. Instead, I have found it less

confusing to use {F,G,H,D} for the state matrices and then add a C or D subscript if the context

between continuous and discrete needed clarification. This gives us:

ẋ = FC x +GCu
y = GC x + DCu

(9.11)

for continuous time and

x(k + 1) = FDx(k) +GDu(k)
y(k) = GDx(k) + DDu(k)

(9.12)

for discrete time. When the context is obvious, we can drop the C and D subscript and make both the

typing and the reading a bit easier. Sometimes, the time indexes will also be subscripts, i.e.

xk+1 = FDxk +GDuk

yk = GDxk + DDuk
(9.13)

because sometimes that makes it easier to parse when reading.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
555

Winter 2022-2023
December 31, 2022

State Space

9.5 The Separation Principle)

One of the things that makes state-space methods in any way tractable is the Separation Principle (cite

Franklin’s student?), which states that one can design a state-space controller by separately designing

the observer and the state feedback separately. From a practical point of view we can only control as well

as we measure and we must understand that the estimator is a filter from the measurement to the state.

As such, we cannot have a control bandwidth that is faster than the observer/estimator bandwidth.

In fact, it is reasonable to see the observer/estimator bandwidth several times the desired closed-loop

system bandwidth so that the phase lag from the observer/estimator filter does not adversely affect the

desired closed-loop bandwidth.

Proof is quite simple and on Wikipedia, so might show it here. End up with block triangular matrix

with the closed-loop dynamics in one diagonal block and the closed-loop observer dynamics in the other

diagonal block.

9.6 Full State Feedback and Its Evil Twin (the Dual Problem)

In the high school explanation of Section 9.3, we mentioned that directly measuring every state in the

system and feeding these back would – in principle and with a linear, time-invariant (LTI) model – allow

us to arbitrarily set the new closed-loop system dynamics. Very specifically, under certain conditions,

directly feeding back all the states – called full-state feedback (FSFB) – can allow us to place the closed-

loop poles of the dynamic system arbitrarily. Full-state feedback is the proverbial “800 pound gorilla” of

control.

To be sure, if we could directly measure each state and inject the right feedback signal based on that

measurement directly into the state, we would be able to do this. However, even our simple high school

example of Section 9.3 had all the feedback signal going through a single input into the system. The

property that allows us to still get the benefits of FSFB through a limited number of inputs is called

controllability. Controllability is usually discussed in terms of matrix math (assuming again an LTI model),

but we want to start more physically. Controllability asks: With this (these) input(s) and these state

equations (system dynamics), can we get from here to there? Rephrasing, the fundamental question of

controllability becomes: from the inputs we have, can we drive this dynamic system’s states arbitrarily?

The more rarely asked, more nuanced question one might ask is: How much effort is required to do that?

How controllable is the system? For a specific example we might ask how much control effort it takes

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
556

Winter 2022-2023
December 31, 2022

State Space

to move a railroad trestle’s natural frequency from 1/100 Hz to 1 kHz?

The dual of this problem involves reconstructing the full state from a limited set of measurements. That

is, since we cannot always – or even usually – measure all the states of a system, the observability

question asks: from a given set of measured outputs, can we fully and accurately reconstruct the entire

state? A follow on is whether or not we can do this as quickly (with as much bandwidth) as we would

like? This follow on becomes significant when we are trading off between trying to filter out noise and

trying to have an observer bandwidth far faster than the desired closed-loop bandwidth.

For the full-state feedback problem, controllability implies being able to set all the poles of the closed-

loop system (assuming an LTI model) to arbitrary locations. For an observer, observability implies being

able to set all the poles of the closed-lop observer (assuming an LTI model) to arbitrary locations: Three

things:

• The controller problem is affecting the real physical system while the observer problem exists only

inside the controller. In modern times, that further means that the controller is on a digital

computer so the observer resides entirely inside a computer.

• Of course, if we use that observer to generate states for full-state feedback (a pretty common

usage), then our observer dynamics do affect the closed-loop system dynamics.

• Finally, as much as anything in control relies on the quality of the model, state-space methods,

both on the controller side and the observer side, rely dramatically on the accuracy of the model

used for the system. (Yes, I am repeating this point incessantly because it is one of the universal

failure points in trying to use state-space methods for anything other than proofs and simulations.)

• Noise; we always have some uncertainty/noise in our measurements and in the inputs driving

our physical systems. We minimize the effects of noise by filtering (which is usually weighted

averaging). The more we filter, the more time delay we add to the signal chain. In filtering

contexts, we average away without worry. In feedback contexts, that delay eats phase margin, so

there is always a tradeoff.

Okay, that was four.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
557

Winter 2022-2023
December 31, 2022

State Space

9.6.1 System versus Realization

We have played fast and loose with the idea of a state-space system. While there is a physical system

out there, that physical system can be represented in many ways. We can worry only about the input-

output mappings in the transform domain (transfer functions) the input-output mappings in the transform

measure (frequency) domain (frequency-response functions), or in the time domain, but even in the latter

there are many, many different models that will give us the same input-output mappings.

Because of this, it is more accurate to talk about a state-space realization. A realization is simply one

embodiment, one version, one parameterization of a system model from which we have mapped input-

output behavior. A large part of the allure of state space is the idea that we can swap between different

realizations using matrix math (linear algebra again). While this is absolutely true and often very useful,

we want to repeat that moving a realization too far from something that is physically intuitive weakens

our ability to debug the physical system.

9.6.2 Full State Feedback with an LTI Model

Almost always when the term, full-state feedback (FSFB) is used, we have assumed a model (realization)

of the system and are using that state to generate our feedback signal. In the case of an LTI model, we

have the state matrices defined as in Equation 9.11

ẋ = FC x +GCu. (9.14)

For controllability, we are dealing with the input-to-state equation, not the output equation, so only the

part in Equation 9.14. This defines a system of differential equations that constitute a realization of the

dynamic system. The behavior of the homogeneous part is defined by the FC part while the particular

solution (how the input gets into the states) requires both FC and GC.

In discrete time, the most common form of the equations we will use are from Equation 9.13, where we

again only care about the input to state portion:

xk+1 = FDxk +GDuk. (9.15)

Here the model is predicting what the next state value will be from the current state and current input.

How we get from {FC,GC} to {FD,GD} is all about discretization and as we will see later, the realization

we choose can have a strong effect on how we discretize the realization.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
558

Winter 2022-2023
December 31, 2022

State Space

Whether continuous or discrete, one way to check controllability is with the Controllability Gramian:

C =
[

G FG · · · Fn−1G
]

, (9.16)

where there are n states in the system. Note that we are not concerned with H or D as they do not

affect the input-to-state results. We have also dropped the C or D subscripts, since the structure is the

same for both continuous and discrete domains (although the matrices are clearly different). The basic

check is that C has to have full rank for the realization to be controllable. One interpretation of this

is that each column of C can be viewed as a step further into the realization states where the powers

of F either get us extra (filtered) derivatives or extra (filtered) time steps. If the matrix has full rank

(nonsingular for SISO systems) then you can move to every state from the designated input(s).

9.6.3 The Dual Problem: Observers

From a physical system perspective, it is absurd to think we might be able to measure every state of the

system. If we look closely enough, most systems are not really linear, not really time invariant, and not

defined by a finite number of energy storage or vibrational modes. We just have to limit how closely we

look to get anything done. Perhaps in certain well-engineered systems, we could measure all the critical

storage/vibrational modes in the system, but generally measurements are opportunistic: What signals

can we measure and what signals are critical to implementing feedback well?

Generally, this means we have a lot fewer measurement points than states, so this brings about the

observability problem: From our limited set of measurements, can we fully and accurately reconstruct

the state of our system realization? There are caveats hear, but this is the controllability problem flipped

around. The measured outputs are defined by the lower portions of Equations 9.11 and 9.13, i.e.

y = GC x + DCu (9.17)

and

yk = GDxk + DDuk. (9.18)

Note that there are no derivatives or steps forward in time,. Instead, the measured output(s), y, is a

function of both the current state, x, and the input(s) to the system, u. Now, in many texts, the direct

feedthrough term, D, is missing because there is an assumption that the system is inherently low pass

eventually, and this will show up in the model as a lack of direct feedthrough. However, it is very helpful

here to think in the frequency domain: Although we know that any physical system short of the Big Bang

must have finite bandwidth (and therefore a zero D matrix) it is entirely possible that in any bandwidth

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
559

Winter 2022-2023
December 31, 2022

State Space

of interest, we might have direct feedthrough. We just are not modeling out to a high enough frequency

to see the roll off. In this case, we have a non-zero D matrix).

Even with a non-zero D matrix, observability is about being able to extract the state information from

the output and so in an LTI context is independent of the input. This means the direct feedthrough

matrix, D plays no role. The observability Gramian, O is defined as:

O =
[

HT FT HT · · · (FT)n−1HT
]

. (9.19)

Practically speaking, if the contribution of the direct feedthrough to the output dominates the state-to-

output signal, we may ave some issues separating out the components in finite time.

9.6.4 Some Simple Controllability/Observability Examples

It is useful to share a couple of trivial examples that illustrate some of these concepts without the Gramian

matrices.

u y
S

c

s+c

a

s+a

b

s+b

Figure 9.8:A simple controllability/observability example.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
560

Winter 2022-2023
December 31, 2022

State Space

The system in figure 9.8 has an input-output transfer function of

Y(s)
U(s)

=
b

s + b
, (9.20)

but this realization has three states:

ẋ1

ẋ2

ẋ3

=

−a 0 0
0 −b 0
0 0 −c

x1

x2

x3

+

0
b
c

u (9.21)

y =
[

a 1 0
]

x1

x2

x3

, (9.22)

where a, b, c > 0. In this trivial example, we see that:

• State 1, x1, is not controllable from u, but is observable from y.

• State 2, x2, is both controllable from u and observable from y.

• State 3, x3, is controllable from u, but not observable from y.

From a transfer function perspective, we have a first-order system, but from our state-space realization,

we know that this really has three separate dynamic states. Perhaps we can observe State 1, but it has

minimal effect on the output, so we do not worry that we cannot affect it with our input. Perhaps we

cannot observe State 3, but know from first principles or measurements during manufacture, that it has

no major effects on our system, so we need not worry about any parasitic coupling from our input to the

state. On the other hand, we may find that pushing the closed-loop bandwidth also affects State 3 in

a way that does not show up at our primary sensor, but manifests itself in damage to the system. This

might prompt us to get another sensor on the system so that we can directly observe State 3. Perhaps

we observe that State 1 dominates the response, but we have no way of doing anything about it. Maybe

that makes us decide to add another actuator so that we can affect State 1.

Another simple example is as follows. The system in figure 9.9 has two states. We can give it a transfer

function of
Y(s)
U(s)

=
2a(s + a) − ε2

(s + a − ε)(s + a + ε)
, (9.23)

where a ≫ ε > 0. [

ẋ1

ẋ2

]

=

[

−a − ε 0
0 −a + ε

] [

x1

x2

]

+

[

a + ε
a − ε

]

u (9.24)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
561

Winter 2022-2023
December 31, 2022

State Space

u y
S

a+ε

s+a+ε

a-ε

s+a-ε

Figure 9.9:Another simple controllability/observability example.

y =
[

1 1
]
[

x1

x2

]

(9.25)

Technically, both states are controllable from u and observable from y, but how much they are really

depends upon the value of ε. When ε = 0, we can affect both x1 and x2 from u, but not separately.
Similarly, both states are observable as a tandem, but not individually. We cannot separate these two

using only one measurement when Equation 9.23 reduces to:

Y(s)
U(s)

=
2a(s + a)
(s + a)2

=
2a

s + a
. (9.26)

Equation 9.26 shows our issue for controllability and observability: while the structure of Figure 9.9

shows two distinct states, we cannot separate one from the other once ε gets small enough. As ε moves

away from 0, the two roots become distinct. Still for values of ε ≪ a, how distinct is the real issue. Both

states might be separately controllable and observable, but that might be something that requires a lot

of time or samples or massive inputs to sort out. If we factor in uncertainty at both the input (often

called process noise) and the output (often called measurement noise) as well as quantization and finite

word length issues,, the separation requirements on ε grow quite a bit. This is something to consider

when models are technically controllable or observable, but really not for all practical purposes. Again,

maybe this is not an issue if we are only happy to affect the input-output response and not worry about

the individual states. After all, the transfer function of Equation 9.26, especially with a > 0 should be

an easy one to adjust.

The key takeaway from both of these examples is that it is important to know the context before we can

determine how important controllability and/or observability of a particular state-space realization is to

us.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
562

Winter 2022-2023
December 31, 2022

State Space

9.7 A Model Based Measurement Tutorial

In some ways, state feedback seems simpler than state estimation, as there is only one real step. If our

state is denoted by the vector, x and if our controller output is a function of the states, u = −Kx, then
we are simply picking K based on our model of the system and where we want the closed-loop dynamics

to end up.

For state estimation, we actually have to run the model inside the controller. Furthermore, while it is rare

to try state feedback without an estimator, it is relatively common to have state estimators (observers)

that are not used for state feedback.

The next section will present an overview tutorial on state estimation, otherwise known as model-based

measurements.

We enter into state space by pulling our nth−order LTI differential equation into a system of n 1st−order
differential equations, and then packing them into a matrix form. If we are starting with a discrete-time

LTI difference equation with a uniform sample period, we pull our nth − order LTI difference equation

into a system of n 1st − order difference equations, and pack them into their own matrix form.

Now, referencing our high school spring-mass-damper example from Equation 9.1 the “state” represents

the internal memory of the system, the energy storage if you will. So, the x state is a vector of x sub-

terms, in this case position (x), velocity (ẋ), and acceleration (ẍ) although the latter is not considered

part of the state, but the derivative of the state. A bit confusing, but extra notation would slow things

down and be confusing. Now, a set of state equations for our simple, continuous time, linear, time

invariant system (CT-LTI) are:

[

ẍ
ẋ

]

=

[

− b
m − k

m

1 0

] [

ẋ
x

]

+

[1
m

0

]

f ⇐⇒ ˙̄x = FC x̄ +GCu. (9.27)

Here we have used x̄ as the state vector to reduce confusion with the position and velocity terms, while

the force input, f , is our general input, u.

These equations are a particular form that correspond to our physics equations and retain some physical

meaning. However, because matrix equations can be transformed through linear transformations, it turns

out that there are an infinite number of representations. This gets somewhat confusing to both novices

and advanced folks as they get wrapped around the notation. For my purposes in this book, I will try to

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
563

Winter 2022-2023
December 31, 2022

State Space

stay as close as reasonable to some sort of well structured physical model. Hopefully, what I mean by

that will be clear in the what follows.

I’ve defined the state above, but to correspond to an equivalent transfer function, we need to also have

an output. Outputs are defined by the output matrices, which can simply be considered a choice of where

we put our sensor (or which measurements are available). The most natural measurement is position,

which results in the following output equation:

[

y
]

=
[

0 1
]
[

ẋ
x

]

+
[

0
]

f ⇐⇒ y = HC x̄ + DCu. (9.28)

However, we can just as easily use a speedometer or tachometer to measure velocity, resulting in the

equation:
[

y
]

=
[

1 0
]
[

ẋ
x

]

+
[

0
]

f (9.29)

Finally, although this is rarely seen in textbooks, we might choose to measure acceleration. After all,

accelerometers exist, and so now, we have a problem because the “state” does not contain acceleration,

ẍ. The derivative of the state does however and if we choose to measure acceleration, we can use the

state equations to redefine our acceleration output as:

[

y
]

=
[

ẍ
]

=
[

− b
m − k

m

]
[

ẋ
x

]

+
[

1
m

]

f (9.30)

Note that neither position, x, nor velocity, v = ẋ have direct feedthrough from the input force, f .
However, acceleration, which might be measured with an accelerometer, does. That means that the

input force instantly appears at the acceleration output of the system.

This state space form makes use of several matrices, and so the above equations can be rewritten as

˙̄x = FC x̄ +GCu
y = HC x̄ + DCu

(9.31)

When it is obvious that x is the state vector and not the horizontal position, we will drop the vector bar

from x̄ and make the reading simpler by using x.

Note that through all of this, I haven’t discussed noise at the inputs or the outputs. I will when we start

talking about generating observers in Section 9.7.3.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
564

Winter 2022-2023
December 31, 2022

State Space

9.7.1 A More Generic Continuous Time Model

A more generic second order system would be described as:

ẍ = −a1ẋ − a2x + u (9.32)

y = b0ẍ + b1ẋ + b2 (9.33)

with the following transfer function description:

(

s2 + a1s + a2

)

= U(s)

Y(s) =
(

b0s2 + b1s + b2

) (9.34)

Y(s)
U(s)

=
b0s2 + b1s + b2

s2 + a1s + a2
(9.35)

We could put this into a state space form as well:

[

ẍ
ẋ

]

=

[

−a1 −a2

1 0

] [

ẋ
x

]

+

[

1
0

]

u⇐⇒ ˙̄x = FC x̄ +GCu. (9.36)

and with the output as in the transfer function we have

[

y
]

=
[

b1 − b0a1 b2 − b0a2

]
[

ẋ
x

]

+
[

b0

]

u⇐⇒ y = HC x̄ + DCu. (9.37)

It is worth noting that if b0 = 0, then the system is strictly proper with no direct feedthrough and DC = 0.

At this point, we have the same form as a “controller canonical form” [14, 171]. In another place in this

chapter, or in one of my others, I will show a very useful digression from this form.

This system will show some well known representations of physical systems in state space forms. Again,

we have packed the continuous-time physical system model into a standard state-space model:

˙̄x = FC x̄ +GCu
y = HC x̄ + DCu

(9.38)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
565

Winter 2022-2023
December 31, 2022

State Space

9.7.2 Discrete-Time Version of Spring-Mass-Damper System

“It could easily be accomplished with a computer.” – Dr. Strangelove [294]

Starting with the late 1950s, and becoming far more universal since the 1980s, control systems of any

sophistication (and by that I don’t mean much) have been implemented using a computer. It is of

course possible to implement feedback mechanisms with analog means, e.g. op amp filters, and these

are certainly prevalent in high frequency applications, but the maintainability of computer-based systems

gradually eats up all the applications at low frequency moving to higher and higher frequencies every

year. This will be discussed in much more depth in Chapter 10 which deals with computation for control.

To use a model in a computer, we need a discrete time version. Now, there are lots of ways of going

from continuous time representation to discrete time representations, just as there are many ways to

numerically integrate a curve. In this section, I will use a Trapezoidal Rule equivalent [15], which is

related to the Trapezoidal Rule numerical integration method. It has some niceties to it and some

complications, which I will hopefully discuss more fully below.

We need to have discrete equivalents of our differential equations to work on computers (at least digital

computers and almost nobody uses analog computers anymore). This means that differential equations

become difference equations and instead of state-space equations generating the derivative, they generate

the next step in the progression. This is the most common form for digital control formulations, known

as the step representation, but there are others.

The difficulty is understanding how the continuous time, physical parameters map to discrete time

parameters. This gets a lot worse as the system gets more complicated.

Also, one has to worry about sampling fast enough to capture the essential behavior of the system.

This is codified in Nyquist’s sampling theorem or the Nyquist-Shannon sampling theorem [295, 296, 15],

which says you need to look at the data at least twice as fast as the highest frequency you are trying to

recreate (some details omitted here). In actuality, we need to look at the data 10 to 20 times as fast

as it changes to do a good job. This is because the Nyquist-Shannon rate is asymptotic, based upon

Fourier integrals which go backwards and forwards infinitely in time. As most of us are far more limited,

and as our control systems need to be causal and avoid the time delay associated with going back to

the Big Bang (really hurts the phase margin), we need to sample faster than this asymptotic result.

The bottom line is that in order to use the models of Section 9.3 or the more generic one of Section 9.7.1

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
566

Winter 2022-2023
December 31, 2022

State Space

in a computer based system, we need a discrete equivalent, something that captures the essential behavior

of the continuous time system in a discrete time model. We need to go from differential equation form,

to difference equation form. That is, we need to go from (9.38) to a form:

xk+1 = FDxk +GDuk

yk = HDxk + DDuk
(9.39)

A discrete transfer function version of (9.35)

Y(z)
U(z)

=
b0,Dz2 + b1,Dz + b2,D

z2 + a1,Dz + a2,D
=

b0,D + b1,Dz−1 + b2,Dz−2

1+ a1,Dz−1 + a2,Dz−2
(9.40)

and because it has the same structure, it has an equivalent state space form:

[

xk+2

xk+1

]

=

[

−a1,D −a2,D

1 0

] [

xk+1

xk

]

+

[

1
0

]

uk (9.41)

and with the output as in the transfer function we have

[

y
]

=
[

b1,D − b0,Da1,D b2,D − b0,Da2,D

]
[

xk+1

xk

]

+
[

b0,D

]

uk (9.42)

The question is what the meaning of the new coefficients in relation to the old ones, and this is entirely

related to both the original parameters and the discretization method. Exact discretization methods

obscure the coefficient meaning and couple states in a very non-intuitive way. Some other approximations,

in which the original transfer function is broken into a cascade of second order sections (biquads) can

preserve much physical intuition. We saw this with the multinotch of Section 6.11 and will see it again

with the biquad state space of Section 9.17.

There are lots of discretization methods and even when one does the “exact” math, one doesn’t get

a satisfying answer. In fact, the exact math can give an answer that is so convoluted as to obscure

any hope of physical intuition and this is bad. The Trapezoidal Rule, also known as Tustin’s Rule or

a bilinear equivalent, substitutes discrete time operators (based on the Z transform) for the continuous

time operator (based on the Laplace transform). Using the Trapezoidal Rule, we make the substitution:

s←− 2
T

(

z − 1
z + 1

)

(9.43)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
567

Winter 2022-2023
December 31, 2022

State Space

and if we substitute for s in (9.35) to get to (9.40) then we end up with the following mappings:

∆ = 1+ a1
T
2 + a2

T 2

4

b0,D = 1
∆

(

b0 + b1
T
2 + b2

T 2

4

)

a0,D = 1

b1,D = 2
∆

(

b2
T 2

4 − b0

)

a1,D = 2
∆

(

a2
T 2

4 − 1
)

b2,D = 1
∆

(

b0 − b1
T
2 + b2

T 2

4

)

a2,D = 1
∆

(

1− a1
T
2 + a2

T 2

4

)

(9.44)

For the simple spring-mass-damper system of (9.63), we end up with

∆ = 1+ b
m

T
2 +

k
m

T 2

4

b0,D = 1
∆

(
1
m

T 2

4

)

a0,D = 1

b1,D = 2
∆

(
2
m

T 2

4

)

a1,D = 2
∆

(
k
m

T 2

4 − 1
)

b2,D = 1
∆

(
1
m

T 2

4

)

a2,D = 1
∆

(

1− b
m

T
2 +

k
m

T 2

4

)

(9.45)

If the example looks complicated, that’s the point. The physical parameters get lost in the shuffle a

lot and we need to fight to keep them in terms that are meaningful in our discrete time model. The

problems get worse when the system order gets higher.

What I’ve come to realize is that breaking the problem down into blocks and discretizing the blocks

makes a lot of sense in the sense that each block has it’s own discretization error, but it also preserves

the physical meaning of the original block (if you do it right, which still isn’t trivial).

9.7.3 Linear, Time-Invariant, Discrete-Time Modeling of the Real World

Let’s assume that I have a model of the physical world that is linear, time-invariant, and discrete time.

xk+1 = Fxk +Guk +GWwk (9.46)

zk = Hxk + Duk + vk (9.47)

We are dropping the D for discrete matrix subscripts as we have already specified that we are in discrete

time here.

The matrices describe how the system evolves from one time step to the next. The terms, wk and vk,

denote noises that affect the system, with wk being a “process” noise at the input that actually affects

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
568

Winter 2022-2023
December 31, 2022

State Space

where the actual states will go, while vk is a measurement noise at the output that does not affect the

actual states, but affects our ability to measure the output.

We cannot measure noises but may know their distribution. For example, the noises are often assumed

to be additive, white, Gaussian noise, i.e.

wk ∼ N
(

0,
√

W
)

and vk ∼ N
(

0,
√

V
)

. (9.48)

That is, they have a Gaussian distribution with zero mean and variances of W and V, respectively.

If we know the model, we can simulate the system:

x̄k+1 = Fx̄k +Guk (9.49)

ȳk = Hx̄k + Duk. (9.50)

There are two clear issues with our simulation:

• it doesn’t use noise and

• it’s completely disconnected from measurements of the physical system.

Dave Luenberger and Rudy Kalman solved this problem in slightly different ways at the beginning of

the 1960s. Luenberger created an “observer” or “estimator” essentially doing noise free analysis for his

work. Kalman solved the problem for the case of additive, white, Gaussian noise. They both worked

on discrete-time and continuous-time systems. For the sake of equivalence, a Kalman Filter takes the

form of a Luenberger Current Observer in discrete-time, while a Kalman-Bucy Filter takes the form of a

Luenberger Observer in continuous-time. Luenberger’s observers have two different forms for discrete-

time, one which corrects the estimate based on the previous measurement (and therefore has an exact

1 sample delay) and one that corrects the measurement based on the last measurement and therefore

(due to finite conversion and computation time) has a fractional sample delay. The latter is known as a

current observer, and is the form that I will explain.

The Luenberger Current Observer starts with the physical system model of Equations 9.46 and 9.47.

The estimator itself is a two step process:

• Simulation: Predict next state and measurement

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
569

Winter 2022-2023
December 31, 2022

State Space

• Measurement Correction: adjust state estimate based on error with real measurement

That’s it! That’s a model-based measurement. The predict with model and correct with measurement

is the key construct here.

Now, the textbooks [14, 171, 15, 208] teach these as separate steps, i.e.

x̄k+1 = Fx̂k +Guk Time Update

ȳk = Hx̄k +Guk and

x̂k = x̄k + LC
[

zk − ȳk
]

Measurement Update

(9.51)

Again, I have dropped the D for discrete subscript. The C subscript in LC denotes a current observer

gain, as opposed to a predictive observer which would use LP.

However, there are two confusing things about this form. First of all, it is not how one would program

the filter, and so it confuses the poor soul who wants to actually implement the thing. I have reordered

the above as follows:

ȳk = Hx̄k +Gum,k Estimate output using predicted state & input

x̂k = x̄k + LC
[

zk − ȳk
]

Adjust model state with feedback from measurement

x̄k+1 = Fx̂k +Gum,k Predict next step’s state

(9.52)

I have glossed over how we get to a linear discrete-time model, except for the example discussion in

Section 9.7.2, as this would take a long time here and is discussed in more depth in Chapter 2.

What is essential is to realize that a lot of physical systems can be adequately modeled in this way. It’s

not perfect (the world is neither linear, nor time invariant), but it allows us to make a lot of progress

on a lot of things. Those smart phones, digital communications, flat screen digital TVs, etc. are all in

one way or another premised on the idea that digital (quantized and discrete time) models of things are

adequate for a lot of purposes.

So, we have a physical system or process that is adequately described by an LTI model. Linear means if

you double the input, you double the output. Time invariant means that if I wait 5 seconds to hit the

system, I get the same response, only delayed by 5 seconds. Finally, the digital model presumes that we

are looking at the data often enough so that we can capture all the essential behavior of the original

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
570

Winter 2022-2023
December 31, 2022

State Space

continuous time, real number version. This once again is the Nyquist sampling theorem (and there is an

equivalent by Widrow [38] for amplitude quantization), but again, the Nyquist rate is asymptotic, so for

our purposes we need to sample far more than twice the highest frequency.

Oh, and the noise, the noise, the noise. Most of the time, folks assume it is additive, white, Gaussian

noise (AWGN) . Additive, in that it gets summed in, not multiplied. White in that noise at time k
is independent from noise at time, k − 1, etc. Gaussian says that the probability density function is

Gaussian, which makes the math nice.

9.7.4 Error Dynamics of Current Observers

Often, the most fundamental way of understanding a loop’s behavior is by understanding the error

dynamics of the loop. H represents what we choose to (or can) measure and LC is our “knob” to

compromise between measurement and model. We can define the filter tracking error, do lots of math

and get:
x̃k+1 = xk+1 − x̂k+1 = (I − LCH) Fx̃k + (I − LCH) Gwwk − LCvk

+ (I − LCH) G
[

uk − um,k
] − LCD

[

uk+1 − um,k+1
] (9.53)

Somewhat surprisingly, we don’t see this whole equation in textbooks and papers. Instead, in different

contexts, we see parts of this equation with some of the terms missing. In most filtering contexts, we

do not assume we have access to the input driving the system, so the u terms are missing. Instead,

the input/process noise, w is given a much larger covariance. In feedback contexts, u is almost always

assumed to be known perfectly.

• The dynamic error analysis is typically presented without noise. This asserts the stability of the

closed-loop observer, but w and v are left off.

• Almost all treatments assume there is no direct feedthrough, i.e. D = 0. We have discussed this

earlier in the chapter, but what it means in Equation 9.53 is that a potential source of mismatch

is ignored.

• They either assume they know the input (um,k = uk) or ignore it (uk is left out. Either way, the last

two terms of Equation 9.53 don’t show up.

Seriously, I’ve looked at a lot of books on estimation [208, 297]. I’ve even opened a few of them. They

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
571

Winter 2022-2023
December 31, 2022

State Space

treat all these cases as separate problems. For making real measurements, and certainly for debugging

some real system, we don’t want to do this. We want to know what all our error sources might be.

Breaking down Equation 9.53, we can isolate how the different portions lead to different parts of the

analysis.

x̃k+1 = (I − LCH) Fx̃k (9.54)

+ (I − LCH) Gwwk − LCvk (9.55)

+ (I − LCH) G
[

uk − um,k
] − LCD

[

uk+1 − um,k+1
]

(9.56)

(9.54) represents the classic noise free analysis. This is the part that gets the linear algebra jocks all

excited. They will tell you all about the eigenvalues and how stable the thing is. If

max|eig ((I − LCH) F)| < 1

then the discrete-time state estimates converge. In fact, the choice of LC chooses the filter dynamics

(e.g. bandwidth), subject to mathematical condition (observability) [171]. Basically, observability is a

matrix relationship involving H and F which says whether from the given set of measurements, one can

recreate everything that is going on in that linear, time-invariant system. In other words, the relationship

of H and F tell us if we can possibly reconstruct the internal state of the system model. (Remember,

that we have already introduced an error by assuming that the system is LTI, but it really, helps us do

something with the math.)

(9.55) represents the disturbance due to noise terms. This usually makes assumptions about the noise

spectra (like it’s additive, white, Gaussian noise). Additive means the noise is just an additive signal.

White means that each noise input is independent from it’s previous state. Gaussian means that the

probability density function from which the white noise is drawn has a Gaussian shape. AWGN goes

through linear filters and comes out as still Gaussian, but shaped by the filters. This makes the math a

lot nicer.

(9.56) represents the disturbance due to not knowing the input driving the physical system. Call this the

“unknown input disturbance”, which is only there if um,k , uk. Now, in most textbooks and papers, we

don’t see this term (I have never seen it in any textbook or paper) because if the direct feedthrough, D
is 0, then the second term drops out and if we know the input, both terms drop out.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
572

Winter 2022-2023
December 31, 2022

State Space

What about problems when we do not know the input? These problems are surprisingly common: target

tracking problems when the radar is trying to track an aircraft but has no access to the pilot’s control

inputs, etc. all fall into this category. In this case the authors seem to ignore the driving input or they

consider it noise. This has consequences, in that if we assume that the input noise is so large that it

can account for a large deterministic but unknown signal, then we have to trust our measurement more

and our model less. The consequences of this are increased noise in the filtered output. However, if we

do this, we can often get away with um,k = 0, provided that our filter is tracking much faster than the

unknown deterministic input, uk is changing. Thus, the deterministic, noise free part has a strong effect

on how we handle the noise disturbance and the unknown input disturbance.

9.7.5 What the heck is different about a Kalman Filter?

As noted earlier, a Kalman filter [208] takes the form of a Luenberger current observer [15]. Again, we

have dropped the D subscript on the state matrices as it is clear we are operating in discrete time. We

still have our Time Update:

x̄k+1 = Fx̂k +Guk (9.57)

and our Measurement Update:
ȳk = Hx̄k +Guk

x̂k = x̄k + LC
[

zk − ȳk
] (9.58)

but now, we modify LC to possibly vary every step, LC,k and it is chosen as a least squares balance

between how the process noise, wk, and the measurement noise, vk, affect the measurement.

The Kalman Time Update is now:

x̄k+1 = Fx̂k +Guk State Estimate Time Update

Mk+1 = FPkFT +GwWGT
w State Uncertainty Time Update

(9.59)

and the Kalman Measurement Update is:

ȳk = Hx̄k +Guk, Predicted Measurement

Pk = Mk − MkHT
(

HMkHT + V
)−1

HMk, State Uncertainty Measurement Update

LC,k = PkHT V−1, Estimator Feedback Gain Update

x̂k = x̄k + LC,k
[

zk − ȳk
]

. State Estimate Measurement Update, &,

ŷk = Hx̂k +Guk. Best Estimate of Measurement

(9.60)

where W is the covariance matrix of the process noise, wk, and V is the covariance of the measurement

noise, vk, i.e. wk ∼ N(0,W) and vk ∼ N(0,V).

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
573

Winter 2022-2023
December 31, 2022

State Space

Likewise, the steady-state Kalman Filter is can be written using the same state update equations, but

now we have steady-state values of uncertainty, Pk = PS S = P and LC,k = LC,S S = LC as:

P = FPFT +W − FPHT
[

HPHT + V
]−1

HPFT (9.61)

and LC = FPHT
[

HPHT + V
]−1
, (9.62)

where (9.61) is an Algebraic Riccati Equation (ARC) [208]. For a given system model, the noise covari-

ances, W and V, uniquely determine the feedback gains, whether they be evolving, LC,k, or stead state,

LC.

Most of this is just as we had before, except for the propagation of uncertainty which is used to pick

the feedback gain, LC,k at every step. The Kalman Filter is the least squares solution to a particular

mathematical problem, but when one asks if it is optimal, the true answer is in the form a question:

How well did we model reality? More specifically, How accurate are {F,G,Gw,H,D,W,&V} and does

um,k = uk?

The Dark Truth: People usually optimize the crap out of lousy models.

My point here is that Kalman almost seems like a sacred word sometimes, and I don’t think it should

be. The point I am trying to hammer home here is that the Kalman filter is just a Luenberger observer

with a specific way to pick the feedback gain, LC. Furthermore, the Kalman Filter is only as accurate

as the model and the noise estimates allow it to be. However, when you don’t have anything else to go

on, it gives you a great starting point at picking LC.

Note that Luenberger came up with two different estimators/observers [15]: the current observer I’ve

shown you here, and the predictive observer (slightly different form, slightly more time delay and phase

lag, but your real world system can behave much more like your model if you allow a full sample delay).

Since I hate latency for other reasons, I am usually hesitant to use this form and the current observer is

in the same form as the Kalman Filter.

Maybe a good place to give the Luenberger predictor observer and show the differences in the matrix

equations.

Also, for continuous time systems, the Kalman-Bucy Filter is the equivalent least squares solution [208].

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
574

Winter 2022-2023
December 31, 2022

State Space

And for systems with nonlinearity or ones that are not time-invariant, the Extended Kalman Filter gets

used [208].

Good place for a subsection on using PES Pareto to get the KF noise matrices. [298]

Here is the essential “model based filter/measurement/etc.”:

We simulate and we measure, and we compare the two. The simulation might not be as exotic as one

that doesn’t have to deal with real-time data, but by comparing it to real-time data, we should be able

to track the real time data.

9.7.6 Back to Our Simple Second Order System

Estimator

Input
Signal

Generation

Model
Adjustment

Process
Noise

Measurement
Noise

Estimated
Output

Estimated
States

Input
Signal

S S

S
-

Figure 9.10:This system is a simple, resonance, driven by an input, with noise.

We return to our simple example, now diagrammed in Figure 9.10 with the estimator added. Our system

is the second order resonance, of Equation 9.2, but now we translate this into resonance terms:

X(s)
F(s)

=

1
m

s2 + b
m s + k

m

=
Kω2

d

s2 + 2ζdωd s + ω2
d

(9.63)

We discretize the model, and then drive the model the same way the system is driven and as Figure 9.11

shows, it works. This is no big surprise. Note the wonderful rejection of noise in the green curve. The

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
575

Winter 2022-2023
December 31, 2022

State Space

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

System & KF: K_n = 1, f_d = 8, zeta_d = 0.3

KF: Q_w = 0.01, R_v_11 = 0.01 KF has System Input

Force
Measured Position
Estimated Postion
True Position

Figure 9.11:Noise driving the simple resonance.

filter is very narrow band around the model’s projected output. This is the feedback context: we assume

we have access to both the output and the input. In the filtering context, we do not have access to the

input to the system.

If we can’t see what is pushing the system around, diagrammed in Figure 9.12, we get a big error, as

seen in Figure 9.13. Essentially, our filter lacks the bandwidth to track the unknown input. The filter

is very narrow band around the model’s projected output, but the model’s projected output can’t track

the input it doesn’t know about. Thus, the narrow band is in the wrong place. It’s like an old Borscht

Belt joke: The good news, we reject a lot of noise. The bad news, we don’t follow the signal.

The typical fix goes as follows: We can pretend that driving input is a noise, so we artificially raise our

process noise model (make W bigger). What does it mean to make a positive definite matrix “bigger”?

It means we make the singular values bigger. In this case, we have a single process noise, so W is a 1×1
matrix, so we just make W bigger – a lot bigger. This makes the input seem like noise, so we trust the

model less, and the sensor more, which means we filter the sensor less. This is a simple tradeoff that we

have to make to track the signal and it is shown in the results of Figure 9.14.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
576

Winter 2022-2023
December 31, 2022

State Space

Estimator

Input
Signal

Generation

Model
Adjustment

Process
Noise

Measurement
Noise

Estimated
Output

Estimated
States

Input
Signal

S S

S
-

Figure 9.12: The system is a simple, resonance, driven by an input, with noise. However, in this case
we do not have access to the input signal driving the system.

Note that there is an alternate method not shown in the talk, but in Figure 9.15, known as an unmodeled

input observer, disturbance observer, disturbance estimator, extended state observer, etc. [299, 300, 301].

In this case an extra state is added to the model to account for the unmodeled input. This state is driven

by its own “process noise” and so we tune that noise model to account for the input size. However,

that allows for the internal states of the model to converge and if the model tracks faster than the input

changes, we can then have a lower noise level on the real “process noise” input. This is what I did for

Figure 9.15, and the result is that away from the input steps, it seems to get close to the original results

of Figure 9.11. This is a bit beyond the scope of this tutorial, but I thought I’d mention it in the notes.

The thing is that this does illustrate one of the great things about model based methods: the ability

to add some extra structure to your model even if it doesn’t correspond to something you can see in a

transfer function.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
577

Winter 2022-2023
December 31, 2022

State Space

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

System & KF: K_n = 1, f_d = 8, zeta_d = 0.3

KF: Q_w = 0.01, R_v_11 = 0.01 KF without System Input

Force
Measured Position
Estimated Postion
True Position

Figure 9.13: The system is a simple, resonance, driven by an input, with noise. We do not have
access to the system input and so our filter does not track.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
578

Winter 2022-2023
December 31, 2022

State Space

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

System & KF: K_n = 1, f_d = 8, zeta_d = 0.3

KF: Q_w = 100, R_v_11 = 0.01 KF without System Input

Force
Measured Position
Estimated Postion
True Position

Figure 9.14: System is a simple, resonance, driven by an input, with noise. We do not have access to
the system input, but we have increased the process noise model so that it treats the unknown input
as a noise. Note the tracking at the expense of extra noise in the estimate.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
579

Winter 2022-2023
December 31, 2022

State Space

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

System & KF: K_n = 1, f_d = 8, zeta_d = 0.3

KF with DOB: Q_w = 0.01, Q_dist = 1.0e−5, R_v_11 = 0.01

KF without System Input

Force
Measured Position
Estimated Postion
True Position

Figure 9.15: The system is a simple, resonance, driven by an input, with noise. We do not have
access to the system input, and have left the process noise model unchanged. We have added an
unmodeled input observer and the extra “input state” allows tracking with considerably less increase
in the estimator noise.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
580

Winter 2022-2023
December 31, 2022

State Space

9.7.7 What Makes Model Based Measurements Hard?

If model based methods are so darned good, why aren’t they ubiquitous? (i.e. Why is this hard?)

• Model based-measurements require a model.

• Did I mention you need a model?

• Most folks really just phone in the model, so the error reduction is limited.

Bad models mean bad model based measurements. That simple. And the ways folks use to get models

are often limited because they are trying to be computationally efficient (needlessly so in some cases).

Or they are adhering to technology limits that were around 30 years ago and not around now.

9.8 The Canonical Forms

Related to polynomial form transfer functions

compression of parameter meaning but exposes controllability and/or observability

• controller

• observer

• controllability

• observability

• diagonal

• Jordan

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
581

Winter 2022-2023
December 31, 2022

State Space

9.9 State Space for MIMO Systems

One of the main selling points of state space methods is that they give a unified way of handling

estimation and control for multi-input, multi-output (MIMO) systems. Instead of having a bunch of

seemingly unrelated mappings between individual input and output pairs, the MIMO state-space model

has one unified set of dynamics. What could go wrong?

As usual, the problem is not in the principle but in getting to such a unified model from measurements.

We generally think of making measurements in a way to isolate systems when we can, so it is natural

to try to derive our MIMO model from a collection of SISO measurements (and perhaps SISO models)

between any input-output pair. Perhaps we are lucky enough to stimulate at one spot and measure at

all the output measurement points, in a single-input, multi-output (SIMO) fashion. We still need to

decide how and when to combine dynamics that are close to each other (e.g. poles or zeros that seem

to differ only by a small numerical error). How close is close? Perhaps we can tell which are related by

understanding the physical features and parameters of the system (e.g. the mass is generally constant

no matter which input-output pair we use), but then again we trashed our physical parameters when we

went to discrete-time polynomial transfer function type identification.

MIMO state-space models are not a bad idea, but again, getting there involves a lot of work.

9.10 What’s Up with Implementing State Space?

So, why is it so hard to translate physical models into usable state space controllers? We get back to

this issue that has run through the book of taking a complex model, turning it into a polynomial form

transfer function in continuous time, then either discretizing that model and turning it into state space,

or turning it into state space and then discretizing. Tools such as Matlab make that relatively easy from

a computation perspective, but most physical understanding is lost there.

• How many terms need to be included in the original polynomial model?

• How should it be discretized?

• What form should the discrete-time state-space model take?

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
582

Winter 2022-2023
December 31, 2022

State Space

• How are the physical measurements tied into this discrete model?

• How does the discrete model – which we used in large part to give us more understanding of the

system – relate to things we can measure in the real world?

• What kind of insight does the model actually give us?

• Perhaps most succinctly: what is the relationship between the continuous-time (CT) states and

the discrete-time (DT) states? I mean, if we put in all the mathematical machinery to do a discrete

state-space model, shouldn’t we at the very least have simple access to position and velocity?

Repeating Equations 9.46 and 9.47 here:

xk+1 = Fxk +Guk +GWwk (9.64)

zk = Hxk + Duk + vk, (9.65)

we have the fundamental task of filling out the model matrices, {F,G,GW ,H, and D} in a sensible way.

Starting with a general polynomial digital filter form:

F(z−1) =
Y(z−1)
U(z−1)

=
b0 + b1z−1 + b2z−2 + . . . + bnz−n

1+ a1z−1 + a2z−2 + . . . + anz−n
, (9.66)

we make it a bit more unique by normalizing by the a0 term so that a0 = 1. As a0 is the coefficient of

yk, this simplifies the process for computing yk as a function of past values of yk and past and current

versions of uk.

This underpins all of the textbook state-space methodologies. We will ignore GW here, as we are trying

to understand the implications of the noise free structure (which represents a best case scenario). For

the discussion right now, we use the polynomial filter coefficients to populate the matrices. The first

form here is known as the controller canonical form [171].

F =

−a1 −a2 · · · −an−1 −an

1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 1 0

G =

1
0
0
...

0

(9.67)

H =
[

b1 b2 · · · bn−1 bn

]

D =
[

b0|
]

(9.68)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
583

Winter 2022-2023
December 31, 2022

State Space

Note that if b0 = 0 in our transfer function, we get no direct feedthrough, which we can directly see

as D = 0. Equations 9.67 and 9.68 fill out the matrices for the controller canonical form. The input

scaling is 1, the polynomial transfer function denominator coefficients are across the top row of F, and
the numerator coefficients populate the output vector. We might surmise that unless there is something

pathological about the denominator, then the direct line from the input to the F matrix means that this

realization will always be controllable. Simply put, that means in this LTI system, we can drive the state

to any value from the input, u:

uk = −Kx = −k1x1 − k2x2 − . . . − knxn. (9.69)

By the same token, the presence of the numerator polynomial in the output matrices, H and D implies

that there might be some notches or zeros there that would make not all the states observable. That

is, it is not obvious that we can all the states by simply observing the system output. Mathematically,

some of the zeros of the b polynomial may cancel some of the zeros of the a polynomial and make that

state unobservable.

An alternate canonical form, the observer canonical form guarantees this:

F =

−a1 1 0 · · · 0 0
−a2 0 1 · · · 0 0
...

...
. . .

...

−an−1 0 0 1 0
−an 0 0 0 0

G =

b1

b2
...

bn−1

bn

(9.70)

H =
[

1 0 0 · · · 0 0
]

D =
[

b0

]

(9.71)

Equations 9.70 and 9.71 fill out the matrices for the observer canonical form. Because the output matrix

is directly from the states, the realization is always observable and one can theoretically reconstruct the

stats by simply measuring the denoted output. It does not guarantees controllability (above) as the input

vector may now hold notches or zeros. Find the math that shows this is observable.

It is worth pointing out that in most academic textbooks, D is typically absent. This indicates that there

is no direct feedthrough from the input to the output. When used in a model of a physical system, this

is taking into account the general assumption that the physical system is – within the range included in

the model – low pass and that this manifests itself in a transfer function as having more poles than zeros.

In a state space model, the consequence is that the D matrix is 0 or nonexistent. This simplifies the

analysis in many of the textbooks, but blinds those materials to a very fruitful construction of state-space

matrices that I’ll get to in Section 9.15.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
584

Winter 2022-2023
December 31, 2022

State Space

As discussed earlier, there is a frequently used test for controllability, the controllability matrix, defined

as:

C =
[

G FG · · · Fn−1G
]

. (9.72)

Simply put, if C is nonsingular, then the state-space realization is controllable: one can use the defined

input to drive the states to any value. Similarly, when the observability matrix,

O =
[

HT FT HT · · · (FT)n−1HT
]

. (9.73)

is nonsingular (i.e. has full rank or is invertible) then the realization is observable. One can reconstruct

all the states from the measured output.

In general, the theory says that a state-space realization is both observable and controllable, when it is

minimal; that is when there are no pole-zero cancellations in the related transfer function. Okay, but what

does this mean technically? In real systems it is not a binary question of observable or not, controllable

or not. It is a floating point question of how controllable and how observable. The controllability matrix

might be nonsingular but the spread in the singular values of the controllability matrix might mean

that some states – while theoretically reachable – cannot practically be controlled from the input. The

coupling might be so weak that the input needed would violate saturation or power limits. These don’t

show up in a LTI analysis, but they are real in implementing the system. Similarly, a state may couple

to the output so weakly as to be piratically unobservable. Any noise or disturbance in the measurement

would make accurately recovering this state almost impossible. Understanding the difference between

theoretical and practical observability and/or controllability might lead us to improve, move, or simply

add a sensor and/or an actuator.

Any real implementation of a state-space filter or controller (a.k.a. a model based filter or controller)

has to take this into account. still, the real question may be: if we see one of these problems in a

discrete-time state-space model, how to we fix it? Were to we put another sensor or move the current

one if our model gives us no physical insight? Where might the physical system be tweaked to improve

our modeling ability?

If you’ve paid any attention so far, you will realize that the realizations above give little or no help. As

Brazilian Jujitsu instructor, Kurt Osiander is so fond of saying, “If you go to this point, you already

f***ed up.” These mathematically nice but nonphysical structures give us little hope of understanding

what is going on in the physical system and little or no ability to debut them based on measurements.

Generally, this means (excepting the exceptions at the beginning of the chapter), those of us that have

used these canonical forms in real systems have already f***ed up.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
585

Winter 2022-2023
December 31, 2022

State Space

9.11 The Transfer Function of a State Space Realization

H(s) = HC(sI − FC)−1GC + DC (9.74)

H(z) = HD(zI − FD)−1GD + DD (9.75)

9.12 Adding an Integrator to State Space

9.13 Adding Feedforward Control to State Space

9.14 State Space Midpoint Summary

Let’s summarize where we have gotten with state-space methods. They are motivated by the notion

of looking inside the system (via a model or realization) to get a deeper understanding of the internal

behavior of the system via the behavior of the model “states”. In principle, if we could accurately measure

each of these states from the physical system, we would have a lot more design freedom in adjusting

the closed-loop behavior of our system. This is subject to the notion of controllability – the idea that

we can affect all the states at will from the chosen input(s). Compare this to the idea of loop shaping

with a transfer function model of the system, where the main way that we separate the dynamics is from

their pole and zero locations. If they are too close to each other, it becomes hard to deal with them

individually. This is clearly related in some way to related to controllability and observability.

On the other hand, since we cannot usually measure every state, we work to observe (a.k.a. estimate)

them from the available measurement(s) – hence the notion of observability. For example, if we are

working with a SISO system, we have one measured output and one controlled input. In some sense,

from an input/output (or output/input) perspective, our controller has the same tunnel as the transfer

function version did. What, if anything did we accomplish here? Inside that measured output to system

input tunnel, we expanded the signal space out (to states) based upon some model of the system.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
586

Winter 2022-2023
December 31, 2022

State Space

Stated this way, whether or not the states are useful to our real-world application depends almost

entirely on how well our model represents the aspects of our physical system that we need to understand

to implement good feedback control.

If our system is extremely well behaved (e.g. passive, contractive, stable and well damped) then the

specific physical parameters might not matter much. We might not care too much about what is under

the hood if we are merely trying to flatten the response of a system that presents as a poor low-pass filter.

That being said, it doesn’t seem that doing that gives us much of the promised system insight. It is when

the system is not too well behaved, is more “strenuous” with lightly damped dynamics, critical physical

parameters, significant time delays, or nonlinearities that become significant when the performance is

pushed, that we really want that system insight that state space methods were supposed to give us.

There are other issues with the canonical forms, stemming from their similarity to polynomial transfer

functions. Besides the lack of connection between polynomial parameters and physical meaning, the

polynomial parameters are often numerically sensitive. This is especially true for discrete-time polynomial

coefficients. This shows up as poles and zeros compress in the z-plane towards z = 1. We have seen in

Chapter 6 how fixed-point representations compound the numerical sensitivity of polynomial coefficients.

We do not have quite the same issue in continuous time, but we do have the issue that system dynamics

spread across many decades can have a massive numerical range. If we simply consider resonances at 1,
10, 100, 1000, and 10,000Hz, we end up with the numerical spread of ω2

0 = (2π f0)2 terms as displayed

in Table 9.1.

f 2
0 ω2

0 log2(ω
2
0)

Integer
Bits

1 1
10 100
100 104

1000 106

10,000 108

Table 9.1: Resonant frequencies and bits to represent them. Each resonance will have anω2
0 term that

filters into the continuous time coefficients. By taking the base-2 logarithm of this number, we get agauge
on the number of integer bits needed to hold the integer representation of that number.

Now, we may never see this kind of spread of dynamics in chemical process control (CPC), biological

process control (BPC), thermal, or pressure systems. These tend to be modeled as low-order, slow

systems, with overdamped dynamics. Much of the complexity of these problems arises in finding the

appropriate or even any adequate means of sensing and/or actuation in these environments. Getting a

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
587

Winter 2022-2023
December 31, 2022

State Space

f 2
0 TS e−2ω0TS 1− e−2ω0TS log2(1− e−2ω0TS)

Integer
Bits

1 1
1e − 3
1e − 6

10 100
1e − 3
1e − 6

100 104

1e − 3
1e − 6

1000 106

1e − 3
1e − 6

10,000 108

1e − 3
1e − 6

Table 9.2: Resonant frequencies and bits to represent them indiscrete time. Each resonance will have an
ω2

0 term that filters into the discrete-time coefficients. In this case, we are concerned about how close the
term is toz = 1. By taking the base-2 logarithm of the difference, we get a gauge on the number of integer
bits needed to hold the integer representation of that number.

sensor inside a cell or a 1000◦C reactor both have their own challenges. Right now, what I am driving

towards is how state-space formulations fare on systems with multiple lightly damped resonances, possibly

spaced far apart in frequency. We saw in Chapter 6 that such dynamics play havoc with the numerical

fidelity of polynomial coefficient filters. This, in turn, motivated the development of the multinotch

(Section 6.11, [54, 33]). If the inside of our state matrices are populated with the same polynomial

filter coefficients that gave us trouble in the filter world, why would we not expect trouble in our state

matrices?

Once can legitimately argue that the polynomials for the state matrices are different from the polynomials

for filters, but for most high-performance control demands (e.g. pushing closed-loop bandwidths beyond

the frequencies of some of the resonances), they are at least partially inverses of each other, if we neglect

the rigid body dynamics that we address with a well-tuned PID. Thus, for high-performance applications

our canonical form state matrices will face largely the same issues as our polynomial form filters. For

these we might ask: can we adapt the multinotch to state-space forms? The answer is an emphatic,

“Yes!” The answer one gets when we realize the full benefits of doing so is, “Heck yeah!!!”

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
588

Winter 2022-2023
December 31, 2022

State Space

While the preceding sections in this chapter were an attempt to provide some missing context for how

and why we would use state-space methods, including the often neglected areas of integral control and

feedforward matrices, the sections that follow will focus on formulating those state matrices in a way

that enhances their numerical properties, increases insight into the physical system, and makes it easier

to debug the real control loop on that physical system. I will introduce the biquad state space (BSS)

[3, 4] and the bilinear state space (BLSS) [5] structures and show how they help with a lot of this.

9.15 The Biquad State Space Structure

One of the aspects of digital control that gets brief mention in control textbooks and research papers is the

implementation of low latency control. It is well understood that latency, including computational latency,

erodes phase margin by adding negative phase. Some textbooks mention precalculating operations which

do not depend upon the current input in the preceding sample interval [15, 16]. The savings in latency

are illustrated in Figure 9.16 (a repeat of Figure 6.1 to keep us from flipping pages).

In the single-input, single-output (SISO) case this is tedious, but relatively straightforward if the controller

can be cast into the form of a high order polynomial filter. This is shown in Figure 9.17, and represented

as transfer functions in the unit delay operator, z−1:

Y(z−1)
U(z−1)

=
b0 + b1z−1 + b2z−2 + . . . + bnz−n

1+ a1z−1 + a2z−2 + . . . + anz−n
. (9.76)

This gets implemented in a filter as [169]:

yk = −a1yk−1 − a2yk−2 − . . . − anyk−n

+b0uk + b1uk−1 + . . . + bnuk−n. (9.77)

Looking at (9.77), we see that yk depends mostly on previous inputs and outputs. The only current value

needed is uk and this is only multiplied by b0. So we can break this up into [15]:

yk = b0uk + preck, where (9.78)

preck = −a1yk−1 − . . . − anyk−n

+b1uk−1 + . . . + bnuk−n. (9.79)

We can see that preck depends only on previous values of yk and uk. This means that preck can be

computed for step k immediately after the filter has produced the output for time index, k − 1 [16].

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
589

Winter 2022-2023
December 31, 2022

State Space

TSH
TADC

TDACTCOMP

TS

TLATENCY

No Precalculation

TSH
TADC

TDAC

TPRECALCTFC

TS

TLATENCY

With Precalculation

Figure 9.16: Input and output timing in a digital control system. The top drawing is without precal-
culation; the bottom drawing is with. Note that precalculation can be started as soon as the output
has been sent to the DAC and therefore is in parallel with the DAC conversion time. The computation
time, TCOMP, of the top diagram is now split into TPRECALC + TFC where TPRECALC is the computation
time needed for the precalculation and TFC is the time needed for the final calculation after the input
sample. Modulo some small programming overhead, the split time should equal the total computation
time. Here TS H, TADC, and TDAC represent the sample and hold, ADC conversion, and DAC conversion
times, respectively.

When the sample at time step k, uk, comes into the filter, it need merely be multiplied by b0 and added

to preck to produce the filter output. Thus, the delay between the input of uk and the output of yk is

small and independent of the filter length. Small latency improves performance, but fixed latency implies

predictable behavior, which may be more critical in debugging real time system.

In [54, 110], The Multinotch was introduced as a discrete time filter whose structure allowed for fixed

and low latency between the most recent signal input and the filter output, while having the excellent

numerical properties inherent in biquad structures. In [33] we demonstrated a filter coefficient adjustment,

the ∆ coefficients, which allowed high numerical fidelity even when the sample frequency was several

orders of magnitude higher than that of the dynamic feature being filtered. Both of these papers

implement the filter in a transfer function form.

This paper will demonstrate how to adapt The Multinotch for state space structures [183]. We will see

that the same basic principles can be used to improve the computational latency and numerical fidelity

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
590

Winter 2022-2023
December 31, 2022

State Space

S S

S S

-
z

-1

z
-1

a1 b1

a2 b2S S

S S

z
-1

an-1 bn-1

an bn

b0

dk-n

dk-n+1

dk-2

dk-1

dk ykuk

Figure 9.17: An nth order polynomial filter in Direct Form II configuration [167].

of current mode observers, thereby allowing state feedback with fixed and low latency. Furthermore,

state space models of highly flexible systems can present severe numerical issues. The models derived

from physical principles often lack structure. Canonical form models [171], are compact, but obscure

any physical structure and can have coefficients that are highly sensitive to model parameters. What

is needed is a form that has the compact representation of the canonical forms, the physicality of the

forms derived from physical equations, and maintain numerical accuracy and physical intuition, even

after discretization.

While The Multinotch was applied primarily to shaping loop dynamics with high Q resonances and anti-

resonances, a good state space model also needs to be able to account for low frequency and rigid body

dynamics. This will be demonstrated, using the classic double integrator as an example, in Section 9.20.

The numerical benefits of this form exist even when low latency is not a consideration, so we will show

forms of the structure applicable in offline modeling and simulation in [4]. Finally, we will show a modeling

example from experimental data of a mechatronics system where the Biquad State Space (BSS) form

holds numerical accuracy far beyond conventional methods, as will become obvious in the examples of

Section 9.21.

While the structure is quite regular and works for large or small numbers of biquads, the regular pattern

becomes obvious in the three biquad case. Thus, most of the structural equations will be three biquad

ones. The format considerations of this will mean that many of these matrix equations are in two column

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
591

Winter 2022-2023
December 31, 2022

State Space

figures, but seeing the matrices in this way makes the structural properties fairly obvious. This will result

in some of the larger equations being pushed into two column figures.

9.16 The Biquad Decomposition of Digital Filters

S SS S

S SS S

- -

a01 a11

y0,k+1 y1,k+1b00 b10b00

a02 a12b02

S SS S

S SS S

- -

an-1,1 an1

bn0b ...b bn-1,0 10 00

an-1,2 an2

b01

~

~
b12

~

b11

~

bn-1,1

~

bn-1,2

~
bn2

~

bn1

~

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

d0,k
u0,k

uk

x0,k

x0,k-1

d1,k

x1,k

xn-1,k

xn,k-1

xn,k

dn-1,k dn,k

yn,k+1

yk+1

Figure 9.18: The updated discrete biquad cascade, with factored out bi,0 terms and scaling the output
of each block.

In [54], we discussed how a higher order single-input, single-output (SISO) digital filter, such as that in

Equation 9.76, can be factored into a chain of second order filters known as biquads. This has been

well established for a long time. However, until [54], using biquads [169] in digital feedback control

meant that precalculation [15, 16] to reduce computational latency was limited to only the first biquad

block since all downstream blocks needed the final output of the first block to do any computations.

The Multinotch, by factoring out the direct feedthrough coefficients, and only multiplying them in at

the output, removed that constraint, allowing the numerical advantages of biquad decomposition to be

coupled with the low latency advantages of precalculation.

There is no need to repeat the equations of [54] here, but looking at the structure The Multinotch in

Figure 9.18 there are a few things to note before generating our first state space form:

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
592

Winter 2022-2023
December 31, 2022

State Space

• The delay terms in the biquads are equivalent to states in a state space structure, but they are

offset in time. Looking at Figure 9.18, di,k = xi,k+1. That is, the digital filter approach defines

delays on the input of time shifts (z−1) while standard state space notation defines states on the

outputs of time shifts.

• While ỹi,k+1 depends on xi,k+1, it can be recalculated as a weighted sum of prior delays and the

current input. That is, we can calculate ỹi,k+1 in parallel to xi,k+1.

9.17 A Biquad State Space Form

So far, we have not done anything not already in [54]. However, we can look at each of these biquad

sections as a state space realization. In this case:

[

xi,k+1

xi,k

] [

−ai1 −ai2

1 0

] [

xi,k

xi,k−1

]

+

[

1
0

]

ui,k (9.80)

while the state output equation is given by:

[

ỹi,k+1

]

=
[

b̃i1 − ai1 b̃i2 − ai2

]
[

xi,k

xi,k−1

]

+
[

1
]

ui,k (9.81)

Finally, the properly scaled output is generated via:

[

yi,k+1

]

=
[

bi0

] [

ỹi,k+1

]

. (9.82)

The indexing of ỹi,k+1 and yi,k+1 are a bit odd because since we have direct feedthrough in our structure,

ỹi,k+1 depends on xi,k+1 as well as xi,k, xi,k−1, and ui,k. Thus, it’s cleaner in what follows to call the biquad

outputs, ỹi,k+1 and yi,k+1, respectively. We chain these together by noting that:

ui+1,k = ỹi,k+1, for 0 ≤ i < n,
u0,k = uk, and

ỹn,k+1 = ỹk+1.

(9.83)

If one is willing to go through the algebraic pain and suffering of applying Equation 9.83 to each biquad

structure a very regular state space structure results.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
593

Winter 2022-2023
December 31, 2022

State Space

x2,k+1

x2,k

x1,k+1

x1,k

x0,k+1

x0,k

=

−a21 −a22 b̃11− a11 b̃12− a12 b̃01− a01 b̃02− a02

1 0 0 0 0 0
0 0 −a11 −a12 b̃01− a01 b̃02− a02

0 0 1 0 0 0
0 0 0 0 −a01 −a02

0 0 0 0 1 0

x2,k

x2,k−1

x1,k

x1,k−1

x0,k

x0,k−1

+

1
0
1
0
1
0

uk (9.84)

ỹ2,k+1

ỹ1,k+1

ỹ0,k+1

=

b̃21− a21 b̃22− a22 b̃11− a11 b̃12− a12 b̃01− a01 b̃02− a02

0 0 b̃11− a11 b̃12− a12 b̃01− a01 b̃02− a02

0 0 0 0 b̃01− a01 b̃02− a02

x2,k

x2,k−1

x1,k

x1,k−1

x0,k

x0,k−1

+

1
1
1

uk

(9.85)
For a 3-biquad model, we get the state equation of 9.84. The unscaled output is in Equation 9.85.

Finally, the properly scaled outputs are generated via:

y2,k+1

y1,k+1

y0,k+1

=

b20b10b00 0 0
0 b10b00 0
0 0 b00

ỹ2,k+1

ỹ1,k+1

ỹ0,k+1

. (9.86)

One key of this form is that the generation of the state update (output vector) involves:

• Multiplication of the prior state vector by the state transition matrix (state output matrix) – none

of which involves the current input. This can therefore be done in a precalculation step.

• Addition of the unscaled current input to each product row of the above multiplication. This can

be parallelized so that the latency once the current input is available is that of a single addition.

Looking at this critically, the state transition and output matrices are always multiplied by the old state,

and therefore could be precalculated in any form. If there is no direct feedthrough from the input to the

output, such a model can be used without incurring much delay. However, the BSS is structured so that

direct feedthrough from the input to the output needs one addition and one multiplication per output.

This is a big benefit for using state space in real time control. The fact that the BSS also provides

excellent numerical properties as will be seen in the example of Section 9.21.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
594

Winter 2022-2023
December 31, 2022

State Space

The generation of the final, scaled output takes a single multiplication per output. Therefore, updating

the state and output using the BSS using precalculation has a computational latency of two operations:

one addition and one multiplication.

Our state equations are slightly different here, due to where the scaling happens: The general form of

the discrete time, linear state equations is:

Xk+1 = FDXk +GDuk and (9.87)

Ỹk = HDXk + DDuk, (9.88)

where Ỹ is the unscaled output vector. For simplicity, we will drop the D subscript and assume digital

state matrices unless otherwise noted. Also, we will move between the notations of xi(k) and xi,k because

the space considerations in some of the larger equations.

State space models of highly flexible systems can present severe numerical issues. The models derived

from physical principles often lack structure and have large parameter sets. On the other hand, canonical

form models [171] reduce the number of parameters (and therefore computational operations) to a

minimum set equivalent to those in a transfer function form. However, in doing so for anything more

sophisticated than a second order model, most – if not all – physical intuition is lost. Furthermore, the

compaction of these parameters into a canonical set often results in parameters that are highly sensitive

to small changes in the underlying physical parameters. Such models often fail when used with systems of

higher order. Furthermore, even if the models are usable in continuous time, they can become even more

sensitive and far less physical once the system is discretized. This is particularly true for mechatronic

systems, which often are characterized by a “rigid body” model followed by multiple sharp resonances

and anti-resonances.

All of this creates a situation where state space approaches are used only by experts in the field, while

more basic, physically intuitive approaches continue to dominate in industrial applications. These intuitive

methods may work fine when the system is low order, but they break down as the system complexity

rises. What is needed is a form that can capture higher order dynamics in a way that maintains physical

intuition and preserves numerical accuracy through the discretization process.

This section presents a new state space form, the analog Biquad State Space, based on The Multinotch

structure [54, 33]. The biquad state space (BSS) 1 has several desirable characteristics:

• It uses a structure based on a serialized biquad filters which can be physically matched to resonance/anti-

resonance pairs observed in measurements.

1Some have suggested Abramovitch State Space, but it suffers from a bad acronym.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
595

Winter 2022-2023
December 31, 2022

State Space

• The number of parameters is comparable to that of a canonical form, although many appear

multiple times in the matrix structures.

• The basic structure remains the almost the same through discretization.

• The underlying biquad structure leads to a state space structure that is numerically very stable,

even through discretization. The ∆-parameters from The Multinotch [33] can be used to improve

the numerical accuracy of discretized coefficients [3], allowing this form to be implemented in fixed

point math, such as that found on inexpensive DSP chips and FPGAs.

The biquad state space (BSS) was introduced in [3] discrete time, state space form that allowed the

numerical resiliency of serial cascades of biquad filters to be moved into the state space world, while

allowing for precalculation (Figure 9.18). This gave the structure excellent numerics and fixed and low

latency, as previously described in [54]. The numerical robustness shown there is useful, even when

minimal latency control was not an issue.

The rest of the chapter will be organized as follows. Section 9.18 discusses the discrete time matrix

structure. Section 9.20 shows how to modify the BSS to add rigid body modes. Section 9.19 discusses

a current mode BSS estimator. Continuous time biquads will be discussed in Section 9.22. The analog

Biquad State Space form will be described in Section 9.23. The invariance of the BSS under discretization

will be discussed in Section 9.24. Some discussion of the matrix form will be in Section 9.25. Discussion

of lack of direct feedthrough will be in Section 9.27. Finally, Section 9.32 gives some examples that show

the effectiveness of the BSS in modeling flexible dynamic systems, such as mechatronics.

While the structure is quite regular and works for large or small numbers of biquads, the regular pattern

becomes obvious in the three biquad case. Thus, most of the structural equations will be three biquad

ones. The format considerations of this will mean that many of these matrix equations are in two column

figures, but seeing the matrices in this way makes the structural properties fairly obvious. This will result

in some of the larger equations being pushed into two column figures.

9.18 The Matrices, Reloaded

Generating coefficients from continuous time biquad parameters is discussed in some detail in [54]

and [33]. Suffice it to say that continuous time, physical parameters can be mapped into the discrete

time biquads which form the basis of our state matrices.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
596

Winter 2022-2023
December 31, 2022

State Space

The state transition matrix in Equation 9.84 has a very regular, block upper triangular form. On the

block diagonals are 2 × 2 blocks with the biquad denominator parameters (from which we can extract

the model poles). Below the diagonal blocks are empty, while above the diagonal blocks is a repeated

set of 2× 2 blocks with 0s on the lower rows and
[

b̃i,1 − ai,1 b̃i,2 − ai,2

]

(9.89)

on the top row. The top rows of these blocks represent the feedthrough of the biquad states to the other

states. Likewise in the output matrix of Equation 9.85, these same subsections in (9.89) represent the

feedthrough of the biquad states to the outputs. Note that in both of these matrix equations, the input

is passed unscaled to the states and unscaled outputs. The gain scaling is applied in (9.86).

Note that while these matrices are denser than a typical canonical form, many of the needed multiplica-

tions and additions are repeated, so that proper coding of the state and unscaled output updates makes

this form no more computationally intense than a canonical form.

The above the block diagonal blocks are governed by the terms in (9.89), and these terms are determined

by how the overall system model is partitioned into biquads. One way to minimize these terms is to

arrange the pole-zero groupings so that each biquad consists of poles and zeros that are closest to each

other.

We may wish to have low pass and/or high pass filters in our Multinotch, or single or double integrators

in our BSS model of a physical system. We might note that while it is theoretically possible to add

integrators into a Multinotch, say as part of a controller that includes integral action, practical imple-

mentation of integrators usually involves useful nonlinearities, such as integrator anti-windup [302] which

necessitated the integrators being broken off from the rest of the filter. However, in linear state space

models, single or double integrators are common in rigid body models. .

The common feature of most of these filters is the lack of direct feed through from the input to the

output of any one filter stage, at least in the continuous time model. As noted briefly in [303, 304] this

lack of direct feedthrough affects the propagation of states and the structure of the state space matrices.

9.19 Current Estimator and State Feedback

In a prediction estimator, the measurement error is formed using the previous measurement and a state

output generated entirely from quantities available before the current measured output. This means

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
597

Winter 2022-2023
December 31, 2022

State Space

that the BSS does not have a significant latency advantage in a predictor form observer, simply because

the latter already has a full sample of latency. A current estimator, on the other hand, depends on the

current measurement. It is for this type of estimator where we can get some latency savings as shown

in Figure 9.16.

In order to use our form in an observer, we need to generate time update and measurement update

equations. For the 3-biquad case, the time update equation is given by Equation 9.90. For the SISO case,

there will only be a single output, and so the output equations become what is shown in Equation 9.93.

x̄2,k

x̄2,k−1

x̄1,k

x̄1,k−1

x̄0,k

x̄0,k−1

=

−a21 −a22 b̃11− a11 b̃12− a12 b̃01− a01 b̃02− a02

1 0 0 0 0 0
0 0 −a11 −a12 b̃01− a01 b̃02− a02

0 0 1 0 0 0
0 0 0 0 −a01 −a02

0 0 0 0 1 0

x̂2,k−1

x̂2,k−2

x̂1,k−1

x̂1,k−2

x̂0,k−1

x̂0,k−2

+

1
0
1
0
1
0

uk−1. (9.90)

The state output equation is given by:

¯̃y2,k
¯̃y1,k
¯̃y0,k

=

b̃21− a21 b̃22− a22 b̃11− a11 b̃12− a12 b̃01− a01 b̃02− a02

0 0 b̃11− a11 b̃12− a12 b̃01− a01 b̃02− a02

0 0 0 0 b̃01− a01 b̃02− a02

x̄2,k

x̄2,k−1

x̄1,k

x̄1,k−1

x̄0,k

x̄0,k−1

+

1
1
1

uk (9.91)

Finally, the properly scaled outputs are generated via:

ȳ2,k

ȳ1,k

ȳ0,k

=

b20b10b00 0 0
0 b10b00 0
0 0 b00

ỹ2,k

ỹ1,k

ỹ0,k

. (9.92)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
598

Winter 2022-2023
December 31, 2022

State Space

For the SISO case, there will only be a single output, and so the output equations become:

[

¯̃y2,k

]

=
[

b̃21− a21 b̃22− a22 b̃11− a11 b̃12− a12 b̃01− a01 b̃02− a02

]

x̂2,k−1

x̂2,k−2

x̂1,k−1

x̂1,k−2

x̂0,k−1

x̂0,k−2

+
[

1
]

uk−1

(9.93)

Finally, the properly scaled time update output is generated via a single multiplication of concatenated

feedthrough coefficients, in a similar manner to [54].

ȳk = ȳ2,k = b20b10b00ỹ2,k. (9.94)

For the SISO measurement update, the equations are quite simple:

ek = ymeas,k − ȳk, and (9.95)

x̂k = x̄k + Lcek. (9.96)

Now, Equation 9.95 involves one subtraction. Equation 9.96 involves one multiply and addition for each

state, but these are independent and so can be done in parallel. The latency then, for the state state

update, is that of 2 multiplies, plus 3 add/subtract operations, independent of the size of the state. To

use the state estimate in state feedback would require

u f b,k = K f b x̂k = K f b x̄k + K f bLcek, (9.97)

in which the K f b x̄k and the K f bLc products can be precalculated. Thus for a SISO system, state feedback

involves one more multiply and one addition.

9.20 Adding Rigid Body Dynamics: Double Integrator

In filtering problems, there is rarely need for an integrator. Even a PID constructed as a filter will rarely

use one of these blocks because of the desire to add features such as anti-windup to the integrator.

However, when modeling any real mechatronic system, there will have to be some sort of rigid body or

low frequency resonance model. In this section, we will show how to add a double integrator to this

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
599

Winter 2022-2023
December 31, 2022

State Space

biquad structure. The simplest way, of course, would be if the double integrator could just be modeled

as a biquad. Defining our double integrator as D(s) = K/s2 and applying the Trapezoidal rule yields

DT (z−1) = K
(T

2

)2 (

1+ z−1

1− z−1

)2

. (9.98)

Neglecting the gain, K
(

T
2

)2
, we define

D̃T (z−1) =

(

1+ z−1

1− z−1

)2

=
1+ 2z−1 + z−2

1− 2z−1 + z−2
(9.99)

from which we can extract the time domain equations

dk − 2dk−1 + dk−2 = uk. (9.100)

Remembering that in the traditional state-space notation xk+1 = dk we get

xk+1 = 2xk − xk−1 + uk (9.101)

and

ỹk+1 = xk+1 + 2xk + xk−1. (9.102)

Note that ỹk+1 depends upon xk+1 which we have defined in terms of previous values of xk and the current

input, uk, so we can make the substitutions to get

ỹk+1 = xk+1 + 2xk + xk−1

= 2xk − xk−1 + uk + 2xk + xk−1

= 4xk + uk.

(9.103)

We put this in state space form as:
[

xk+1

xk

]

=

[

2 −1
1 0

] [

xk

xk−1

]

+

[

1
0

]

uk. (9.104)

The output is defined as:
[

ỹk+1
]

=
[

4 0
]
[

xk

xk−1

]

+
[

1
]

uk. (9.105)

Finally,
[

yk+1
]

=
[

KT 2/4
] [

ỹk+1
]

. (9.106)

This is great news. What we have seen is that we can treat a double integrator as a digital biquad, and

so we can drop it right into our structure, simply by choosing

a1 = −2, a2 = 1,
b̃1 = 2, b̃1 = 1, and b0 =

KT 2

4 .
(9.107)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
600

Winter 2022-2023
December 31, 2022

State Space

What we have done in this section is really only the first cut at adding rigid body dynamics to a biquad

state space (BSS) structure. In this, we have discretized the double integrator with a trapezoidal rule (TR)

equivalent , in part because this discretization of the double integrator preserves the direct feedthrough

structure that we use in the BSS. This presents three problems. First, it limits our discretization choices in

a way that we may not want. We have seen that for a PID controller, a seemingly non-ideal discretization

(the backwards rectangular rule (BR) equivalent) has some unexpected benefits that make it the most

likely choice. The second issue is that if we want to have continuous time BSS models (which are about

to be introduced below, so spoiler alert, we do, Section 9.23), then we will have some filters such as

integrators and low pass filters, or some model structures that are modeled as those, that will not have

direct feedthrough. We will need to show how to work those into our BSS structure if we want to make

this universally useful. The third is that if we look at the discrete double integrator produced above,

we do not have direct access to the velocity term. We should consider the irony of adding in all this

mathematical machinery under the promise that it would give us access to more of the real world signals,

and then generating models that do not even give us both position and velocity. Were this a cartoon,

we would be playing the part of Wiley E. Coyote here. A structure that helps us be a bit more clever

like Bugs Bunny will be explained in Section 9.28.

9.21 Discrete Time Examples

Figure 9.19: Laboratory system: Aerotech air bearing linear stage, including linear grating for position
measurement. The Aerotech system implements a PID controller and samples the data at 8 kHz. It has
a built in swept-sine measurement. In the center of the imageis a laser interferometer (IF) to provide an
alternate measurement of the stage position. The stage itself is to the left of the IF.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
601

Winter 2022-2023
December 31, 2022

State Space

AeroTech
Feedback Loop

Stage
Controller Control

In

Swept Sine
StimulusResponse

Stage
Position

AeroTech
Scale

AeroTech
Stage

Scan
Reference

S

Figure 9.20: Conceptual block diagram of AeroTech stage measurement for frequency response
measurements.

In order to demonstrate the numerical improvements arising from the biquad state space structure, an

example is take from measurements of an Aerotech linear stage used in experiments for the Quintessential

Phase project [305]. The Aerotech single axis stage as shown in Figure 9.19. The basic measurement

set-up is diagrammed in Figure 9.20. The Aerotech 3300 stage controller includes a PID like feedback

controller along with a feedforward portion. The sample rate for these is 8 kHz. In order to obtain a

clean frequency response, the Eric Johnstone [305] turned off the feedforward compensator and then used

the Aerotech controller’s built in swept-sine functionality. A 1000 point swept-sine frequency response

function (FRF) was taken on a logarithmic frequency axis from 10 Hz to 4 kHz. The Aerotech controller

returned an open loop FRF, which was uploaded to MATLAB . There a model of the Aerotech PID was

constructed using Aerotech parameters. A FRF for this controller was synthesized on the same frequency

axis as the stage open loop response measurement, and this controller FRF was divided out of the open

loop FRF to obtain a “plant” FRF. This plant FRF was fit to a stage model that consisted of a double

integrator plus 20 analog biquads. The biquads are ranked in order of significance on the frequency

response so that if one wants to simplify the model, one removes the latter biquads. The identified

model parameters are in Table 9.3.

In order to compare the biquad state space to more conventional methods, the fit parameters were then

used to generate both transfer function models and state space models in Matlab. The linear system

concatenation functions were used for both of these. From these high order models, Bode plots were

generated to compare to the original measurement. Similarly, model terms were used to construct a

biquad state space structure and again, a Bode plot was generated. Note that these plots are not made

using fixed point math, but with all terms represented in Matlab’s dual precision floating point format.

On the left side of Figure 9.21, we see that with up to 12 biquads and a rigid body, all the methods

produce essentially equivalent Bode plots, that match the magnitude data exceptionally well. The phase

features are matched, with the exception of the general rolloff that can be attributed to time delay not

modeled in the rigid body or the biquads.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
602

Winter 2022-2023
December 31, 2022

State Space

20 Biquad Fit Parameters for Aerotech Stage
Biquad # fN,n (Hz) Qn fN,d (Hz) Qd

1 2116.5 46.9420 1871.2 9.0188

2 1162.6 9.3768 1301.8 1.9112

3 619.9 4.8004 631.5 13.2948

4 1792.6 13.1546 1726.6 27.3882

5 702.0 0.3261 1374.2 0.1245

6 428.7 25.2154 449.4 7.3544

7 559.7 10.4940 549.4 18.6003

8 248.3 2.5601 241.9 3.2069

9 1891.1 31.8588 1874.3 21.0130

10 1484.5 14.0540 1506.3 11.2718

11 720.5 5.0254 718.5 7.0045

12 458.0 24.6218 459.3 19.0552

13 287.8 9.7413 286.8 9.8888

14 225.7 14.7047 225.4 14.0349

15 3590.2 7.4186 3203.0 10.2562

16 2159.3 60.0000 2143.5 21.8389

17 1947.3 11.7009 1954.3 9.3325

18 1982.2 9.2703 1982.1 9.2825

19 1936.4 9.2163 1936.5 9.2002

20 2128.2 60.0000 2121.7 84.6660

Table 9.3:Model parameters from curve fit of Aerotech frequency response data.

However, just the addition of two more biquads (on the right side of Figure 9.21), we see that the two

“conventional” methods deviate significantly from the measured frequency response.

At 16 biquads (left side of Figure 9.22), the two conventional methods are more self consistent, but in

some ways worse than at 14 biquads. At 20 biquads plus the rigid body as shown on the right side of

Figure 9.22, it is very clear that the conventional methods are so affected by numerical issues that they

cannot come close to representing the measurement, either a low frequency or high frequency. In both

of these cases, we see that the biquad state space continues to match the original measurement.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
603

Winter 2022-2023
December 31, 2022

State Space

10
1

10
2

10
3

−50

0

50

100

150

200

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Rigid Body and 12 resonances: Scalar gain scaling at output taps

10
1

10
2

10
3

−1500

−1000

−500

0

Frequency (Hz)

P
ha

se
 (

de
g)

Filter FRFs
MultiNotch SS
Standard Matlab SS
Standard Matlab TF
Measured Plant

10
1

10
2

10
3

−50

0

50

100

150

200

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Rigid Body and 14 resonances: Scalar gain scaling at output taps

10
1

10
2

10
3

−3000

−2500

−2000

−1500

−1000

−500

0

500

Frequency (Hz)

P
ha

se
 (

de
g)

Filter FRFs
MultiNotch SS
Standard Matlab SS
Standard Matlab TF
Measured Plant

Figure 9.21: Comparing state space forms to AeroTech stage frequency response. Modeling the
system with first 12 biquads and a rigid body, there is no discernible difference in the plots. The
measured plant exhibits a phase roll off at high frequency not fit by the biquads.Modeling the system
with first 14 biquads and a rigid body, we start seeing significant differences in the different methods
of realizing the state space form. The conventional methods are clearly not matching the measured
Aerotech frequency response, while the biquad state space method is.

10
1

10
2

10
3

−50

0

50

100

150

200

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Rigid Body and 16 resonances: Scalar gain scaling at output taps

10
1

10
2

10
3

−1500

−1000

−500

0

500

1000

1500

Frequency (Hz)

P
ha

se
 (

de
g)

Filter FRFs
MultiNotch SS
Standard Matlab SS
Standard Matlab TF
Measured Plant

10
1

10
2

10
3

−50

0

50

100

150

200

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Rigid Body and 20 resonances: Scalar gain scaling at output taps

10
1

10
2

10
3

−1500

−1000

−500

0

500

1000

Frequency (Hz)

P
ha

se
 (

de
g)

Filter FRFs
MultiNotch SS
Standard Matlab SS
Standard Matlab TF
Measured Plant

Figure 9.22:Comparing state space forms to Aerotech stage frequency response. On the left: Mod-
eling the system with first 16 biquads and a rigid body. On the right: Modeling the system with first
20 biquads and a rigid body, Both plots show the significant differences in the different methods of
realizing the state space form get worse. Again, the conventional methods are clearly not matching
the measured Aerotech frequency response, while the biquad state space method is.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
604

Winter 2022-2023
December 31, 2022

State Space

9.22 Continuous Time Biquads

S S

S S

-

u

a1

d
(n)

y

b1

a2 b2S S

S San-1

d
(n-1)

d
(n-2)

d’

d

bn-1

an bn

b0

1
s

1
s

1
s

Figure 9.23:An nth order continuous-time, polynomial filter in Direct Form II configuration similar to
the discrete-time filter form in [3, 167].

A standard Single-Input, Single-Output (SISO) transfer function is shown in Figure 9.23, and represented

as transfer function by

Y(s)
U(s)

=
b0sn + b1sn−1 + b2sn−2 + . . . + bn

sn + a1sn−1 + a2sn−2 + . . . + an
. (9.108)

We can consider such high order polynomial transfer functions as filter models and factor these into a

series of biquad filters such as:

Y(s)
U(s)

=

(

b00s2 + b01s + b02

s2 + a01s + a02

) (

b10s2 + b11s + b12

s2 + a11s + a12

)

· · ·
(

bm0s2 + bm1s + bm2

s2 + am1s + am2

)

. (9.109)

If n is even, then the number of biquads, m is set to n/2. If n is odd, then there are are (n+1)/2 biquads,

but the last one is first order filter (by setting bm,2 = am,2 = 0. As was shown in [54, 3], there can be

advantages to factoring out the direct feedthrough gains, resulting in

Y(s)
U(s)

= b00

(

s2 + b̃01s + b̃02

s2 + a01s + a02

)

b10

(

s2 + b̃11s + b̃12

s2 + a11s + a12

)

· · · bm0

(

s2 + b̃m1s + b̃m2

s2 + am1s + am2

)

, (9.110)

where b̃i j =
bi j

bi0
. Note that if bi0 = 0 and bi1 , 0, then the factored out gain is bi1. Likewise if both bi0

and bi1 are 0, then then the factored out gain is bi2.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
605

Winter 2022-2023
December 31, 2022

State Space

1
s

1
s

1
s

1
s

1
s

1
s

1
s

1
s

S SS S

S SS S

- -

a01 a11b01

b00

b11

b10

a02 a12b02 b12

S SS S

S SS S

- -

an-1,1 an1bn-1,1

bn-1,0

bn1

bn0

an-1,2 an2bn-1,2
bn2

u

u0

x0 x1

xn-1 xn

y0 y1

yn-1 yn

y

Figure 9.24:Continuous biquad blocks in controller canonical form with states noted.

If we call this transfer function H(s), then H(s) = bm0 · · · b10b20H̃(s) which gives:

H̃(s) =

(

s2 + b̃01s + b̃02

s2 + a01s + a02

) (

s2 + b̃11s + b̃12

s2 + a11s + a12

)

· · ·
(

s2 + b̃m1s + b̃m2

s2 + am1s + am2

)

. (9.111)

Again, if one of the bi0 terms is 0 it is replaced by the first non-zero bi1 or bi2 term.

Returning to a more modal representation, a single biquad can be represented as:

B(s) = K

(

s2 + 2ςnωns + ω2
n

s2 + 2ςdωd s + ω2
d

)

(9.112)

which in turn can be represented in a two step differential form as:

ẍ + 2ςdωd ẋ + ω2
d x = u

y = K
(

ẍ + 2ςnωn ẋ + ω2
ndx

) (9.113)

This can be represented in state space form as:
[

ẍ
ẋ

]

=

[

−2ςdωd −ω2
d

1 0

] [

ẋ
x

]

+

[

1
0

]

u (9.114)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
606

Winter 2022-2023
December 31, 2022

State Space

and

y = K
[

2ςnωn ω
2
n

]
[

ẋ
x

]

+ Kẍ (9.115)

but we need to get rid of ẍ and get the output in terms of the actual state vector:

y = K
[

2ςnωn ω
2
n

]
[

ẋ
x

]

−K
[

2ςdωd ω
2
d

]
[

ẋ
x

]

+

[

K
0

]

u
(9.116)

y =
[

K(2ςnωn − 2ςdωd) K(ω2
n − ω2

d)
]
[

ẋ
x

]

+

[

K
0

]

u
(9.117)

What is important in this structure is that the output depends on the first two states and the input. In

this case, the input can feed through directly. Now, we would like to move this to a more general form

such as we had in [54] and [3], so we replace these resonance parameters with filter coefficients:
[

ẍi

ẋi

]

=

[

−ai1 −ai2

1 0

] [

ẋi

xi

]

+

[

1
0

]

ui (9.118)

while the state output equation is given by:

[

ỹi

]

=
[

b̃i1 − ai1 b̃i2 − ai2

]
[

ẋi

xi

]

+
[

1
]

ui (9.119)

Finally, the properly scaled output is generated via:
[

yi

]

=
[

bi0

] [

ỹi

]

. (9.120)

9.23 The Analog Biquad State Space Form

If we have multiple biquads of the form shown in Equations 9.118, 9.119, and 9.120, we can chain these

together by noting that:
ui = ỹi, for 0 ≤ i < n,
u0 = u, and

ỹn = ỹ.
(9.121)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
607

Winter 2022-2023
December 31, 2022

State Space

1
s

1
s

1
s

1
s

1
s

S SS S

S SS S

- -
u

a01 a11

u0

x0 x1

xn-1 xn

y0 y1
b00 b10b00

a02 a12b02

S SS S

S SS S

- -

1
s

1
s

1
s

an-1,1 an1

yn

y
bn0b ...b bn-1,0 10 00

an-1,2 an2

b01

~

~
b12

~

b11

~

bn-1,1

~

bn-1,2

~
bn2

~

bn1

~

Figure 9.25:The analog biquad cascade, with factored out bi,0 terms and scaling the output of each
block. This is completely analogous to the digital form of Figure 9.18

If one is willing to go through the algebraic pain and suffering of applying Equation 9.121 to each biquad

structure a very regular state space structure results.

¨̃x2

˙̃x2

¨̃x1

˙̃x1

¨̃x0

˙̃x0

=

−a21 −a22 b̃11− a11 b̃12− a12 b̃01− a01 b̃02− a02

1 0 0 0 0 0
0 0 −a11 −a12 b̃01− a01 b̃02− a02

0 0 1 0 0 0
0 0 0 0 −a01 −a02

0 0 0 0 1 0

˙̃x2

x̃2

˙̃x1

x̃1

˙̃x0

x̃0

+

1
0
1
0
1
0

u (9.122)

ỹ2

ỹ1

ỹ0

=

b̃21− a21 b̃22− a22 b̃11− a11 b̃12− a12 b̃01− a01 b̃02− a02

0 0 b̃11− a11 b̃12− a12 b̃01− a01 b̃02− a02

0 0 0 0 b̃01− a01 b̃02− a02

˙̃x2

x̃2

˙̃x1

x̃1

˙̃x0

x̃0

+

1
1
1

u. (9.123)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
608

Winter 2022-2023
December 31, 2022

State Space

Finally, the properly scaled outputs are generated via:

y2

y1

y0

=

b20b10b00 0 0
0 b10b00 0
0 0 b00

ỹ2

ỹ1

ỹ0

. (9.124)

This structure has a very regular iteration which continues with the addition of extra biquads. It is worth

noting several properties of this structure.

• First of all, it is a relatively sparse structure where a lot of the multiplies are 1.

• Secondly, we have put off multiplying by gain terms until the end. This provides the same input

output behavior as the transfer function model, although the internal states may not be scaled the

same way as the internal signals in the biquad chain. We will discuss alternate choices of where

to assign gain scaling in [306].

• The eigenvalues of the state matrix are still defined by the denominator terms of the transfer

function, and these show up in the “block diagonals” of the state matrix.

• The off diagonals contain differences of the numerator and denominator coefficients. Proper

selection of these terms can minimize these differences and keep the size of the off diagonal terms

well constrained.

It is worth discussing what it means to select these terms, the b̃i1 − ai1 and b̃i2 − ai2 terms. In the case

of a biquad,

b̃i1 − ai1 = 2ςinωin − 2ςidωid and b̃i2 − ai2 = ω
2
in − ω2

id. (9.125)

This structure then allows the designer to pick pole/zero or resonance/ant-resonance combinations that

minimize the off diagonal terms in the system matrix, the b̃i1 − ai1 and b̃i2 − ai2 terms, as well as their

effect on the output.

What we will see in the next section, is that the biquad matrix structure is the same for discrete time

biquads, although the physical interpretation of the coefficients is different. However, it is helpful to

keep in mind the similarity of the numerical structures.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
609

Winter 2022-2023
December 31, 2022

State Space

9.24 Discretization of the Analog BSS

One major difference in using the BSS compared to general textbook methods is that we choose to dis-

cretize the BSS on a biquad by biquad basis. While this looses the satisfaction of analytical mathematical

exactness, it does have the following positive properties:

1) Discretization approximations, and therefore discretization errors, are on a biquad by biquad

basis. This has the potential to bound the error growth as the number of biquads (and

therefore the number of states) grows.

2) The discretization method most appropriate to any one biquad can be applied independently

of how adjacent biquads are discretized. For example, with lightly damped resonance/anti-

resonance pairs, the pole zero mapping used in [54] and the ∆ coefficients of [33] work

extremely well. On the other hand, representing a double integrator as a discrete biquad can

be accomplished using a Trapezoidal Rule equivalent [15] as described in [3].

3) Moreover, discretizing on a biquad by biquad basis means that the digital BSS for a given

system has largely the same block structure as its analog BSS.

If one considers debugging a physical system, the importance of the last item cannot be overstated. The

“invariance under discretization” means that a discrete state space model can be compared to an analog

state space model or to modal test points on a physical system. It means that we can closely relate the

digital state space model to the physics of the problem, and therefore to physical measurements of real

systems.

This means that analog biquads are mapped to digital biquads, and while the meanings of the coefficients

change, the matrix structure is largely invariant.

The simple reason is that each biquad in the matrix structure is preserved – with different coefficients.

Thus, taken two at a time, the states are invariant under discretization. The consequence of this cannot

be understated, as an analog biquad decomposition is very a “physical” model of a system, similar to a

modal decomposition. As the obfuscation of physical, analog parameters by discretization is contained

within each biquad,

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
610

Winter 2022-2023
December 31, 2022

State Space

9.25 The Matrices, Reloaded, Part Deux

Generating coefficients from continuous time biquad parameters is discussed in some detail in [54]

and [33]. Suffice it to say that continuous time, physical parameters can be mapped into the discrete

time biquads which form the basis of our state matrices.

The state transition matrix in Equation 9.122 has a very regular, block upper triangular form. On the

block diagonals are 2 × 2 blocks with the biquad denominator parameters (from which we can extract

the model poles). Below the diagonal blocks are empty, while above the diagonal blocks is a repeated

set of 2× 2 blocks with 0s on the lower rows and

[

b̃i,1 − ai,1 b̃i,2 − ai,2

]

(9.126)

on the top row. The top rows of these blocks represent the feedthrough of the biquad states to the other

states. Likewise in the output matrix of Equation 9.123, these same subsections in (9.126) represent the

feedthrough of the biquad states to the outputs. Note that in both of these matrix equations, the input

is passed unscaled to the states and unscaled outputs. The gain scaling is applied in (9.124).

Note that while these matrices are denser than a typical canonical form, many of the needed multiplica-

tions and additions are repeated, so that proper coding of the state and unscaled output updates makes

this form no more computationally intense than a canonical form.

The above the block diagonal blocks are governed by the terms in (9.126), and these terms are determined

by how the overall system model is partitioned into biquads. One way to minimize these terms is to

arrange the pole-zero groupings so that each biquad consists of poles and zeros that are closest to each

other.

9.26 Continuous Time Rigid Body Dynamics and Low Pass Fil-
ters

The most common rigid body models we might see would be a double integrator as shown in the tortured

biquad form of Figure 9.26 with a1 = 0 or an integrator plus low pass form (a1 > 0), where there is a

real stable pole in place of one of the integrators. Spring-mass-damper actuators, such as those in an

atomic force microscope (AFM) [307, 308] would require a more difficult access to velocity. The double

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
611

Winter 2022-2023
December 31, 2022

State Space

S S

S S

-

yi
Ki 0

ui

xi

xi

xi

vi

10

0

1

1
s

1
s

ai1

Figure 9.26:Continuous time (CT) rigid body biquad. Setting a1 = 0 turns it into a CT double integrator.

integrator is modeled as:

D(s) =
K
s2
, (9.127)

while the single pole rigid body is modeled as

D(s) =
Ka1

s(s + a1)
. (9.128)

where a1 might be viscous friction applying velocity feedback.

Let’s consider a few forms of continuous time low pass filters (CT-LPF). When possible, we will set the

DC gain to 1 as a common scaling. A pair of first order models are presented in:

L1,a(s) =
a

s + a
and (9.129)

L1,b(s) =
(a
b

) s + b
s + a

. (9.130)

In the case of (9.129), it is low pass because the “zero” is at infinite frequency. At some point, for

positive a, it has to roll off. Equation (9.130) is only a low pass filter if 0 ≤ a < b. It doesn’t have

infinite rejection at infinite frequency. It is a lag filter, where the response at low frequency is higher

than the response at high frequency, and the level of attenuation is set by the distance between a and

b. Our method of translating filters from continuous time to discrete time in the multi-notch is based

on pole-zero mapping, and this has worked fine as long as the zeros were finite, so there is no problem

with (9.130). Likewise, there would be no problem with:

L2,b2(s) =

(

a2

b2

)

s2 + b1s + b2

s2 + a1s + a2
. (9.131)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
612

Winter 2022-2023
December 31, 2022

State Space

Equation (9.129) is a different matter as are:

L2,b0(s) =

(

a2

b2

)

b2

s2 + a1s + a2
, and (9.132)

L2,b1(s) =

(

a2

b1

)

s + b1

s2 + a1s + a2
. (9.133)

Equations (9.129), (9.132), and (9.133) all have zeros when |s| −→ ∞ or when s is evaluated on the

jω axis, when |ω| −→ ∞. A general form for such structures is diagrammed in Figure 9.27 and will be

discussed in Section 9.27.

9.27 Handling the Lack of Direct Feedthrough

S S

S S

-

ui

ai1

xi

yi

bi1

ai2

1

0
yi

~

bi2

~

1
s

1
s xi

xi

S S

S S

-

ui

ai1

xi

yi

bi2

ai2 1

0

0

yi

~

1
s

1
s xi

xi

Figure 9.27:Analog biquads without direct feedthrough. On the left, bi0 = 0. On the right, both bi0

and bi1 = 0. In either case, the leading gain is the gain of the highest order numerator term that
has a non-zero coefficient. In either case, the lack of direct feedthrough means that the output is
only determined by the state of the block. All downstream blocks from this one will not have direct
feedthrough from the cascade input to the cascade output.

One of the nice properties of the BSS is that it handles direct feedthrough from the input to the output

in a systematic structure. In the discrete time world, we can provide direct feedthrough for models of

analog systems by choice of discretization method. For example, the analog double integrator inserted

into the discrete BSS in [3] was discretized with the Trapezoidal Rule approximation, which gave it

direct feedthrough. In the analog world, the rationale for this does not exist and since most mechatronic

systems have some sort of low frequency behavior that has a pole zero excess (e.g. double integrator,

simple resonance), we need to know how to accommodate this.

Our focus on LPF and rigid body models raised the importance of entering models with no direct

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
613

Winter 2022-2023
December 31, 2022

State Space

feedthrough into the BSS and MNF. One of the nice properties of the BSS is that it handles direct

feedthrough from the input to the output in a systematic structure. In the discrete time world, we can

provide direct feedthrough for models of analog systems by choice of discretization method, as described

in Section 9.29. In the analog world, the rationale for this does not exist and since most mechatronic

systems have some sort of low frequency behavior that has a pole-zero excess, we need to know how to

accommodate this.

Figure 9.27 shows two examples of biquads tasked with modeling such systems. On the left side is a

biquad model for a system where only bi0 = 0. This would model a pole zero excess of 1. On the right,

both bi0 and bi1 are 0. In either case, we factor out the non-zero bi j corresponding to the highest order.

This will be used in our downstream gain calculations. Note that when any such biquad is in the chain,

the direct feedthrough from the system input, u, to any of the downstream inputs and outputs, u j and

yk for j > i and k ≥ i, is 0. This affects the form of our state matrices.

In both cases, the state equation from (9.118) is unchanged. However, the state output equations change

a lot. In the left hand case, Equation 9.119 becomes

[

ỹi

]

=
[

1 b̃i2

]
[

ẋi

xi

]

+
[

0
]

ui (9.134)

where b̃i2 = bi2/bi1 and (9.120) becomes:

[

yi

]

=
[

bi1

] [

ỹi

]

. (9.135)

In the right hand case, Equation 9.119 becomes

[

ỹi

]

=
[

0 1
]
[

ẋi

xi

]

+
[

0
]

ui (9.136)

and (9.120) becomes:
[

yi

]

=
[

bi2

] [

ỹi

]

. (9.137)

This may seem like an awful lot of bookkeeping for such a simple concept, but doing this bookkeeping

allows us to maintain a the overall system structure, which allows us to write scripts and programs to

build up BSS matrices from individual biquad models.

To illustrate this, consider a 4-biquad system model. We choose bi0 = 0 for biquad 1. (Here the first
biquad in the chain is biquad 0 and the last one is biquad 3. Again, algebraic pain and suffering results
in a very regular state space structure. For our 4-biquad model, we get the state equation of 9.138.
The unscaled output is in Equation 9.139, both displayed in Figure 9.28 due to their size. Finally, the

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
614

Winter 2022-2023
December 31, 2022

State Space

¨̃x3

˙̃x3

¨̃x2

˙̃x2

¨̃x1

˙̃x1

¨̃x0

˙̃x0

=

−a31 −a32 b̃21− a21 b̃22− a22 b̃11 b̃12 0 0
1 0 0 0 0 0 0 0
0 0 −a21 −a22 b̃11 b̃12 0 0
0 0 1 0 0 0 0 0
0 0 0 0 −a11 −a12 b̃01− a01 b̃02− a02

0 0 0 0 1 0 0 0
0 0 0 0 0 0 −a01 −a02

0 0 0 0 0 0 1 0

˙̃x3

x̃3

˙̃x2

x̃2

˙̃x1

x̃1

˙̃x0

x̃0

+

0
0
0
0
1
0
1
0

u

(9.138)

ỹ3

ỹ2

ỹ1

ỹ0

=

b̃31− a31 b̃32− a32 b̃21− a21 b̃22− a22 b̃11 b̃12 0 0
0 0 b̃21− a21 b̃22− a22 b̃11 b̃12 0 0
0 0 0 0 b̃11 b̃12 0 0
0 0 0 0 0 0 b̃01− a01 b̃02− a02

˙̃x3

x̃3

˙̃x2

x̃2

˙̃x1

x̃1

˙̃x0

x̃0

+

0
0
0
1

u.

(9.139)

Figure 9.28: State equations for continuous time biquad state space with scalar output scaling. Biquad 1
lacks direct feedthrough.

properly scaled outputs are generated via:

y3

y2

y1

y0

=

b30b20b1xb00 0 0 0
0 b20b1xb00 0 0
0 0 b12b00 0
0 0 0 b00

ỹ3

ỹ2

ỹ1

ỹ0

, (9.140)

where bix = bi1 if bi1 , 0 and bix = bi2 if bi1 = 0. In Equations 9.138 and 9.139 b̃11 = 1 and b̃12 = b12/b11

if b10 = 0 and b11 , 0. Similarly, if b10 = 0 and b1100, then b̃11 = 0 and b̃12 = 1. Note that the direct

feedthrough from the input to any outputs downstream of biquad 1 is blocked. Also note that direct

feedthrough of any states upstream of biquad 1 to any states downstream of biquad 1 is also blocked.

Like the input, those states affect the downstream states through the output of biquad 1. However, it

is clear that they still have a regular structure.

While lack of direct feedthrough may be unavoidable in continuous time, the real design choice comes

when we wish to discretize continuous time models without direct feedthrough and represent them in an

equivalent discrete time BSS or MNF.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
615

Winter 2022-2023
December 31, 2022

State Space

9.28 Bilinear State-Space Form

S S

-

ui
ui+1

xi+1

yi

yi+1

yi+1

~
1
s xi

S S

- 1
s

xi+1xi
1 1

ai1
ai+1,1

bi0
bi+1,0

bi1

~
bi+1,1

~

Figure 9.29:Continuous time bilinear state space (CT-BLSS) form.

1S S

-

ui

xi

yiKi 1

yi

~
1
s xi

S S

- 1
s

xixi
0 0

01 1ai1

Figure 9.30:Continuous time rigid body BLSS model. Note that rather than indexing the second stage
as i + 1, we stick with i but label the level of integration on the signals.

S S

-

u (k)i

xi+1(k)
y (k) = u (k)i i+1

yi+1(k)y (k)i+1

~

xi(k)

S S

-

xi+1(k+1)xi(k+1)
1 1

ai1

bi0

bi1

~

z
-1

z
-1

ai+1,1 bi+1,1

~

bi+1,0

Figure 9.31:Discrete time bilinear state space form (DT-BLSS).

One of the issues with biquads is that while the continuous time biquads map to the discrete time

biquads, and the input-output relationships hold, the internal states might not represent the physical

states. In rigid body models, there is often an advantage to accessing the individual physical states, and

in having these states map to discrete time models. To do this, we suggest the bilinear state space form

(BLSS), which opens up the biquad in the case of real and distinct poles and zeros. The familiar CT

and DT state equations are:

ẋ = FC x +GCu, y = HC x + DCu and (9.141)

x(k + 1) = Fx(k) +Gu(k), y = Hx(k) + Du(k), (9.142)

respectively. The continuous and discrete matrices have the same structure, but the interpretation of

the internal {ai1, ai2, b̃i0, b̃i1, and b̃i2} coefficients change in going from continuous to discrete time. The

DT matrices, {F,G,H, andD} are given by:

F =

[

−ai+1,1 bi,0(b̃i1 − ai1)
0 −ai,1

]

, (9.143)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
616

Winter 2022-2023
December 31, 2022

State Space

H =

[

bi+1,0(b̃i+1,1 − ai+1,1) bi+1,0bi,0(b̃i,1 − ai,1)
0 bi,0(b̃i,1 − ai,1)

]

, (9.144)

G =

[

bi,0

0

]

, and D =

[

bi+1,0bi,0

bi,0

]

, where (9.145)

ui = yi−1 for i = 1, . . . , n. (9.146)

The CT matrices, {FC,GC,HC, andDC} are given by:

FC =

[

−ai+1,1 bi,0(b̃i1 − ai1)
0 −ai,1

]

(9.147)

HC =

[

bi+1,0(b̃i+1,1 − ai+1,1) bi+1,0bi,0(b̃i,1 − ai,1)
0 bi,0(b̃i,1 − ai,1)

]

(9.148)

GC =

[

bi,0

0

]

, and DC =

[

bi+1,0bi,0

bi,0

]

, where (9.149)

ui = yi−1 for i = 1, . . . , n. (9.150)

The general continuous time BLSS model is diagrammed in Figure 9.29 which simplifies to Figure 9.30

for the rigid body models we have discussed. The general discrete time model is diagrammed in Figure

9.31. We will see that these forms are extremely useful with adding a rigid body section to BSS models,

since we can access the states such as velocity and position easily.

9.29 Discretization Choices

With the MNF, and the BSS, discretization was easily done via pole-zero mapping so long as the

continuous time numerator and denominator were of the same order [309, 310, 303, 304]. The Bode

plot comparisons in [304] gave confidence that this captured the zero behavior. When we are dealing

with a pole-zero excess of 1 or 2 in a block – such as we have with CT low-pass filters and CT rigid-body

models, we need to consider some choices for placing the CT “zeros at ∞” [133]. We have essentially 4

choices:

• Map one or two CT zeros at s = −∞ to z = −∞. While this takes sampling delay into account, it

is the least favored of these methods for any filter that will be used in a feedback mechanism as

the zeros at −∞ will pull a corresponding number of closed-loop poles towards them and out of

the unit circle.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
617

Winter 2022-2023
December 31, 2022

State Space

• Map the CT zeros at s = −∞ to z = 0. These tend to cancel pure delays and are conservative

in that they minimize the phase effect of the denominator. This is what is done in typical PID

discretization [311] and the conservatism of the zero at z = 0 helps stabilize the overall loop.

However, they are not the most accurate match to the continuous time filter.

• Map the CT zeros at s = −∞ to z = −1. This corresponds to the Trapezoidal Rule equivalent and

is the most accurate match for the continuous time model.

• Do some combination of the above choices.

While assigning one of the CT zeros at s = −∞ to z = −∞ is a traditional way of incorporating delay

[133] and results in no direct feedthrough. Assigning both DT zeros this way results in a discrete biquad

that looks like

Bi,FR(z) =
bi,2z−2

1+ ai,1z−1 + ai,2z−2
, (9.151)

which is similar to a forward rectangular rule equivalent, 1
s −→

Tz−1

1−z−1 . This will not have direct feedthrough

and thus will require a discrete time block structure similar to the continuous time ones shown in Section

9.27. Recent work suggests designing for a system with minimum delay and then backing off bandwidth

to accommodate the phase due to measured delay [112, 312].

If we consider the conservative backwards rule construction, 1
s −→

T
1−z−1 , we end up with

Bi,BR(z) =
bi,0

1+ ai,1z−1 + ai,2z−2
, (9.152)

where we see that the numerator delay from (9.151) has been completely eliminated. The BSS block

will have a standard structure, just with b̃i,1 and b̃i,2 = 0. Finally, if we choose the Trapezoidal Rule

equivalent, 1
s −→

T
2

1+z−1

1−z−1 , we end up with

Bi,TR(z) = bi,0
1+ 2z−1 + z−2

1+ ai,1z−1 + ai,2z−2
, (9.153)

with two zeros at z = −1. Finally, we might try tweaking the phase of the model by choosing one zero

at z = 0 and one at z = −1, in which case we would have

Bi,T BR(z) = bi,0
1+ z−1

1+ ai,1z−1 + ai,2z−2
. (9.154)

Again, these are standard BSS blocks with direct feedthrough, but with particular values for b̃i,1 and b̃i,2.

If we want a rigid body model with the BSS or a low pass filter that works well with the BSS or MNF,

it is best to avoid zeros at −∞.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
618

Winter 2022-2023
December 31, 2022

State Space

9.30 Discrete Time Rigid Body Models

S S

S S

-
z

-1

z
-1

u (k)i yi(k)

xi(k)
xi(k)

Ki T /2
2 0

1

1-1

-2

Figure 9.32:Discrete double integrator biquad model (ZOH equivalent). Notice when viewed this way,
the integrators are unbalanced in that the first one is implemented differently from the second.

S S

-

u (k)i yi(k)
Ki T/2T 0 1

1 1-1 -1

S S

-
xi(k)xi(k) z

-1
z

-1

y (k)i

= x (k)i

~

Figure 9.33:Discrete double integrator BLSS model (ZOH equivalent). In this drawing, we’ve chosen
to make the index, i, as with a biquad stage, but we are explicitly labeling the different integration
levels.

In Section 9.20 and in [303], we showed how using a Trapezoidal Rule equivalent on a double integrator

preserved the feedthrough. With discrete equivalent forms of the model in Figure 9.26, we run into

the issue that we cannot readily access a reasonable velocity estimate from these models. Looking at

the zero-order hold (ZOH) equivalent [133] model in Figure 9.32 or the Trapezoidal Rule equivalent in

Figure 9.34, we can easily extract an acceleration estimate and/or a position estimate, but velocity would

require some new combination of the states. In practical use of state space models for motion control

of mechatronic systems, it seems highly illogical to go to the trouble of generating a state space model

and not be able to easily access velocity.

A word about indexing here. While normally we would want to index these blocks as we do with any of

our biquad blocks, say block i, all the subscripts can make the text Byzantine at first glance. Instead,

we use index 0 for the first integrator, and 1 for the second integrator, realizing that the readers will be

able to add the appropriate offset to the equations. For clarity, the drawings index the stages all as i,
but noting the integration level of each block.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
619

Winter 2022-2023
December 31, 2022

State Space

The BLSS model of Figure 9.30 exposes velocity. Discretizing this model with a ZOH equivalent leads

to the model of Figure 9.33, while a Trapezoidal Rule equivalent can be found in Figure 9.35.

We break up the ZOH equivalent as

DZOH(z) = K T 2

2
(z+1)
(z−1)2

= KT
(

1
z−1

) (
T
2

) (
z+1
z−1

)

.
(9.155)

The blocks end up with the equations of:

x0,k+1 = KTu0,k + x0,k and (9.156)

y0,k = x0,k, (9.157)

where u0 = u and y1 = y. With u1,k = y0,k we have:

x1,k+1 =
T
2

u1,k + x1,k = x1,k +
T
2

x0,k and (9.158)

y1,k = x1,k + x1,k+1 = 2x1,k +
T
2 x0,k. (9.159)

Together, these become:
[

x1,k+1

x0,k+1

]

=

[

1 T
2

0 1

] [

x1,k

x0,k

]

+

[

0
KT

]

uk. (9.160)

The output is defined as:
[

y1,k

y0,k

]

=

[

2 T
2

0 2

] [

x1,k

x0,k

]

+

[

0
0

]

uk. (9.161)

S S

S S

-
z

-1

z
-1

u (k)i yi(k)

xi(k)

xi(k)

Ki T /4
2 1

2

1-1

-2

Figure 9.34:Discrete double integrator biquad model (trapezoidal rule equivalent).

This is the textbook model for a double integrator [133], but now we can access the velocity output, y0,k

directly. This does not have direct feedthrough, unlike the trapezoidal rule model of (9.162). We break

that up as follows:

DTR(z) = K T 2

4
(z+1)2

(z−1)2

= K
(

T
2

) (
z+1
z−1

) (
T
2

) (
z+1
z−1

)

.
(9.162)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
620

Winter 2022-2023
December 31, 2022

State Space

S S

-

u (k)i yi(k)
Ki T/2T/2 1 1

1 1-1 -1

y (k)i

= x (k)i

~
S S

-xi(k)xi(k) z
-1

z
-1

Figure 9.35:Discrete double integrator BLSS model (trapezoidal rule equivalent) . In this drawing,
we’ve chosen to make the index, i, as with a biquad stage, but we are explicitly labeling the different
integration levels.

The blocks end up with the equations of:

x0,k+1 = K
T
2

u0,k + x0,k and (9.163)

y0,k = x0,k + x0,k+1 = 2x0,k + K
T
2

u0,k, (9.164)

where u0 = u and y1 = y. With u1,k = y0,k we have:

x1,k+1 =
T
2 u1,k + x1,k

= 2x1,k + T x0,k + K T 2

4 uk and
(9.165)

y1,k = x1,k + x1,k+1 = 2x1,k + K T
2 u1,k

= 2x1,k + T x0,k + K T 2

4 uk.
(9.166)

Together, these become:
[

x1,k+1

x0,k+1

]

=

[

1 T
0 1

] [

x1,k

x0,k

]

+

K
(

T
2

)2

K
(

T
2

)

uk. (9.167)

The output is defined as:
[

y1,k

y0,k

]

=

[

2 T
0 2

] [

x1,k

x0,k

]

+

K
(

T
2

)2

K
(

T
2

)

uk. (9.168)

With this implementation of the trapezoidal rule (TR) equivalent, we can also access the velocity output,

y0,k directly. This has direct feedthrough, and is probably the closest simple equivalent to to continuous

time form from a frequency response perspective.

Finally, our discussion of discretization might make us consider using a backwards rule equivalent to

model the double integrator. This would be broken up as

DBR(z) = KT 2 (z)2

(z−1)2

= KT
(

z
z−1

)

T
(

z
z−1

)

.
(9.169)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
621

Winter 2022-2023
December 31, 2022

State Space

S S

-

u (k)i

xi(k)

yi(k)
Ki TT 1 1

0 0-1 -1

yi(k)~

xi(k)

S S

-

xi(k)xi(k)

z
-1

z
-1

Figure 9.36:Discrete double integrator BLSS model (backwards rectangular rule equivalent).

The blocks end up with the equations of:

x0,k+1 = KTu0,k + x0,k and (9.170)

y0,k = x0,k+1 = x0,k + KTu0,k, (9.171)

where u0 = u and y1 = y. With u1,k = y0,k we have:

x1,k+1 = Tu1,k + x1,k

= x1,k + T x0,k + KT 2uk and
(9.172)

y1,k = x1,k+1 = x1,k + T x0,k + KTu1,k. (9.173)

Together, these become:
[

x1,k+1

x0,k+1

]

=

[

1 T
0 1

] [

x1,k

x0,k

]

+

[

KT 2

KT

]

uk. (9.174)

The output is defined as:
[

y1,k

y0,k

]

=

[

1 T
0 1

] [

x1,k

x0,k

]

+

[

KT 2

KT

]

uk. (9.175)

While this is not as true to the continuous time model as the trapezoidal rule, it does have the nice

property of minimizing latency with the two zeros at z = 0. This property makes the model more robust

to time delay, much in the same way that the backwards rule equivalent discretization used in most

digital PID controllers makes the controller more robust.

Note the key difference internally is that we have scaled the integration of the intermediate state structure

to more closely match the continuous time form. This kind of scaling was scrupulously avoided for high

Q filters in [309, 304], but should present no problem with the rigid body modes.

9.31 Rigid Body to BSS Examples

Figure 9.37 demonstrates the Bode plot of a BSS model with a low pass filter (LPF) as part of a 3-biquad

model. Note the close match between the composite responses (individual biquad frequency responses

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
622

Winter 2022-2023
December 31, 2022

State Space

10
0

10
1

10
2

10
3

−60

−40

−20

0

20

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Biquad SS Versus with LPF (3 biquads)

10
0

10
1

10
2

10
3

−250

−200

−150

−100

−50

0

Frequency (Hz)

P
ha

se
 (

de
g)

CT Biquad SS (composite resp.)
DT Biquad SS (composite resp.)
CT Biquad SS (resp. from full SS)
DT Biquad SS (resp. from full SS)

Figure 9.37:Biquad State Space with three biquads including a low pass filter. The CT biquad plots
include a composite of the individual CT biquad Bode plots (blue) and a Bode of the complete CT
BSS structure (green). The DT biquad plots also include a composite of individual DT biquad Bode
plots (magenta) and a Bode of the complete DT BSS structure (cyan). The match of the complete
structures to the composites show that the CT and DT BSS structures have properly represented
the series connection of the individual biquads. The match between CT and DT show that we have
properly discretized the low pass filter in our BSS. The curl up of the phase back to 0 in the DT curves
is based on the zeros at z = −1 due to the use of a Trapezoidal rule equivalent discretization.

combined) versus responses extracted directly from the full BSS structure. The significance of this is

that while the discrete time LPF can be modeled with direct feedthrough, the continuous time LPF

cannot. Nevertheless, they produce responses that match very well. Figure 9.38 shows that the CT and

DT match is across all the biquad outputs, as previously demonstrated without the LPF in [304].

Figure 9.39 shows at double integrator, discretized using a ZOH equivalent, implemented as a biquad

(top) and a BLSS (bottom). The input-output behavior is consistent, but we now have access to the

internal intermediate state with the BLSS. Figure 9.40, repeats the simulation using a Trapezoidal rule

equivalent. In both cases, the BLSS gives us access to the output of the first stage, which is can be

interpreted as velocity. We see further, that using the Trapezoidal Rule equivalent adjusts the scale of

the internal state of the first bilinear block to make the integrators balanced. The BLSS block is a logical

addition to state space models needing access to both position and velocity.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
623

Winter 2022-2023
December 31, 2022

State Space

10
0

10
1

10
2

10
3

−60

−40

−20

0

20

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Comparing Analog and Digital Biquad Intermediate Outputs (3 biquads)

10
0

10
1

10
2

10
3

−250

−200

−150

−100

−50

0

Frequency (Hz)

P
ha

se
 (

de
g)

CT Biquads 1−3 Out
DT Biquads 1−3 Out
CT Biquads 2−3 Out
DT Biquads 2−3 Out
CT Biquad 3 Out
DT Biquad 3 Out

Figure 9.38:BSS with three biquads including a low pass filter in Biquad 1. This plot compares the
Bode responses of the individual CT and DT biquad sections. The outputs of biquad 3 and biquad 2
show the magnitude and phase flattening out at high frequency (due to the matched number of poles
and zeros). Once the response of biquad 1 is added in, we see the low pass rolloff of Figure 9.37.
At each biquad output, the match between continuous and discrete responses is incredibly close, a
unique and useful feature of this structure.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
624

Winter 2022-2023
December 31, 2022

State Space

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

B
iq

ua
d

S
ig

na
ls

Biquad, ZOH: Double Int. Test: f
in

 = 1 Hz, f
S
 = 100 Hz

Input/2
d

i,k

y
i,k

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

B
LS

S
 S

ig
na

ls

BLSS, ZOH: Double Int. Test: f
in

 = 1 Hz, f
S
 = 100 Hz

Input/2
d

i,k

y
i,k

d
i+1,k

y
i+1,k

Figure 9.39:Double integrator with square wave input. Implemented using a ZOH equivalent biquad
(top) and BLSS (bottom).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

B
iq

ua
d

S
ig

na
ls

Biquad, TR: Double Int. Test: f
in

 = 1 Hz, f
S
 = 100 Hz

Input/2
d

i,k

y
i,k

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

B
LS

S
 S

ig
na

ls

BLSS, TR: Double Int. Test: f
in

 = 1 Hz, f
S
 = 100 Hz

Input/2
d

i,k

y
i,k

d
i+1,k

y
i+1,k

Figure 9.40: Double integrator with square wave input. Implemented using a trapezoidal rule equiva-
lent biquad (top) and BLSS (bottom).

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
625

Winter 2022-2023
December 31, 2022

State Space

9.32 Continuous Time Examples

10
0

10
1

10
2

10
3

−80

−60

−40

−20

0

20

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Biquad SS Versus Matlab Series Discrete State Space (8 biquads)

10
0

10
1

10
2

10
3

−400

−200

0

200

400

Frequency (Hz)

P
ha

se
 (

de
g)

CT Biquad SS (composite resp.)
DT Biquad SS (composite resp.)
CT Biquad SS (resp. from full SS)
DT Biquad SS (resp. from full SS)
DT Standard TF
DT Standard SS

10
0

10
1

10
2

10
3

−300

−250

−200

−150

−100

−50

0

50

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Biquad SS Versus Matlab Series Continuous State Space (52 biquads)

10
0

10
1

10
2

10
3

−800

−600

−400

−200

0

Frequency (Hz)

P
ha

se
 (

de
g)

CT Biquad SS (composite resp.)
DT Biquad SS (composite resp.)
CT Biquad SS (resp. from full SS)
DT Biquad SS (resp. from full SS)
CT Standard TF
CT Standard SS

Figure 9.41: Comparison of Bode plots from continuous and discrete BSS, as well as standard
discrete transfer function and state space forms. The conventional methods fall apart with 8 biquads,
while the BSS methods retain their numerical integrity.

In order to demonstrate the numerical improvements arising from the biquad state space structure, some

simple examples were generated in Matlab. A serial biquad structure was generated from resonance

and anti-resonance parameters. The natural frequencies of the resonances were logarithmically spaced

between 10 Hz and 2000 Hz, while the natural frequencies of the anti-resonances were spaced between

15 Hz and 2500 Hz. Numerator and denominator damping factors were set at 0.01. The sample

frequency was chosen at 8 kHz for the discrete biquads. The script could then specify any number of

resonance/anti-resonance pairs to fill that frequency range. As the baseline, the frequency responses of

each individual biquad was generated and these responses were summed to create a composite response.

Since the responses were generated from individual biquads, it was thought that they would be less

susceptible to numerical issues.

In order to compare the biquad state space to more conventional methods, the resonance/anti-resonance

parameters were then used to generate both transfer function models and state space models in MATLAB
. The linear system concatenation functions were used for both of these. From these high order models,

Bode plots were generated to compare to the composite Bode plots described above. These are the

“standard” or “conventional” methods. Similarly, model terms were used to construct both continuous

and discrete biquad state space structures and again, Bode plots were generated. Note that these plots

are not made using fixed point math, but with all terms represented in MATLAB ’s dual precision floating

point format.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
626

Winter 2022-2023
December 31, 2022

State Space

10
0

10
1

10
2

10
3

−40

−30

−20

−10

0

10

20

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Comparing Analog and Digital Biquad Intermediate Outputs (3 biquads)

10
0

10
1

10
2

10
3

−200

−150

−100

−50

0

Frequency (Hz)

P
ha

se
 (

de
g)

CT Biquads 1−3 Out
DT Biquads 1−3 Out
CT Biquads 2−3 Out
DT Biquads 2−3 Out
CT Biquad 3 Out
DT Biquad 3 Out

Figure 9.42: Comparing analog and discrete BSS outputs. With 3 biquads, the outputs of each analog
biquad section was plotted against it’s digital version. This demonstrates the invariance of the biquad
outputs under discretization.

The left side of Figure 9.41 shows an 8 biquad case where the conventional discrete time structures

(transfer function and state space) have numerical difficulties. Note that both continuous and discrete

BSS structures produce plots right on top of the composite plots.

On the right side of Figure 9.41 the composite plots and continuous and discrete BSS structure plots are

compared to conventional continuous methods. In this case all methods produce identical plots, even

with a 52 biquad structure.

Figure 9.42 plots a 3-biquad structure, and in this case we plot neither conventional methods nor the

composite plots. Instead we tap off the individual biquad outputs of the first, second, and third biquads

so that we can demonstrate the almost exact match of the discrete biquads to the continuous biquads.

As mentioned earlier, this “invariance under discretization” is a very useful property. In particular, it

allows one to construct an analog model from physical principles, convert this model to an analog Biquad

State Space form, convert that to a discrete time Biquad State Space form for implementation, and then

easily extract information about the continuous model from the discrete model results.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
627

Winter 2022-2023
December 31, 2022

State Space

9.33 Biquad State Space Summary

One of the more peculiar aspects of this development is that the solution to adding physical intuition

back into state-space methods started in the discrete-time formulation, and then bled into continuous

time. It was only by realizing that we needed to give up the idea of combining all the model parameters

into some sort of polynomial form realization (e.g. controller canonical form or observer canonical form)

and realizing that we could discretized the analog structures one biquad at a time, did we finally get to

a state-space construction where the states of the continuous time model and the discrete time model

were tightly connected.

The biquad state space (BSS) form adapts The Multinotch filter [54, 33] for state space use, preserving

the latter’s excellent numerical properties [3]. One form of the BSS has the same minimum latency

behavior that makes the Multinotch so useful for real-time control. Like the Multinotch, this “scalar

output gain” version of the BSS has computational latency after the input sample that is independent of

the number of states. When used as an observer for state feedback in a SISO system, the extra latency

is due to nstates multiplications (which can be done in parallel) and a sum of these products. Depending

upon the computational architecture and the number of products, the addition can also be accomplished

in 1 to nstates − 1 operations, the latter if addends must be summed 2 at a time.

Even when doing off line modeling, the examples in Sections 9.21 and 9.32 demonstrate how the BSS

preserves numerical fidelity in the state space model. It also preserves the physical intuition of the analog

parameters in the digital state space matrices, which is extremely helpful in debugging physical systems.

Moreover, both the continuous BSS [4] and the discrete BSS [3] have a regular and repeatable structure,

as with a canonical form. This makes it relatively straightforward to generate the matrices from modal

parameters in an automated fashion, and transfer those parameters into an implementable discrete-time

form.

Perhaps most important is the fact that the discrete-time BSS matrices are closely related to the

continuous-time BSS matrices, allowing for an extremely “physical” understanding of complex, discrete-

time models. One can envision using state space in industrial environments by:

a) Generate a basic physical system model from first principles, physics, experience, and previ-

ously measured dynamics.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
628

Winter 2022-2023
December 31, 2022

State Space

b) Make measurements (Chapter 3) to verify/correct these models to tighten parameters, etc.

for an initial feedback loop.

c) (If needed) Repeat measurements under feedback for more detailed continuous time model.

d) Transform that model into a modal, continuous-time biquad state space (CT-BSS) form.

e) Discretize the continuous-time biquad state space (CT-BSS) to a discrete-time biquad state

space (DT-BSS), preserving the essential structure.

f) Verify model by applying similar “measurements” to Discrete-Time Biquad State Space and

Continuous-Time Biquad State Space forms, as in Figure 9.42.

g) Use the discrete-time biquad state space for design/control.

The steps may seem pedantic, but they each verify te viability and physicality of the Discrete-Time

Biquad State Space model. Furthermore, the test points o the Discrete-Time Biquad State Space should

correspond to the test points on the Continuous-Time Biquad State Space, which should be very relatable

to those on the physical system.

What this means – and this is a big deal – is that we can debug our system. We can compare physical and

digital model test points to match the signals. This kind of physical “debugability” of at discrete-time

state space model is almost unheard of outside of second order systems, but this method gives us that

possibility.

9.34 Chapter Summary and Context

9.35 Change Log for Chapter 9

• 2019 06 29: Added Section 9.3 as a simple introduction of state space concepts and what is

important.

• 2019 06 29: Added Section 9.7 as a model based measurement tutorial.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
629

Winter 2022-2023
December 31, 2022

State Space

• 2019 06 30: Added discussion of observability and controllability, and its practical meaning, to

Section 9.7.

• 2019 07 02: Added sections on BLSS and other useful structures for BSS from [5]. Tried to

harmonize them with the rest of the chapter.

• 2019 07 03: Cleaned up text. Added more structure to the conclusions. Added a quasi-chapter

TOC nearrow the beginning of the chapter.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
630

Winter 2022-2023
December 31, 2022

Chapter 10

Real-Time Computing Issues for Control
Systems

10.1 In This Chapter

In this chapter we will focus on the pieces of computation that need to be in place in any real-time

control system. While we are focusing on control systems where the main computation is done by a

digital computer (broadly any computation done via programmable digital logic, including processors and

FPGAs), there is always a role for analog electronics in interfacing these means to the real world. This

chapter will have a handful of major themes:

• The physical system to computation “input” signal chain and its computations.

• The computation to physical system “output” signal chain and its computations.

• The physical system “computations” and discussions of various model types.

• The computation itself: how to think about computer architectures and programming in the context

of real-time control systems.

In this chapter, we will often refer to Moore’s law, the general rule proposed by Intel Co-Founder Gordon

Moore [42] that the amount of logic one can pack onto a Silicon chip doubles roughly every 18 months.

631

Computation for Control

This prediction has been remarkably accurate over the decades, not only through the march of technology

but also that chip makers themselves have felt pressured to make sure they meet the line (in logarithmic

space). In this chapter, Moore’s law will be used as a generic stand in for the rapid advance of computer

and electronic technology. Similarly, Newton’s laws, which usually refer to Newton’s laws of motion

[314], but in this book the term is shorthand for scientific modeling and inference, i.e. what drives the

real world system. Substantial portions of this chapter have been published by the author in [315] and

[17].

10.2 Motivation: Why Talk About Computation?

Physical
System

Op Amp
Circuit

Actuators

Signal
Conditioning

Analog
Filters

Power
Amplifier

Sensor

Measured
Outputs

Small
Electrical
Signals

Small
Electrical
Signals

Small
Electrical
Signals

Small
Electrical
Signals

Analog controller:
mostly leads, lags,
PIDs, some notch,
maybe a bump
filter

The analog circuitry:
analog filters here are
mostly notch and low pass
filters.

The stuff that moves:
to make your computer
run this stuff, you have
to go through the other
stuff.

Electrical
Reference

Large
Electrical
Signals

Force/
Current/

Flow/
Etc.

Physical
Outputs

Analog
Filters

Figure 10.1:A generic analog control loop.

Let’s be pedantic for a moment. The main difference between an analog control loop in Figure 10.1 and

the digital loop in Figure 10.2 is the stuff on the left side, namely the computation and the conversion

chips. Within reason, one can consider the stuff to the right of the converters to be the same, although

it is true that there are some control loops that nobody would ever attempt without digital controllers.

Still, the necessity of these devices for digital control implies that one should at least know something

about them. One might not need to fully understand the internal combustion engine to be a car owner,

but it helps to have at least a thumbnail idea of what is going on when you need to take that car to the

shop.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
632

Winter 2022-2023
December 31, 2022

Computation for Control

Physical
System

Digital
Computer

Actuators

Signal
Conditioning

Analog
Filters

Power
Amplifier

Digital to
Analog

Sensor

Measured
Outputs

Small
Electrical
Signals

Small
Electrical
Signals

Small
Electrical
Signals

Small
Electrical
Signals

Digital
Signals

Inside the computer:
plenty of chances to
do fancy stuff, but
cannot erase any
quantization
or delay inserted by
analog portions.

The analog circuitry:
analog filters here are
mostly notch and low pass
filters, including
anti-alias filters.

The stuff that moves:
to make your computer
run this stuff, you have
to go through the other
stuff.

Digital
Signals

Digital
Reference

Large
Electrical
Signals

Force/
Current/

Flow/
Etc.

Physical
Outputs

Analog
to Digital

Analog
Filters

Figure 10.2:A generic digital control loop.

The choices of computational models, sample rates, converters, and analog filters usually affect the

results in the real world far more than any 5% difference in algorithm performance. This is, in fact one

of the difficulties of putting advanced methods into physical implementation. Applying 10× as much

mathematical machinery may or may not get as much improvement as choosing an ADC with a pipeline

delay of 1 sample rather than 17 samples.

The point is that these choices often determine what your algorithms can and can’t do. The second

point – and this may be more important – is that somebody will make those choices. Channeling our

inner Georges Clemenceau [316], the choice of hardware and computing platform for our control systems

is too important to be left to people who are not control engineers. These system level choices are at the

heart of what it means to translate the “beautiful math” of control theory into the “bad ass engineering”

of control systems.

It is important to realize that often the assumptions about what can and can’t be done in a control loop

in any institution are based on examples of what has worked before. Many of these date from a time

when processing was far more expensive. The relentless path of Moore’s law means that we need to

challenge the computational assumptions at least every 5 years.

While computation is critical to any digital control system, our CAD tools have gotten so effective that

fewer and fewer control engineers are competent programmers outside of Matlab or Python. This leaves

us to rely on the prepackaged real-time implementation tools provided by manufacturers. While these

tools allow one to go from model to real-time without writing C or C++ code, their need for generality

and for hiding the computational complexity from the user often consume much of the real-time resources

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
633

Winter 2022-2023
December 31, 2022

Computation for Control

of a chip. The control engineer who hits that limit without understanding computation is left relatively

helpless. A basic understanding of how computation-for-feedback issues affect the performance of real-

time systems will greatly expand the performance achievable by many algorithms.

10.3 Why is Discussing Computation for Feedback Systems Hard?

We should ask at this point what makes general discussions and guidelines of computation for real-time

control so rare? The texts that discuss them are either focused on one technology level for one particular

class of operations, e.g. running rigid body mechatronic systems from a standard laptop, or they are at

such a high level as to have only vague recommendations about processor speed with respect to time

constants.

1) There are few closed-form answers. That is, there is little coherent theory which allows

us to plug in numbers and get definitive yes/no answers. Instead, we are left to piece

together information from data sheets, prior experience, and best practices. Furthermore,

everything seems very technology and application specific. This makes it hard to have a

general discussion.

2) The technology is constantly changing (again Moore’s law), which means anything chip or

technology specific will be out of dat in one to ten years. Mass market devices are made

obsolete on a 1–2 year schedule. Connection chips, embedded processors, etc. have a longer

lifespan, typically in the 4–10 year range. Still, this is uncomfortable for those of use used

to theories that largely stand the test of time.

3) There are many levels, many time constants, and many technologies. Consequently, it is

again hard to make definitive statements.

We take the view that while technology changes constantly, the principles on how we choose that

technology does not. The feedback framework of Figure 10.5 provides certain essential limitations and

requirements that provide critical insights on how we build our real-time systems.

“The more you want to do this stuff in real life, the more you need your opponent’s reaction

to help you.” – Rickson Gracie, at a seminar in Oakland, CA in 1994 discussing Brazilian

Jiu Jitsu (BJJ) and Mixed Martial Arts (MMA). Similarly, the more you want to design control

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
634

Winter 2022-2023
December 31, 2022

Computation for Control

systems for the real world, the more you need insights from the physical system to help you. With that

in mind:

• Put in extra sensors, even if they are not providing data for the main feedback loop. They can

often provide important meta data for the conditions affecting the main feedback loop.

• Whenever possible, compute low computation cost reality checks in parallel to the main compu-

tation. These are rarely sophisticated enough to run the main control loop(s), but they can often

provide insight as to when the main loop is malfunctioning.

• Make the computer models of the system as physical as possible. This makes it far easier to

compare the signals in the model with the signals one can measure from the physical system.

“The pitch is a strike until the ball tells you it’s not.” – Old baseball coach saying. One

of the characteristics that seems to align with youth (it certainly aligned with mine) is to assume that

systems using old technology were so bad as to not consider. Perhaps this is why enthusiasts of classic

cars tend to be older. However, the classic car enthusiasts may have a point. They are assuming that

these are well engineered machines for the technology of their day; that the designers made rational

choices and solved problems well, given their technology constraints. In a similar way, we should be

willing to examine and understand successful real-world design examples, even old ones. Assume the

engineers made intelligent choices, given their technological environment until you understand it well

enough to say why they did not. (The pitch is a strike until the ball tells you it’s not.) With that

understanding, we can intelligently assess what our current technology environment changes about the

problem and how much stays the same. This allows us to be more intelligent about preserving the

(possibly considerable) problem solving effort made by those with more primitive tools, while allowing us

to improve on those design with the gifts of Moore’s law.

Match the algorithm to the data and the physical system, not to one’s preferred programming

environment. As much as possible, algorithms should be processor and environment agnostic, while

being sensitive to the particular needs and restrictions of each computational layer in the Three-Layer

Model of Section 10.12.1.

Know when it matters. Many, many problems can be solved without much consideration to many

of the issues here. Their dynamics are so benign and slow compared to our computation, their physical

parameters are not needed for adequate control, and it is more important to enable some feedback,

than to get hung up on analysis. Some of the discussions about time constants, time delay, jitter, and

computational architecture should give the reader a lot more guidance on how to know when they are in

one of those situations and they can follow Nike’s maxim to “Just do it.”

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
635

Winter 2022-2023
December 31, 2022

Computation for Control

Solutions to real-world problems are far more iterative than they are sequential. That

is, there is a lot to be gained from iterating on prototype efforts rather than assuming that the problem

can be solved in a purely sequential way. It is the feedback from those prototypes that reveals the key

adjustments to the design.

Specific technologies and chips change. Principles for computation remain. The latter are

what we discuss in the rest of this chapter.

10.4 A High-Level View of Computing for Feedback Systems

ParametersData
Reference

Signals Physical
System

Real-Time
Computer

Higher Level
Computer

Input
Signal
Chain

Output
Signal
Chain

Controller

Plant
(Physical System)

Figure 10.3: An abstracted view of the main computational divisions in a feedback system.

In this chapter we will focus on the pieces of computation that need to be in place in any real-time

control system. While we are focusing on control systems where the main computation is done by a

digital computer (broadly any computation done via programmable digital logic, including processors and

field programmable gate arrays (FPGAs)), there is always a role for analog electronics in interfacing

these means to the real world. Figure 10.3 shows the main “computations” done in a feedback loop as

abstracted blocks. We can think of four chains where processing happens:

• The physical system to computation “input” signal chain and its computations.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
636

Winter 2022-2023
December 31, 2022

Computation for Control

• The computation to physical system “output” signal chain and its computations.

• The physical system “computations” and discussions of various model types.

• The computation itself: how to think about computer architectures and programming in the context

of real-time control systems.

Each has its own potential latency, jitter, and noises. We typically only think about those of the plant.

Bode’s Integral Theorem [105, 1, 2] teaches us that once noise gets into a loop we can only adjust where

we amplify it. Causality means that once latency enters a loop, we cannot eliminate it. Jitter just makes

all of this worse. Finally, it’s all relative to the physical system time constants.

In this chapter, we will often refer to Moore’s law [42], the general rule proposed by Intel Co-Founder

Gordon Moore that the amount of logic one can pack onto a Silicon chip doubles roughly every 18

months. This prediction has been remarkably accurate over the decades, not only through the march

of technology but also that chip makers themselves have felt pressured to make sure they meet the line

(in logarithmic space) [42]. In this chapter, Moore’s law will be used as a generic stand-in for the rapid

advance of computer and electronic technology. Similarly, Newton’s laws, usually refer to Newton’s laws

of motion [314], but in this chapter the term is shorthand for scientific modeling and inference, i.e. what

drives the real world system.

Each of the blocks in Figure 10.3 affects the performance of the feedback loop. Moore’s Law has made

the left side of Figure 10.3 much more powerful. Modulo being able to attack far more physical problems

than before (again Moore’s Law), the right side is governed by Newton’s Laws. The following should be

considered fundamental to understanding computation for feedback control systems.

Newton’s Laws take precedence over Moore’s Law, and they always will. However, Moore’s Law helps

us read the fine print of Newton’s Laws, helps us get computation close to the real physics, close to the

real model, but only if we are ready to do the work.

Finally, it is worth returning to the discussions of the mental framework for filtering, diagrammed in

Figure 10.4, with that of feedback, diagrammed in Figure 10.5. This was first presented, and in more

depth, in Section 2.4 of the Introduction. To summarize what was there, the key differentiator of the

filtering framework is that we can never assume any access to the input driving the physical system.

Consequently:

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
637

Winter 2022-2023
December 31, 2022

Computation for Control

v

dy

ymeas yfilty
S Filter

Physical
System

Measurement
Noise

Process
Noise

Plant Output
Disturbance

Signals
to

Measure

Improved
Signals

Plant Input
Disturbance

Unknown
Inputs

Unknown
Input

Generator

du

w

S

a.k.a. plant or
device under test
or channel or ...

a.k.a. signal
processing or DSP
or signal detection

or ...

Figure 10.4:A filtering structure for looking at processes. This is a repeat of Figure 2.16.

v

ye ur

w

du dy

SS S
-

Controller
(Filter)

Measured
System
Output

Measurement
Noise

System Output
Disturbance

Process
Noise

Plant Input
Disturbance

Reference System
Output

ymeasPhysical
System

a.k.a. plant or
device under test

or channel or
process or ...

a.k.a. adjustments or
decisions

or correction ...

Meas.
Filter

Input
Filter

Figure 10.5:A feedback structure for physical processes. This is a repeat of Figure 10.5.

⇒ Noise and disturbances are modeled solely at the output.

⇒ This fundamentally limits input-output modeling.

⇒ Nothing we do in our filtering will affect the process.

⇒ Because of this, we have to assume that the physical process has to be reasonably behaved on its

own.

⇒ The filtering context is insensitive to latency.

Conversely, a feedback framework only exists if we assume that we have access to some inputs to drive

the physical system.

⇒ Noise and disturbances are modeled at both input and output of the physical system.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
638

Winter 2022-2023
December 31, 2022

Computation for Control

⇒ Our models use both plant outputs and inputs.

⇒ We adjust our measurements to better drive our inputs.

⇒ Our inputs can and most likely will change the behavior of the physical system.

⇒ We are sensitive to latency.

This matters because much of what has been written about real-time computation is from a filtering

framework. Access to inputs to the system drives sensitivity to latency, and this changes the entire

perspective.

10.5 Time Delay and Sampling

Time delay (latency) in a feedback loop is one of the key limiting factors of closed-loop performance [19].

Latency in time is negative phase in frequency, and without phase margin, feedback control is untenable.

In a feedback loop, we can think of four general sources of time delay:

a) physical properties of the system,

b) sensor/actuator effects,

c) conversion delays, and

d) computational and sample rate delays.

We will focus on computation and conversion delays elsewhere, since these are things that we may affect

by better real-time system design (hardware and software). Here we group sensor, actuator, and plant

delays together as delays that we cannot alter merely with electronics. We will discuss the consequences

of this delay. We especially want to make obvious what fast sampling can and cannot do to handle this

delay.

A delay of ∆ seconds is typically modeled in the s-plane as:

D(s) = e−s∆. (10.1)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
639

Winter 2022-2023
December 31, 2022

Computation for Control

Frequency (Hz)

-40

-30

-20

-10

0
M

a
g

n
it

u
d

e
 (

d
B

)

Bode Plot of Time Delay vs. Nyquist Frequency

fNY,1

fNY,1

fNY,2

fNY,2

fNY,3

fNY,3

fNY,4

fNY,4

Frequency (Hz)

-150

-180

-100

-50

0

P
h

a
s
e
 (

d
e
g

)

Figure 10.6: Bode plot of physical time delay versus sampling rate. (Repeat of Figure 5.13.)

We can evaluate Equation 10.1 at s = jω to generate a Bode plot as shown in Figure 10.6, but for our

analysis we usually like to have a rational transfer function. It is common to use a Padé approximant

[114] for this, and while many variations are possible, a first order numerator and denominator effectively

illustrate the issues we must contend with. For a first order Padé approximation of (10.1), we get

e−s∆ ≈
1− s∆

2

1+ s∆
2

=

2
∆
− s

2
∆
+ s

(10.2)

Now, we see that this simple and reasonable approximation of delay has given us a stable pole and

non-minimum phase (NMP) zero, as diagrammed in Figure 10.7. Were we to use a higher order Padé

approximant, we would have more NMP zeros.

It is common for control engineers to say that we need simply sample faster to deal with the time delay,

but fast sampling does not make physical delay disappear. This is illustrated in Figure 10.6, which shows

a Bode plot of physical delay versus different Nyquist frequencies. The faster sampling has just pushed

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
640

Winter 2022-2023
December 31, 2022

Computation for Control

s PlaneRe{s} < 0 Re{s} > 0

2

Δ

2

Δ

Figure 10.7: First order Padé approximation of time delay on the s-plane. Note the non-minimum
phase (NMP) zero.

the Nyquist frequencies to the right, up to areas of higher phase lag due to delay. That does not solve

anything, although it gives us more room in the frequency space to apply phase-lead to compensate for

some of this delay.

We can return to the Padé approximation and discretize it to look at this in the z-plane. However, we

will first break up ∆ into full and partial sample periods, i.e.

e−s∆ = e−s(MTS+δ) (10.3)

where ∆ = MTS + δ and 0 ≤ δ < TS . We will use z−1 for full sample period delays and the Padé

approximant for the partial delay, δ.

It turns out that using a trapezoidal rule on (10.2) (replacing ∆ with δ) is satisfying in that for δ =

0,Dδ(z) = 1 and for δ = TS ,Dδ(z) = z−1. In between these values we get:

e−sδ ≈
2
δ
− s

2
δ
+ s

TR−→ (TS − δ)z + TS + δ

(TS − δ)z + TS + δ
= Dδ(z) (10.4)

for 0 ≤ δ < TS . The poles and zeros get exposed by reordering this as:

Dδ(z) =

(

TS − δ
TS + δ

)

z + TS+δ

TS−δ

z + TS−δ
TS+δ

. (10.5)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
641

Winter 2022-2023
December 31, 2022

Computation for Control

Z Plane

|z| = 1

z = 1

T + δ

T - δ

T - δ

T + δ

Re{z} = 0

Im{z} = 0

Figure 10.8: Padé approximation of time delay on the z-plane. The full sample delays result in a
pole at z = 0. The partial sample delay is handled by a first order Padé Approximation. If we have M
unmatched poles at z = 0, then we will have M zeros at |z| = ∞.

The result of this discretization is diagrammed in Figure 10.8. We see that we have mapped the sub-

sample portion of our delay to a stable pole and NMP zero. However, we have M poles at z = 0. These
are so benign in DSP environments (the filtering context of Figure 10.4) that signal processing engineers

like to refer to their Finite Impulse Response (FIR) filters as “all-zeros” filters as they only have zeros in

z−1. For them, it is a harmless misstatement; a simplification.

In fact, in the z-plane, the lack of matching finite zeros for the M poles means that there are M zeros at

|z| = ∞. Those of us that close feedback loops know that on any version of the root locus [13, 317, 15, 14]

the closed-loop poles go from the open-loop poles to the open-loop zeros. This means that at some

point, M closed-loop poles will be going to those M open-loop zeros at |z| = ∞. It is worth noting for

the record that |z| = ∞ is outside the unit circle, and so fast sampling has not saved us from closed-loop

poles streaking towards instability. It merely allows us an opportunity to put more compensation inside

the unit circle to allow us to push our closed-loop system a bit further. It is up to us to properly use

that opportunity.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
642

Winter 2022-2023
December 31, 2022

Computation for Control

10.6 Understanding Phase Delay, Phase Noise, and Jitter

We should now discuss timing uncertainty, a quantity known alternately in different fields as phase noise

[318] or jitter [319]. Phase noise is a frequency domain term related to time through the relation:

∆θ = e jω∆t. (10.6)

Usually, this is considered relative to a particular frequency, such as a carrier frequency: ω = ωC. Jitter

is a time domain term, usually relative to some sample period, TS :

jitter =
∆t
TS
. (10.7)

For digital systems, jitter is a more common concept than phase noise. Much of what we try to minimize

is time delay and jitter because each of these can badly affect our control systems and can be the result

of bad computer architecture.

ResponseInput

Phase
Delay

Time

Input

Phase Noise
(0,)σ

Time

Figure 10.9: Phase delay and noise as seen in a sinusoid.

A few more figures illustrate this idea. In Figure 10.9 we see the difference between phase delay and

phase noise in a sinusoidal signal. Phase delay is a predictable lag, phase noise is not. Phase noise

makes the exact timing of any part of the signal unknowable. Phase noise is usually characterized by

distribution, e.g. a Gaussian. Note that neither phase delay nor phase noise change the maximum or

minimum level of the signal, but uncertainty in when signal happens translates into uncertainty in the

signal value.

Moving to Figure 10.10, we see many of the same properties of phase delay and phase noise seen in

sinusoids apply to square waves. Now, the sharp edges mean that timing uncertainty results in uncertainty

in a logic level. Logic levels trigger operations inside programmable logic (PL) or a processor, so jitter

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
643

Winter 2022-2023
December 31, 2022

Computation for Control

ResponseInput

Phase
Delay

Time

Input

Phase Noise
(0,)σ

Time

Figure 10.10: Phase delay and noise as seen in a square wave.

results in uncertainty in when operations will be triggered. Whether or not this is important to us is

highly dependent on the amount of jitter relative to our sample period. Figure 10.11 illustrates how

the same amount of timing uncertainty that would be insignificant for the longer sample period, TS 1,

covers the majority of shorter sample period, TS 2. The moral of this is that if our physical system time

constants allow for a slower sample rate, than we may be far less sensitive to jitter than we would be in

a system that requires a sample rate several orders of magnitude higher than the first one.

We get to the last visualization of how jitter can affect us with Figure 10.12. Our illustration here is to

show that if our controller computation times not predictable, we may miss the next sample instants and

samples. In the illustration of Figure 10.12, the predictable portion of controller computations, Tcomp,

takes up most of a sample period, TS . Jitter in the exact calculation time makes missing samples a

probabilistic problem. This can even be seen in student laboratory systems [320]. Some systems are

passive enough that this does not cause problems for our loop performance. However, for lightly damped,

high speed, unstable, and/or nonlinear systems, this could be disastrous.

The take away here is that for high performance systems with relatively short sample periods, we want

to minimize computational jitter. As much as possible, we want to have:

• deterministic computations,

• deterministic memory access,

• deterministic sampling, and

• deterministic communications in the digital system.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
644

Winter 2022-2023
December 31, 2022

Computation for Control

Time

TS1

Ts2

Figure 10.11: Jitter is usually defined relative to a sample period.

These desires frame how we discuss each of the computation chains previewed in Figure 10.3 of Section

10.2.

10.7 The Input Signal Chain: The Real World to Computation

For most real systems, there are multiple inputs and outputs, but , for simplicity of concept and visual-

ization, we will stay with a single-input, single-output explanation here.

Figure 10.13 shows a lot of component blocks we often ignore in considering the implementation of

getting measurements from the physical system into digital control systems. Sometimes they are simply

bundled inside a turn-key system, but for our purposes we want to discuss them individually. Note that

the technology changes over time, but the basic functionality of the blocks does not. The path from the

physical system to our algorithm inside a computer starts with a sensor.

Sensor/Transducer: This is what touches the real world. A lot of science and engineering are

employed to convert some physically sensed phenomenon into a calibrated, repeatable, electrical signal.

Sensors have their own dynamics, in terms of linearity, time constants, and noise properties. The physical

environment often determines what sensors are available and what they cost.

Sensor Electronics: These are especially suited to the sensor and environment of the sensor. They

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
645

Winter 2022-2023
December 31, 2022

Computation for Control

Time

TS

Tcomp

Figure 10.12: Jitter, added onto computational time, may make us miss samples.

Sampler
Analog
Filters

Sensor
Electronics ADC

Digital
Interface

Sensors/
Transducers

Physical
System

Figure 10.13: An abstracted view of the input signal chain from the physical system to our computa-
tion. This one is specific to use in a feedback loop.

typically are packaged with the sensor, but their characteristics and limitations sometimes need to be

considered apart from the sensor itself. They are often specialized to handle tough environments, extreme

levels of temperature, pressure, moisture, ambient noise, speed, and voltages and currents. Ideally, they

get signals into the low voltage, well regulated electronics where we like to do our small-signal filtering.

Analog Filters: While there are many elements that can perform a “filtering function”, we focus

here on analog electronic filters. These are combinations of operational amplifiers (op amps) , resistors,

capacitors, inductors, diodes, transistors, and other components that allow us to implement mathematical

filtering functions inside of circuitry.

Why do we need analog filters when we can digitally filter signals inside our computers using only high

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
646

Winter 2022-2023
December 31, 2022

Computation for Control

level languages and none of that wiring and solder? One short answer is that we cannot digitally filter

everything. A second short answer is that we can do a much better job of digitally filtering signals that

have been cleaned up and normalized by some analog filters. Signals outside of our sampling bandwidth

need to be managed with analog filters. Of particular interest to control engineers are anti-alias filters

(Section 10.7.1).

Sampler: The role of a sampler or sample-and-hold is to capture the well conditioned analog signal

(while minimally affecting it) and hold it long enough for the analog-to-digital conversion (ADC) of that

signal is done.

ADC: Analog-to-Digital Converters (ADCs) are often grouped with samplers when discussed in controls

textbooks, but there are many cases in which the sampler can capture signals at a higher rate than a

single ADC can convert them. (This phenomena led to a class of digital oscilloscopes called “equivalent

time” digital oscilloscopes [321].)

ADCs convert sampled signals into a digital computer compatible signals. Note that we tend to think

in terms of floating point numbers when we analyzer control signals, but ADCs (and DACs deal with

fixed-point representations. Their quantization is nonlinear, but usually modeled as noise [38]. The

number of bits of accuracy ties to cost and conversion time. We will discuss this more in Section 10.7.2.

Digital Interface: How the converted signal is delivered to the controller is another fundamental

source of possible delay and jitter. There are significant design tradeoffs between the number of signal

lines to a converter chip. While we may dream of having dedicated, parallel interfaces to each ADC in a

system, the costs of laying out 16+ parallel lines for each analog input and keeping their timing aligned

at high speed means that many of the interfaces are serial, with the inherent delay of serialization at the

ADC and deserialization at the processor. Is each ADC dedicated to one signal or multiplexed? These

issues will be discussed in more detail in Section 10.7.2.

10.7.1 Anti-Alias and Oversampling

PES Pareto [2, 298, 322] gave us a way to find the most critical noise sources affecting the error. While

noise gets shaped once it’s in the loop, we can read “Bode’s fine print” if we attack it at the source,

before it enters the loop. Almost always, this requires an understanding of analog electronics and how

they interact with sampled data system. Here, we focus on the issues posed by anti-alias filters, which are

typically implemented as analog low-pass filters (LPFs) with cutoff frequencies at or above the Nyquist

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
647

Winter 2022-2023
December 31, 2022

Computation for Control

10-2 10-1 100 101

Normalized Frequency (f/f
Ny

)

-80

-60

-40

-20

0

M
ag

 (
dB

)

Anti-Alias Filters with Cutoff at f
Ny

 = 1000 Hz

4th Order Butterworth
4th Order Elliptical
2nd Order Butterworth

10-2 10-1 100 101

Normalized Frequency (f/f
Ny

)

-80

-60

-40

-20

0

P
ha

se
 (

de
g)

Figure 10.14:Frequency responses of various anti-alias filters. All filters have a DC gain of 1, with the
passband ending at the Nyquist Frequency (fNy = fS /2 = 1kHz here). Under an assumption that the
sample frequency is 10 or 20× the open loop crossover frequency, we can examine the filter phase
response, which can significantly degrade the phase margin of the system, as documented in Table
10.1. (Repeat of Figure 7.36.)

frequency.

From our first digital controls class, we are told that we need to apply anti-alias filters in order to avoid

aliasing of higher frequency signals into our control bandwidth [15, 323]. What is often overlooked are

the effects, particularly in terms of negative phase in the passband, of such filters. Table 10.1 and Figure

10.14 show the effects of three simple anti-alias filters, with their corner frequencies at the Nyquist rate.

The simple take away from these is to note the substantial amount of negative phase imparted in order

to get attenuation above the Nyquist frequency. The loss of 30◦ of phase margin at 1/10 the sample rate

is nothing to take lightly. The anti-alias filter can have strong phase lag, and this itself can severely limit

the achievable bandwidth or destabilize the system. The selection of anti-alias filters must be combined

with the selection of sample rate and in this case it seems that what we might think of as “oversampling”

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
648

Winter 2022-2023
December 31, 2022

Computation for Control

Filter Phase atfNy/10 Phase atfNy/5
Attenuation

at 10fNy

Peak Gain
Beyond Roll Off

4th Order
Butterworth −15.0276◦ −30.1223◦ −80.1201 dB NA

4th Order
Elliptical −10.5523◦ −22.8086◦ −40.8932 dB −40 dB
2nd Order

Butterworth −8.1486◦ −16.4211◦ −40.0605 dB NA

Table 10.1: Phase penalty of representative anti-alias filters. The corner frequency is chosen to
be at the Nyquist frequency, half the sample frequency, fNy = fS /2. Comparisons are made with
respect to the Nyquist frequency, as it is considered the limit of intentional digital control action. The
two Butterworth filters are flat in the passband, but they incur a larger phase penalty relative to the
elliptical filter for stopband gain attenuation they provide. On the other hand, the elliptical filter has up
to 3 dB magnitude distortion in the passband. Outside the passband, beyond the Nyquist frequency,
the Butterworth filters drop off monotonically, while the Elliptical filter has lobes with the peak gain
at approximately −40 dB at frequencies up to 100fNy (beyond the range of the plot). Ultimately, the
choice of anti-alias filter structure should not be separated from the available sample rate options, nor
the robustness of the system to gain and phase distortions. (Repeat of Table 7.1.)

is fundamental to achieving desired closed-loop performance.

10.7.2 Analog to Digital Converters

Figure 10.15 illustrate a few different options for the discussion of Analog to Digital Converters (ADCs).

Saying it’s an ADC isn’t specific enough.

Simply defining a block as an Analog to Digital Converter (ADCs) is not specific enough. The lowest

latency version ADC could be a single dedicated converter on a parallel digital bus, eliminating any

delay based on serialization/deserialization. Parallel operation “expensive” for two reasons. First of

all, it requires far more digital lines be laid out on the circuit board containing the ADC and the path

to the processor consuming valuable board real estate. The second cost is that as signaling speeds

have gone up, keeping parallel digital signals phase aligned on these buses has gotten substantially more

difficult. For these reasons, high-speed serial buses have become increasingly popular inside computing

environments, and their tradeoffs may make them faster than the available parallel solutions. Unlike the

filtering context (Figure 10.4), those of us in the feedback context (Figure 10.5) need to be highly aware

of both the transmission speed and the latency of these channels.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
649

Winter 2022-2023
December 31, 2022

Computation for Control

Processor

Sampler
&

MultiplexerSerial
Line

Analog
Signal
Lines

ADC

Processor
Digital

Bus

Parallel
Lines

Parallel
Lines

Analog
Signal
Line

ADC

Sampler

Figure 10.15: Options in analog-to-digital conversions (ADC).

At the other end of the speed/dedicated line spectrum is the shared ADC, comprising a single multiplexed

sample and hold handling many input lines and presenting these sequentially to the converter. The ADC

does each conversion and then puts the result on a serial line to the processor. The resulting architecture

likely has significantly higher latency than the top one. Control and system theory knowledge must guide

the design: the more cost effective but slower architecture may have delays orders of magnitude shorter

than the physical system time constants. In such a case, demanding the top architecture is wasteful and

unnecessary. It is better to yield on these channels quoting the lack of need so that we can be taken

more seriously when we need to press for the top architecture.

It is also worth looking inside of the ADC itself. The ADC and sample and hold timing can be diagrammed

as in Figure 10.16. Here, TS H represents the sample and hold time, TOUT represents the transmission

on the digital interface to the processor, and TC represents the digital computation time in the ADC

conversion. What is often overlooked is that many ADCs speed up their sample rate by pipelining this

conversion time into smaller digital processing blocks. Even though the time for any individual sample to

reach the processor is longer, the sample period, TS , can be shortened. This is yet another example of

architectures that are excellent for DSP applications (filtering context), but have very negative effects on

a system that is sensitive to latency (feedback context). When someone not attuned to latency makes

the choice, they can unknowingly blow 90% of the phase margin and bandwidth. Such errors cannot be

fixed by any algorithm, and so it is critical that folks informed by a knowledge of control principles be

involved in the design of the input signal chain. It is not necessary to be the expert in the latter, but

only to be conversant enough so as to inform the experts of the latency sensitivity.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
650

Winter 2022-2023
December 31, 2022

Computation for Control

TSH
TP1 TP2

TPN TOUT

TADC

TS

TSH
TC TOUT

TADC

TS

Figure 10.16: Diagrams of sample timing. The lower diagram shows the pipelining of the digital
computation needed for conversion.

10.8 Quantization “Noise”

Quantization Error Modeled
As Uniform White Noise

q
2

1
q

-q
2

q

Quantizer
Input

Quantizer
Output

q
2

-q
2

Quantization
Error

q
2

-q
2

Figure 10.17: Diagram of quantization and Widrow model. (Repeat of Figure 7.12.)

In this section, we return to what is covered more deeply in Section 7.6.3, but now focusing on the role

of quantization inside the computer implementation of control systems.

Quantization in a digital system can occur at many levels: in certain sensors and actuators, the numerical

computations, or the input and output signal chains. We normally focus on the quantization in the ADC

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
651

Winter 2022-2023
December 31, 2022

Computation for Control

itself, perhaps due to the prevalence of the filtering context in the literature. The Widrow model [38]

of quantization is based on an analog of the Nyquist sampling theorem [203]. A conceptual quantizer

is shown on the left side of Figure 10.17. Quantization is not a random process, but a deterministic,

nonlinear operation. This makes it hard to do anything with passing the math through a filter. Widrow’s

insight was that while quantization was deterministic and nonlinear, if the signal excited enough of the

scale of the quantizer, and the quantization bins were fine enough, that the probability of the quantized

signal falling anywhere in the quantization bin could be modeled as a uniform density white noise on the

interval [− q
2,

q
2], where q is the size of a minimum quantization interval. This is displayed on the right

side of Figure 7.12 . With this model, computing the mean and the variance of the quantization “noise”

reveals that the mean and variance are:

µq = 0 and σ2
q =

q2

12
. (10.8)

This number for variance is used in texts all over the world [15]. This is one measure of understanding

the effective “noise” inherent in the quantizer. The PES Pareto work points out that this is often one

of the least important noise sources [2].

There are other time domain measurements that yield only a single number, such as the variance due to

quantization in the Widrow model . This variance must be spread across the frequency band in some

logical way, so the authors chose to normalize it by the frequency bandwidth. This is consistent with

the texts [201, 202] on quantization devices and with will be described briefly here. Note that [202] is

erroneous in that the normalization by TS = 1/ fS has been omitted.

10.9 The Output Signal Chain: Computation to the Real World

Analog
Filters

Power
AmplifiersDAC

Digital
Interface

Actuator
Physical
System

Figure 10.18: An abstracted view of the output signal chain from our computation to the physical
system.

A diagram of an output signal chain using a Digital to Analog Converter (DAC) is shown in Figure 10.18.

Its components usually include:

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
652

Winter 2022-2023
December 31, 2022

Computation for Control

Digital Interface: How the converted signal is delivered from controller to the DAC is another

fundamental source of possible delay and jitter. There are significant design tradeoffs between the

number of signal lines to a converter chip. While we may dream of having dedicated, parallel interfaces

to each DAC in a system, the costs of laying out 16+ parallel lines and keeping their timing aligned at

high speed means that many of the interfaces are serial, with the inherent delay of serialization at the

processor and deserialization at the DAC. Is each DAC dedicated to one signal or multiplexed? These

issues will be discussed in more detail in Section 10.9.1.

DAC: Digital-to-Analog Converters (DACs) convert the computer signal into a well regulated analog

voltage. They face many of the same quantization issues as ADCs. We will discuss these more in Section

10.9.1.

Analog Filters: On the output chain analog filters are often used to remove digital artifacts or smooth

the analog version of digital signals. For example, a digitally produced sine wave will have steps if we look

closely enough, but passing it through a low-pass filter (LPF) or band-pass filter (BPF) can considerably

smooth that signal.

Power Amplifier/Drive Electronics: Theses scale up the voltages and currents produced by the

DACs to drive the actuators.

PWM
Digital

Interface
Digital Line

to Unit
Device Under Control

(e.g. motor, heater, pump)

Analog
Low Pass

Power
Amplifier

Physical
System

Figure 10.19: An abstracted view of the output signal chain from our computation to the physical
system using pulse width modulation (PWM).

Pulse-Width Modulation (PWM): A slightly different output chain substitutes pulse width mod-

ulation (PWM) in place of DACs. This is diagrammed in Figure 10.19. This is surprisingly common in

many industrial environments. The use of PWM depends on the dynamics of plant being much, much

slower than the electronics (often true). It’s utility lies in part in the fact that a single, serial, binary line

is very useful in noisy industrial environments. In most of these applications, the drive electronics have

been made part of the actuator/device itself.

Actuator: This part pushes on the real world.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
653

Winter 2022-2023
December 31, 2022

Computation for Control

10.9.1 Digital to Analog Converters

Processor Demultiplexer

Serial
Line

Analog
Signal
Lines

DAC

Processor
Digital

Bus

Parallel
Lines

Parallel
Lines

Analog
Signal
Line

DAC

Figure 10.20: Options in digital-to-analog conversions (DAC) .

Some options for Digital to Analog Conversion (DAC) are diagrammed in Figure 10.20. In many respects,

they are similar to and duals of the issues for ADCs discussed in Section 10.7.2.

Generally speaking, DACs seem architecturally simpler than ADCs, but this does not mean they do not

often include similar pipelining to that shown in Figure 10.16. Again, control engineers need to be

involved in the selection of these components so that we can avoid having our phase margin wrecked by

digital pipelining in the conversion circuits.

10.10 Pulse Width Modulation

We discussed Pulse Width Modulation (PWM) previously in Section 4.19. We return to this discussion

now as a portion of the output signal chain. A classic view of PWM is shown in Figure 10.21. A multi-bit

number is modulated onto a carrier on a 0-1 digital line such that the duty cycle represents the number.

It has the advantages that the single line is cheap and noise immune. The systems driven by this are slow

and the system itself integrates/low-pass filters the modulated signal to restore the the original multi-bit

number. In essence, the PWM then becomes an inexpensive DAC, but it finds application is a lot of

industrial systems such as pumps, heaters, and motors.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
654

Winter 2022-2023
December 31, 2022

Computation for Control

Controller
Sample Points

50% Duty Cycle

10% Duty Cycle

90% Duty Cycle

Carrier Signal

PWM Signals
(Timer Based)

Figure 10.21: Classic PWM converts a multi-bit number into a stream of 1s and 0s whose duty cycle
on the carrier encodes the number.

10.11 The Plant’s “Computation”

The plant itself is the most fundamental piece of computation in our loop, and the one that sets and

limits what all the other pieces can and must do. In actuality, the plant is doing some form of physical

computation, which we try to model with a combination of first principles (a.k.a. “physics based” or

“Newton’s laws”) and data driven approaches. The plant itself is – for this discussion – fixed, but the

models we choose to apply to it are quite varied. We can have:

• A linear, time-invariant (LTI) model for control design.

• A model used for parameter identification.

• A linear, time-varying model, or one with uncertain data sampling, for observer design and opera-

tion.

• A complex, nonlinear model on dedicated hardware as a digital twin of the system for health

monitoring and simulation.

The point of mentioning these (and many other) forms is that Moore’s law allows us to have many of

these running in parallel on the same system.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
655

Winter 2022-2023
December 31, 2022

Computation for Control

10.12 The Computer Itself

We have delayed getting to this section until the other prerequisites computational pieces had been

described. At this point, we focus on the broad issues of computation in and out of the real-time envi-

ronment. Section 10.12.1 will introduce and discuss a highly useful Three-Layer Model of computation

in a real-time environment. Section 10.14.3 will get more basic, in the sense of how our choices of filter

structure can also affect jitter, latency, and numerical stability.

10.12.1 The Three-Layer Model

Banshee DSP
Card Running

MIMO
Servo Loops

MIMO System

386 PC (DOS)
with Matlab

HP-IB

Ribbon Cables

-
S C P

HP 3563A

Matlab

Interface Program

Banshee
CSA

(HP3563A)

Testbed
Hardware

Real-Time
Data

4 ADCs
4 DACs

FRFs,
ZPK Data

Commands,
Processed

FRFs

Real-Time Data,
FRFs, and

Zero-Pole-Gain
(ZPK) Info

servo
parameters

.mat &
.m files

.svo
files

Servo
Parameters

12 Bit Data for
Digital Measurements

Analog Measurements

Floating point DSP allowed
easy implementation of servos
designed in Matlab.

.svo file: an ASCII file that
contains an entire MIMO servo.
Written by Matlab, read by
Interface Program.

Key feature of Interface Program:
all data structures are dynamic,
so they are flexible.

Figure 10.22: The Banshee Multivariable Workstation (BMW). On the left is the physical layout of
the system used for enable control systems research for optical and magnetic disk drives at Hewlett-
Packard Labs. On the right is the three-layer view of the computation.

This section will present a three-layer model of computation for real-time systems. This split in func-

tionality seems quite common when one examines many real-time systems, but without abstracting out

the different layers and their purposes, the smearing of the boundaries can add a lot of confusion about

how they should be programmed. In other words, it’s always been there, but we didn’t see it.

The first author’s first experience with this model was in building something called the Banshee Mul-

tivariable Workstation in the early 1990s at Hewlett Packard Labs (HPL) [76]. The hardware was an

old DOS based PC to hold the upper layer, with a Banshee Floating Point DSP board produced by

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
656

Winter 2022-2023
December 31, 2022

Computation for Control

Atlanta Signal Processing (ASPI) to run the real-time operations. The intent was to have the floating

point DSP run the real-time computations while in the PC we could run Matlab. This is diagrammed

on the left of Figure 10.22. With the initial work of Carl Taussig, it was interfaced to the HP 3563A

Control Systems Analyzer (CSA), an augmented version of HP’s 3562A DSA, that was capable of both

analog and digital frequency response function measurements and curve fits [70, 104, 69, 102]. The CSA

had a superset of the features of the DSA, specifically enhanced to work with discrete-time systems.

Significantly, measurements could be coordinated from the host computer and completed measurements

and/or parametric curve fits were uploaded to the host computer to be used in Matlab.

Schematically, the software architecture diagrammed on the right of Figure 10.22 reveals three distinct

layers. The most ad-hoc was the Interface Program, used so that Matlab could interact with a real-

time DSP. The considerable work to build the Interface Program (mezzanine layer) smoothed out the

interactions with the upper level decision functions (Matlab) and the Hard-Real-Time (Banshee DSP

Board interacting with disk drive testbed).

This first seemed like a special case, but over the years, the three separate layers kept showing up in all

my work projects. in the projects I saw

They were there on Agilent’s first 40Gb bit error rate tester (BERT) (sometimes called bit error ratio

tester), and in the Agilent (now Keysight) high speed atomic force microscope (AFM). Furthermore,

looking at other systems that professed to dealing with the real world, some form of those three layers

were always there. However, an elegant exploitation of the three layer model eluded most of what I saw

for what I think are the following reasons:

• Technology limits: As I will discuss below, having these separate layers either required putting them

on one chip – requiring multitasking of even the hard-real-time, or on multiple chips (or boards) –

requiring cross chip/board interfaces that often became the bottleneck.

• Recognition: The three layer model is like one of those old Magic Eye pieces of art work. It is

often hard to see the separation, once you see it you can’t unsee it, and it’s hard to talk about it

to someone who hasn’t seen it.

• Even when one recognized the three layers, each one required a unique set of programming/logic

design tools making it very difficult for any one person to work their way up and down the model

and the signal chain. If multiple programming environments were needed, it became increasingly

daunting to move algorithms and processing around when one realized something might do better

in a different layer.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
657

Winter 2022-2023
December 31, 2022

Computation for Control

Over the years, the three-layer-model has remained, and the understanding of what key functionality

each of those layers provides has grown. The rest of this section will provide a more universal vision for

it.

Hard-Real-Time
l Minimal latency
l Keep up with clock sample periods
l Avoid multi-thread
l Count processor clock cycles

Near-Real-Time
l Keep up with real time on average
l Fast numerical algorithms
l Some simple data structures
l Act as interface between hard real

time and non-real-time

Non-Real-Time
l Talk to other processors
l File access
l Configuration
l State machines
l Complex algorithms

Figure 10.23: An abstracted view of the three-layer computing model useful for understanding the
computing needs of control systems.

Figure 10.23 presents a more general form of a three-layer compute model that serves well for under-

standing programming in real-time systems. Each layer presents different data, timing, and programming

problems. At the bottom is the Hard-Real-Time, in which we are counting clock cycles to make certain

we complete computations between sample points. At the top is the Non-Real-Time, which is the com-

puting environment most programming classes are oriented towards. In between is the least well known

mezzanine layer, which functions to keep the two other layers happy. It must be able to outrun the

Hard-Real-Time on average, but perhaps in a burst mode. It must also have enough memory flexibility

to deal with the Non-Real-Time. We will discuss the different forms of this model and how programming

against it improves the performance of embedded systems and their real-time layers.

In order to more fully understand this model, it is useful to delve into the layers and the issues that each

presents. However, the spoiler alert here is that each layer has a unique set of timing requirements that

lead to different programming and memory access methods. Where people get into trouble is when they

fail to recognize that programming the different layers requires different mind sets.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
658

Winter 2022-2023
December 31, 2022

Computation for Control

Hard-Real-Time
l Minimal latency
l Keep up with clock sample periods
l Avoid multi-thread
l Count processor clock cycles

Figure 10.24: The hard-real-time layer of computation.

10.12.2 Doing Time: Hard Real Time

The first layer to discuss is the real-time layer, which we further delineate as hard-real-time, and dia-

grammed in Figure 10.24. This is the layer that interacts with system hardware, that “touches the real

world” through sensors, actuators, circuits, and data converters. These computations are almost always

digital, using discrete math, and while there may come a day when there is good intuition of complex

systems sampled at a non-uniform rate, to paraphrase Aragorn, today is not that day. Instead, we almost

always rely on a sense of uniform time sampling and of linear transducers (or of quickly linearizing the

data once digitized). To miss samples corrupts the model, but to miss samples without realizing that

a sample has been missed makes a lot of the data meaningless. The added qualification is intended to

emphasize that hard-real-time processing must meet the physical system’s timing, not only to maintain

physical meaning of the data collected, but also potentially for critical system operational issues.

Missed timing/clocks are bad, especially when controlling devices or trying to make sense of sampled

signals. This is the reason for the discussion of Section 10.6. The faster the physical world – relative to

the processing – the simpler and more deterministic the processing must be. This layer often features a

lot of simple but time-critical tasks. It is possible that the tasks are not that fast, but they do have to

happen within a tight time window.

To assign one “large” processor to one of these simple tasks is wasteful. (Metaphorically of using an

sledge hammer to push in a thumbtack.) To handle all of these time-critical tasks, we either want a lot

of lightweight processors in parallel or want to multiplex in time using a single powerful processor.

FPGAs shine here as one can build small “single task” processors, i.e. application specific processing.

In this layer we avoid fancy memory access/caching due to uncertainty in timing. Memory management

using caches to hold the most frequently/recently accessed data is fine in other layers, but the possibility

of a cache miss – when one requests data that happens to not be in the cache – can increase the

time of that memory access by several orders of magnitude. This is a major potential contributor to the

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
659

Winter 2022-2023
December 31, 2022

Computation for Control

operational jitter diagrammed in Figure 10.12. For systems with dynamics that must be tightly controlled,

this is unacceptable. Simple, deterministic memory access is critical and so we write algorithms to rely

on on-chip memory whenever possible. With modern FPGA tools, we can craft “hardware subroutines”

as accelerators for some of our most critical processing steps.

For example, memory access of on chip memory or FPGA RAM blocks takes 1-4 clock cycles, guaranteed.

The amount is small and fixed. Accessing memory managed RAM for which the required memory is in

cache is also typically 2-6 clock cycles. However, if that desired memory is not in cache, then the access

through the memory management unit (MMU) can be 50–100 cycles. This timing uncertainty can be

disastrous to a real-time control system if that uncertainty is a substantial fraction of a sample period

(again Figure 10.12). If the uncertainty all falls below say 1/10 to 1/20 of a sample period, then for

most systems, it can be ignored. This is an example of where understanding the relative speeds of the

computation and the physical device to be controlled are critical to understanding whether one can swish

in and “just do it”, or whether some careful consideration of timing is needed.

The lots of small processors approach is what drives neural network based systems. The lots of medium

processors approach is what drives graphics processing unit (GPU) processing algorithms. In all these

cases, one of the main issues here is how one parameterizes the problems to break them up into parallel

chunks. On the fast AFM FPGA, we manually parallelized tasks into independent streams on different

chunks of programmable logic. The other issue for these specialty processing schemes is packaging the

data to move in and out of the processor array. For example, the GPU approach can be blindingly fast,

but data must be grouped together and passed into the GPU array, then the processed data unpackaged.

Often, this works much more easily with batch processing. The alternative is to have some streaming

mechanism to get the data through the processing unit. For these kinds of problems, the GPU array is

often thought of as a co-processor more than a real-time lightweight processing answer.

One advantage of this was that it took existing, working methods and broke them up appropriately. Also,

there was a lot one could do to parallelize a process using pipelining, if one was willing to take an overall

latency hit. However, this method made it a lot harder to use automatic tools. Each Lego block had to

be hand built and tested.

10.12.3 Non Real Time: What we learn in computer science (CS) classes

We next move up to the Non-Real-Time layer, added to the top of the diagram in Figure 10.25. This

is the layer that we learn about in most programming and computer science classes. Non-Real-Time

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
660

Winter 2022-2023
December 31, 2022

Computation for Control

Hard-Real-Time
l Minimal latency
l Keep up with clock sample periods
l Avoid multi-thread
l Count processor clock cycles

Non-Real-Time
l Talk to other processors
l File access
l Configuration
l State machines
l Complex algorithms

Figure 10.25: Adding the top layer of computing to the hard-real-time.

systems are what most people think of as computers and smart devices. Most users will only interact

with embedded systems through this layer, and as it has no critical timing, it needs only be responsive

enough to not annoy users. Tasks in the Non-Real-Time layer interact with other systems, interact with

users, and generally have a lot of multi-tasked functionality. This is the land of multi-tasking operating

systems (often a form of Linux) and Graphical User Interfaces (GUIs).

This is the land of multi-tasking operating systems (OS) (e.g. Linux or Windows) and graphical user

interfaces (GUIs). Programming-wise, this is the land of lists, Python servers, web pages, recursive

algorithms, database searches, programs that manage lots of dynamic memory, and caching. We can

(and should) use much more complex code/algorithms/memory management in this layer than we could

ever do in the Hard-Real-Time layer. We can afford to represent our signals and numbers in single or

double precision floating point representations.

It’s what most folks consider programming, and there are lots of tools to aid the developer. Furthermore,

nothing that we program is time critical. In part because folks are so much more comfortable working at

this level, lots of companies make money offering to take care of the lower layers [324]. This is certainly

a viable approach in many situations, but giving up knowledge of how to program for the lower layers

makes it nearly impossible for us to port simpler versions of our algorithms down closer to the data.

Giving up the ability to design the lower layers kills our ability to make algorithms agnostic.

One of my old man/curmudgeon rants against how computer science (CS) is taught is that the layers

of abstraction in a high level OS and programming language have completely obfuscated the real world.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
661

Winter 2022-2023
December 31, 2022

Computation for Control

In some sense that is good. However, for embedded software (ESW), firmware (FW), hardware (HW),

and real-world interaction, it is a real problem. Nevertheless, we do not want to be kept away from all

these powerful tools, environments, and abstractions. For these reasons, it’s good to have those tools

available in their own layer that is not responsible for Hard-Real-Time.

10.12.4 When Non Real Time is so much faster than the real world

Hard-Real-Time
l Minimal latency
l Keep up with clock sample periods
l Avoid multi-thread
l Count processor clock cycles

Non-Real-Time
l Talk to other processors
l File access
l Configuration
l State machines
l Complex algorithms

API/Drivers/Wrappers

Hard-Real-Time
l Minimal latency
l Keep up with clock sample periods
l Avoid multi-thread
l Count processor clock cycles

Non-Real-Time
l Talk to other processors
l File access
l Configuration
l State machines
l Complex algorithms

Tool generated PL and RT code

API/Drivers/Wrappers

Automatic Coding Tools
High level Syntheses Tools

Figure 10.26: Two views of a “heavy-top” layer that does most of the work.

There are times when the processing power is so fast – compared to the physical world dynamics being

handled – that folks try to do everything from the top level. In this case many of our computational

latency and jitter concerns from Sections 10.5 and 10.6 are not significant for our closed-loop system.

Certainly, as the cost of chips has come down, inexpensive, relatively powerful systems on a chip (SOC)

such as the Arduino or Raspberry Pi have made it reasonable to address small problems with relatively

massive computational power (compared to the physical problem dynamics). Even so, the real-time,

“touch the world” blocks are encapsulated into little blocks with application program interfaces (APIs)

and drivers. This is diagrammed on the left side of Figure 10.26. There are still real-time, “touch the

world” blocks are encapsulated into little blocks with application programming interfaces (APIs). In

some cases, small, inexpensive processors (e.g. Arduino, Raspberry Pi) are so cheap that it is worth

trying to do all parts of a simple problem on them.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
662

Winter 2022-2023
December 31, 2022

Computation for Control

These systems certainly save us from having to deeply consider the middle layer and the cycle-counting

programming typical of the Hard-Real-Time layer, but there are two inherent dangers here. The first is

that this architecture only really works if the speed of the “main processor” swamps the physical system

dynamics and the processing needed. The second is that there is always a temptation to add more

applications, threads, and processing requests to main processor. All of a sudden, the we are violating

the speed assumptions. Almost everyone who has owned a computer or a smart phone has experienced

exactly this latter phenomenon: they were fast when first purchased, but seemed to slow to a crawl in

the years that followed. It is unlikely that the circuits got slower. It wasn’t that the processing clock got

slower (except for apparently certain fruit themed company smart phones); it was that too much stuff

had been packed into the once powerful device.

If Sun Tzu was an expert in real-time-systems, he likely would have written: “Know your time constants,

and know your dynamics, and you can close one hundred loops without disaster.”

10.12.5 The advanced tool approach

Yet another common approach is the advanced tool approach, diagrammed on the right of Figure 10.26.

The advanced too. approach, which is that many tool supplying companies have realized the difficulty in

getting good designs into the Hard-Real-Time layer, and in passing data between the top layer and the

bottom layer. They have chosen to solve this through tools that create designs for The idea is that to get

more Hard-Real-Time processing without having to code in a Hard-Real-Time way, there are increasing

numbers of advanced development tools. When it works, it gives programmers with little or no real-time

programming skills access to having algorithms running in Hard-Real-Time Examples include:

• Simulink to FPGA synthesis (HDL Coder).

• MathWorks RT Workshop (MATLAB /Simulink /Stateflow =⇒ real-time hardware)

• Xilinx High Level Synthesis Tools

• dSpace HIL and auto-code (MATLAB /Simulink /Stateflow =⇒ real-time hardware)

• National Instruments HIL simulation

• Hardware targets designed to use these flexible tools

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
663

Winter 2022-2023
December 31, 2022

Computation for Control

(Mathworks RT Workshop, MATLAB, Simulink, and Statefow are registered trademarks of Math-

works.)

One of the key features of these systems is that they are not fully general. The have specific boards,

hardware targets, that are designed for interactions with these systems. Alternately, they develop wrap-

pers for existing, popular board systems. This is great for getting started with development, but the

move from development system to product hardware often becomes the bottleneck. This is perhaps not

an issue for academics or research labs, but is not truly an answer for products.

The blocks these tools access on the real-time targets are very standardized “Lego ” blocks. This has

its own overhead in amount of PL used. When it is at a fundamental Xilinx block layer, the overhead is

low, but often the blocks associated with the advanced tools and the generality that they need comes

with a significant speed hit.

At the same time, the tools have gotten cheaper and more powerful. The speed of processing is getting

faster while the real world has mostly the same time constants. (One caveat: as the speed of processing

goes up, the set of physical systems that one considers prime for digital interaction also goes up. Hence,

the Internet of Things, UAVs, autonomous vehicles, etc.) These tools allow one to stay in their thinking

set of tools (e.g. MATLAB , Simulink , LabView) and not have to deal with the much of the real world

as much. However, doing engineering without touching the real world has a lot of downsides. The more

I have worked, the more strongly I have believed that the person who designs it should have a big role

in making it work. This methodology is available and as the tools improve more and more chunks of our

design might be implemented this way, at least in the first cut.

10.12.6 Issues with connecting the layers

Having passed through these variants, we are now in a position to have a deeper discussion of the full

three-layer-model displayed in Figure 10.27. What has been missing from our previous examples has

been a fully fledged middle/mezzanine layer. The BMW had a definitive mezzanine layer, as denoted

by the Interface Program of Figure 10.22. In that example, it served as a bridge between the highly

sophisticated layer of Matlab design and data analysis and the Hard-Real-Time of the DSP board and

testbed.

It turns out that the processing, data, timing, and memory models of the Non-Real-Time and Hard-Real-

Time are so different that some sort of rubber/glue layer is almost always needed. A term that serves

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
664

Winter 2022-2023
December 31, 2022

Computation for Control

Hard-Real-Time
l Minimal latency
l Keep up with clock sample periods
l Avoid multi-thread
l Count processor clock cycles

Near-Real-Time
l Keep up with real time on average
l Fast numerical algorithms
l Some simple data structures
l Act as interface between hard real

time and non-real-time

Non-Real-Time
l Talk to other processors
l File access
l Configuration
l State machines
l Complex algorithms

Figure 10.27: The near-real-time (mezzanine) layer connects the two.

for this is Near-Real-Time, or Mezzanine Level Processing. It has to outrun the Hard-Real-Time – but

only on average. It features a lot of memory buffers and message queues between the two other layers.

This middle layer wants to ensure that it never leaves the Hard-Real-Time layer without inputs in its

queue and that it clears the Hard-Real-Time’s output queues fast enough that they are never completely

full. Doing so means that the most time-critical layer, the one that has to keep up with Newton’s laws,

never has to slow down because of the rest of the embedded computing system. We can use more

complex memory, processing, algorithms in the Near-Real-Time. Once tasks in this layer get past their

initialization and allocate their memory, they go faster than the Hard-Real-Time (hence the need for

buffers). Programs in this layer can also handle a lot of monolithic streaming data.

Depending upon the speed of the physical system dynamics, this Mezzanine Layer can be handled with

either a dedicated Linux thread, a Real-Time Operating System (RTOS), or a bare metal (no operating

system) implementation. However, unlike the layers on either side, far less is formalized about this layer.

Some of this is due to the very purpose of this layer: to form a smooth interface between the others,

however this can be viewed as the Wild, Wild West of programming.

Even if one recognizes the layers of Figure 10.27 and programs them differently, there are the issues of

how to combine them and how to share data between them. Traditionally, the choices have been:

• To combine multiple layers on one processor. However, the swapping and the multi-tasking could

cause complexity and timing problems. By putting everything on one processor, it is difficult to

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
665

Winter 2022-2023
December 31, 2022

Computation for Control

give the Hard-Real-Time layer the priority it needs and wasteful to have a single large processor

handling so many simple real-time tasks.

• To put different layers on different processors/chips/boards. While this preserves the independence

between the layers, the hand-offs of data and control between layers was usually a bottleneck. The

interfaces end up being either low overhead and slow (old parallel buses) or higher overhead and

fast (fast serial buses). (Fast parallel buses between boards are disappearing from everything

but video controllers.) Crossing boundaries is often a nightmare, as we are having to create

compatible channels between very different levels of programming. Furthermore, being on different

boards usually implies that the processors are on different clock domains. This gives yet another

opportunity for longer and less predictable delay between different computation layers.

However, without moving data and processing easily between the layers, it was very hard for processing

to be agnostic, for algorithms to work at whatever level then need to for the data. Moving the data

between the different layers is a key enabler to being able to program for each of the layers. Moving

the data around cleanly is also necessary for making processing agnostic, that is, moving the processing

to the layer which is most appropriate for the data and the sample rate. If data moves easily, and the

development tools are similar at the different layers, then the choice of where to process data becomes

driven by the data itself, not by some “layer preference”.

The key to a solution allows for separate hardware segments for each layer while still enabling fast transfer

of data between layers. In this respect, chips which feature a System on a Chip (SoC) provide such a

solution. Multiple chip families from makers such as Altera (now part of Intel) and Xilinx (now part

of AMD), provide multiple high level ARM processors on the same die as programmable logic (PL),

on-chip-memory (OCM) as well as communication and interfaces for off chip memory [325, 326]. This

allows multiple levels of computing on one piece of Silicon (processing, programmable logic, memory,

buses), and the chip makers are moving towards advanced synthesis tools to “compile” hardware to meet

the system timing requirements (or alert the designer when they cannot be met).

Each of these layers has unique timing constraints. The hard-real-time layer must match up to the

physical world timing needs, and that affects how the programming is done. One might want to write

code with simple math in it, but it turns out that division is about 8 times as computationally expensive

as multiplication. When possible, this means precomputing xinv = 1/x instead of dividing by x at each

time step. One may be able to access a library for trigonometric functions, but again, it is easier to put

them in a look-up-table. One gives up mathematical exactness for computational speed and a known

latency. Algorithms that require large amounts of memory are replaced with ones that use fixed, direct

access memory. All of these compromises are things that one would never do on “big iron” or even an

Intel or AMD processor, but they are the key to making computations fit into real-time processors.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
666

Winter 2022-2023
December 31, 2022

Computation for Control

On the other hand, such programming lacks the ability to add the kind of intelligence that most modern

controllers should have. There is no user interface, no file access, no tuning algorithms. There is no

access to libraries or GPU processing. There is little communication and exchange with other software.

There is little ability to explore strange new algorithms, to see out new methods, and new computations.

This type of programming should be there, but it has to be in a separate layer.

The Rodney Dangerfield of the group (the one that gets no respect) is the middle, Near-Real-Time layer.

This is likely to be the most customized layer in the system, because it has to joint the rich data centric

world of the non-real-time upper layer with the physical world timing constraints of the hard-real-time

layer.

While one may use the same set of tools to program the different layers, each has a unique set of timing

requirements that lead to different programming and memory access methods. Where people get into

trouble is when they fail to recognize that programming the different layers requires different mind sets.

10.13 Control Algorithm Programming

The prior sections have focused at a high level on the many issues that can encumber the proper execution

of control algorithms. In this section, we will discuss specifics in how we code our filters and our state-

space structures to minimize issues such as latency, jitter, and numerical instability in the code. There

are many wonderful texts describing the different mathematical benefits of different controller structures.

What is sometimes left to the reader is first how to implement those structures (a.k.a. write code) and

how the particular properties of the compute engine place limits on how we write that code.

We cannot emphasize enough the principle that for algorithms to make it from the notepad, through

Matlab or Python, and into systems that work, they must be debuggable. This goes beyond commenting

one’s code (although this helps) but goes into the filter and state-space structures into which we fit our

schemes. Structure, compartmentalization, and documentation matter. The clueless schmuck who looks

at your code in 6 months or 2 years will likely be you. Throw that schmuck a bone.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
667

Winter 2022-2023
December 31, 2022

Computation for Control

10.13.1 It’s a Filter

In most human-built implementations of feedback controllers, the computations take the form of weighted

values of functions of prior inputs to the plant, outputs from the plant, reference signals, and auxiliary

sensor inputs to the controller block. In other words, they implement one or more filters. Whether

implemented using analog circuits [327], digital logic, or computer code, controllers involve filters (and

decision trees). We will focus on the digital versions of these, starting with computer code but branching

into digital logic as a special “hardware implementation” of code. Even a state-space structure can be

considered under this “filter” rubric [14, 15, 328, 329].

When we talk about filters in code, we most often mean that the filter is in a subroutine (or function or

subprogram, but for our purposes here, these are the same). While filters may be coded in-line in small

systems, best practices of compartmentalizing coding dictate that most filters will be implemented in

subroutines. The subroutines might themselves have their own subprograms, but for what we are trying

to explain, one level of subprogram is enough. Considering the most simple (and common) case of a

linear, constant-coefficient filter, we will have parameters into the routine that need to be shared from

the top level down to the routine and some that go back. As subroutines generally have a separate data

space from that of the calling routine, the parameters need to be either:

• Global: Shared between all routines and the top level program.

• Passed: These are passed down via the stack during the subroutine call.

• Static/persistent: These keep their value even after the routine ends so that on the next call

they remember their previous value.

• Part of an instance of a class: This is static data local to an instance of a class that gets

initialized through the class, but also maintains its value until the instance is deleted.

Of issue here is what data needs to be known in the filter routine and which does not. In our LTI filter

example, we can imagine the common form for a polynomial form IIR filter as:

y(k) = −a1y(k − 1)− a2y(k − 2)− . . . − any(k − n)

+b0u(k) + b1u(k − 1)+ . . . + bnu(k − n). (10.9)

In this filter, we have have three sets of parameters:

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
668

Winter 2022-2023
December 31, 2022

Computation for Control

• Filter Coefficients: Our values of {ai, b j} define what we think of as a filter as they are the filter

coefficients. Most often, these are defined before the filter is ever run and they do not change.

• Previous filter inputs and outputs: This signifies the {y(k − i)} and {u(k − i)} values that are
known prior to the current time step.

• Current filter inputs and outputs: This signifies u(k), the current input at step k, and y(k), the
output of the filter to be computed based upon the coefficients, the prior inputs and outputs, and

the most recent input to the filter.

In a very simplified understanding, only u(k) is a new input to the filter, and only y(k) is a new output.

Given the right programming methods, no other parameters from above need to be passed in to or out

of the filter at any one step.

This is a very good spot to mention the difference between batch mode programming and sequential

programming. In batch mode programming, we present all of the data to the subroutine or program at

the entry point. It applies the parameters and generates all of the data to be output. In this mode, the

routine would be called only once. It would execute its operations on the large data space, then return

the result in (probably) an equally large data space. We are used to this type of programming for much

of our off-line data processing, e.g. when we run filter() or filtfilt() in Matlab. While the filter of Equation

10.9 might only process one new input at a time, in batch mode processing all the data would be passed

down to the filter routine which would loop through repeatedly before returning a column of results.

However, this type of programming makes no sense in the most critical operations of a feedback controller.

Instead of a batch of data, we have new data coming in at each time step (probably) and need to generate

a response at each time step (probably). The filter routine only sees a tiny bit of new data at each step

and must respond to it. It is this incremental use of filters and programs that we will focus on, since

these are the ones that will be running in a feedback loop that must run “forever”. In this mode of

programming, passing the coefficients and old inputs and outputs on the parameter stack every time the

filter routine is called is tremendously wasteful of computation time. It does not advance our algorithm;

only increasing our computation delay while adding no functionality. In such programs, it is far more

efficient to have both filter coefficients and signal values (delays/states) as static/persistent data so that

only new information gets passed on the parameter stack.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
669

Winter 2022-2023
December 31, 2022

Computation for Control

10.13.2 The Wire

Besides being a classic HBO show, The Wire is the name the first author gives to the first filter subroutine

one writes in any computer environment. The role of The Wire is akin to the role of the various “Hello

world!” programs in programming environments: it is the first proof of concept that helps debug the

basic structure of the code. The Wire is simply a filter that takes the input and passes it to the output.

In terms of Equation 10.9, all coefficients are 0 except for b0 which is 1. By first coding The Wire

engineers can debug their filter code structure without worrying about numerics, time constants, and

discretization.

Once The Wire is working, the next version involves having all coefficients at 0 except for b0 and b1

which are both set to 0.5. Once this simple FIR averager is working, the next version sets all coefficients

to 0 except for b0 = 1 and a1 = −0.5 to set up a simple IIR low-pass filter. With these, one can test

impulse and step responses and generally debug most of the filter structure. After that, one can get

more complicated with the numerics.

10.14 Numerics, Parameterization, and Operations

The successful implementation of algorithms into filter routines relies on doing a variety of different things

well, or at the very least, not screwing up a whole bunch of small things. Experienced programmers (just

like experienced practicing engineers) realize that every implementation will need to be debugged, and

so a key aspect of coding is to design the code in such a way that it can be easily debugged. This is one

of the reasons for breaking code up into smaller subprograms or subroutines. Taken to the next level,

we get to Object-Oriented Programming (OOP) where much of the data and code specific to that data,

are wrapped up into a class. (Discussing OOP in detail is beyond the scope of this tutorial, but it some

parts are keenly relevant to this discussion.)

Those used to programming in feature rich, Non-Real-Time environments, can often not see the need for

such careful attention to structure, but for any practical programming system, structure comes before

numerics. Once the data handling is properly handled, then one can look at how the algorithm handles

the numerics. This is not an either-or situation: the structure puts one in a position to better understand

the numerics and the numerics then may well mandate a change to the structure.

A feature of programs that needs to be understood is the cost of different mathematical operations.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
670

Winter 2022-2023
December 31, 2022

Computation for Control

In most modern computation architectures, additions, subtractions, and multiplications take 1–5 clock

cycles while operations such as division or computation of transcendental functions take on the order of

30+ clock cycles (depending upon the particular processor). Accesses to on-chip memory take 1–2 clock

cycles and so certain real-time operations are far better accomplished via a local look-up-table (LUT)

and interpolation, than by following the complete algorithm.

When working with Hard-Real-Time, one might often need to give up on floating-point operations in

the name of resources and speed. For example, using Xilinx’s DSP48E blocks in PL, one can perform

a multiply of a 25 and 18-bit twos-complement number and accumulate with another 25-bit number in

5 clock cycles with one block. To perform the same calculation using floating-point requires 10 clock

cycles and four of these same blocks [88, 176]. Thus, when the precision is less critical than speed and

resources, one may very well opt for fixed-point operations.

10.14.1 Understanding Sampling and Discretization Methods

While there are many ways to discretize a linear model, the Zero-Order Hold Equivalent (ZOH) [15] has

been the most used form for many years. As it is the default method for Matlab’s c2d() function, this
dominance has only increased. The ZOH equivalent provides exact matches at the sample instances, but

with it comes a loss of physical understandability [322]. Its use only makes sense when one is discretizing

the entire plant model in one step. However, as John Madden famously taught, “One size doesn’t fit

all” [330].

For example, most PID controllers are discretized using a Backwards Rectangular Rule equivalent [322].

This will be discussed in Section 10.14.2, but it is worth noting that the only place in Matlab where one

finds the Backwards Rule built in is in the PID design tools. Matching higher end resonant structures is

far more intuitive if one breaks them into second order biquads. For such lightly damped second order

sections, discretizing them with pole-zero matching is not only highly accurate, but preserves the physical

intuition for each biquad (Sections 10.14.4 and 10.14.5). If one wishes to model the rigid body modes

of a system in such a way as to directly extract both position and velocity directly from the discrete-time

state space, a Trapezoidal Rule equivalent makes a lot of sense (Section 10.14.6).

Finally, while the “sampling fast” mantra does bring a lot of benefits, it can also bring forth several

issues. The first is that if one samples so rapidly that the measurement and quantization noise is larger

than any signal change in the sample instant, the signal-to-noise ratio (SNR) of our measurements drop,

with the consequentially bad results. Secondly, because all discretization is calculating or approximating

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
671

Winter 2022-2023
December 31, 2022

Computation for Control

some version of esTS , the shrinking value of TS will squeeze more poles and zeros into a pack around

z = 1. This may not matter when the numbers are represented in double-precision floating point, but

for real-time systems with single-precision floating point or even fixed-point coefficients, this can be

disastrous. Trimming a few bits of the numeric representation can flip poles and zeros from inside of

to outside of the unit circle in unpredictable ways [33]. Several schemes have been proposed to shift

the design space back to a more continuous time like representation, including the δ parameterization

[177, 179] and the τ parameterization [331]. The ∆ coefficients used in the Multinotch (Section 10.14.4)

[33], change the coefficients to be more accurate but do not alter the signal space. For biquad structures,

they provide greater accuracy of coefficients [165] but do not do anything about signal growth. However,

for the signal growth limiting properties of the δ parameterization can actually be traced to the fact that

TS ends up scaling many of the signals. As this shrinks, it compensates for having more values in the

accumulator [166, 331]. The issue with this scaling by TS is negligible when the numbers are represented

in floating point, but potentially disastrous when TS is in an unscaled fixed point number. All of this is

to say that sampling fast should be done fully aware of the potential downsides.

10.14.2 PIDs

While many controls researchers see the Proportional, Integral, Derivative (PID) controller as “Brand X”

controller against which to compare their research [322], it is still the case that most practical controllers

are (or start with) some variant of a PID. There are many good discussions on various forms, aspects, and

tuning of PID controllers [115, 118, 120, 323], we will focus here on some of the important computational

features. One point to be clarified is that while PIDs are considered “standard” there is no one standard

PID form. There is an attempt to consolidate many of the forms into one of 4 different archetypes in

[40], and [17] adds the ISA standard form PID equation [332], will focus in one one form from [40] that

has nice discretization properties

Design: Modern PIDs are typically designed in continuous time and implemented in discrete time.

Almost universally, discretization is done using the Backwards Rectangular Rule (or Backwards Rule),

where

s −→ z − 1
TS z

=
1− z−1

TS
, and (10.10)

TS is the sample period. Taking one continuous time form, Explicit Time with No Derivative Filtering

from [40]:

C(s) = KP +
KI

TI s
+ KDTDs, (10.11)

where KP,KI, and KD is the proportional, integral, and derivative gains, while TI and TD are integration

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
672

Winter 2022-2023
December 31, 2022

Computation for Control

and differentiation times. Setting TD = TI = TS and applying the Backwards Rule from (10.10) yields

C(z) = KP +
KI

z − 1
+ KD

(

z − 1
z

)

. (10.12)

We see that modulo the TI and TD factors there is a tight correspondence between (10.12) and (10.11).

Using this parameterization and the Backwards Rule has not only led to a very intutive correspondence

between the continuous and discrete time PID parameters, but it has also made the non-proper derivative

term in (10.11) proper in (10.12). In essence, the conservatism of the Backwards Rule has inserted a

needed low-pass filter. Operationally, this means that the discrete PID is internally stable, so long as the

integrator is not operated when the actuator is in saturation. This last issue is one of the likely reasons

why PIDs are broken out from the rest of the filter blocks in most industrial systems. Being able to

isolate the integrator for anti-windup purposes is extremely helpful.

offset

-

measured
signal

clamping
anti-

windup

reference
signal

error u uscale
usat

SS
z

-1

S S

KP

KI K

KD1-z
-1

C(z)

Figure 10.28: Conditional integration/integrator clamping.

Anti-Windup: We know from the Final Value Theorem that in order to track an input step with

0 steady state error, we need an integrator in the forward portion of the loop [14]. The issue for an

integrator in the controller is that it is only stable in the presence of the feedback loop. Saturation –

typically at the actuator – breaks that feedback. The breaking of the loop can cause a buildup of error in

the integrator (wind up) causing the actual error to take much longer to settle when the system comes

out of saturation.

An advantage of the PID structure is that the integrator can be isolated so that anti-windup schemes

can be implemented. The workaround of integrator anti-windup involves some method of detecting the

saturation and then using this to change/limit the input to the integrator. The two prevalent methods are

back-calculation and conditional integration (also known as integrator clamping). Back calculation aims

to remove from the integrator input a portion of the controller output that did not get past the saturation

block. If properly scaled, this should drive the input to the integrator to 0, eliminating the windup. Most

descriptions of this seem to focus on the integrator or the PI action, giving the impression this is usually

reserved for systems where the D portion is not enabled. Back calculation has an advantage in that

it can be readily implemented in continuous or discrete-time implementations. Conditional integration,

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
673

Winter 2022-2023
December 31, 2022

Computation for Control

diagrammed in Figure 10.28, implements a decision tree to turn zero out the input to the integrator

during saturation. As such, it is more easily understood with discrete-time implementations. It also has

the advantage that even in saturation, input to the integrator may be allowed if the sign of the error is

different from the output of the integrator, thereby moving away from saturation.

Derivative Filtering: Depending upon the application, various forms of filtering are often recom-

mended. When the plant dynamics are substantially slower than the computation, one can apply fairly

aggressive low-pass filtering to the entire PID to limit electronics noise while not affecting the needed

closed-loop performance [118]. For higher speed systems such as mechatronics, we may stick with only

filtering the derivative term [322, 40].

The point of this is that the most common PID blocks should be implemented in their own special

filter subroutine. The form of discretization matters can affect the intuition one keeps about the overall

control system. Furthermore, this block can contain some anti-windup code, not found in most other

filter blocks.

One more feature of integrators is that even without saturation and windup, their internal signals can

get quite large compared to other filter signals. When using fixed point number formats, we often need

to allocate extra bits just for the integrator accumulation.

10.14.3 Filter Structures and Latency

As Section 10.7.1 showed the phase-margin killing effects of careless selection of anti-alias filters, this

section deals with computational latency. In particular, Figure 10.29 illustrates how the lack of precalcu-

lation makes the closed-loop latency dependent on the controller filter size. Restructuring the calculation

to push as much as possible into precalculation makes the computational latency fixed and shorter. It is

relatively straightforward to apply precalculation on a controller implemented as an IIR filter as in Fig-

ure 10.30, but polynomial filters have poor numerical properties, particularly when the filter has lightly

damped poles and zeros. Since these are common in mechatronic systems, we want to implement our

control filters using a biquad cascade that has better numerical properties than a polynomial filter [54].

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
674

Winter 2022-2023
December 31, 2022

Computation for Control

TSH
TADC

TDACTCOMP

TS

TLATENCY

No Precalculation

TSH
TADC

TDAC

TPRECALCTFC

TS

TLATENCY

With Precalculation

Figure 10.29: Input and output timing in a digital control system. The top drawing is without precalcu-
lation; the bottom drawing is with. (Repeat of Figure 6.1.)

10.14.4 The Multinotch

This section returns to the discussion of Section 6.11, but with a focus on the computation itself.

The development of the BSS starts with the Multinotch, a way of turning a polynomial form IIR filter as

diagrammed in Figure 10.30, into a cascade of biquads with the direct feedthrough coefficients factored

out to the end, as shown in Figure 10.31 [33, 54]. With this factorization, one can discretize each biquad

individually so that the discretized biquads have a one-to-one correspondence with the continuous-time

biquads. By judicious choices of the which poles and zeros from the physical model are assigned to each

biquad, one can minimize effects of the signals of any one biquad on the others. The Multinotch is a

highly efficient digital filter because it not only has greater numerical stability than standard polynomial

and state-space forms, but also allows for precalculation of most of the filter, minimizing the latency

between reading a sample and responding to it (Figure 10.29). This particular form of the direct feed-

through scaling allows for precalculation, but others are available if we want the internal states of the

filter to be scaled as they are in the system.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
675

Winter 2022-2023
December 31, 2022

Computation for Control

S S

S S

-

u(k)

z
-1

a1

d(k) y(k)

b1

S S

z
-1

an-1

d(k-1)

d(k-n+1)

d(k-n)

bn-1

an bn

b0

Figure 10.30: nth order polynomial filter in Direct Form II configuration [167]. (Repeat of Figure 6.2.

10.14.5 The Biquad State-Space (BSS)

In this section, we repeat and summarize the discussion of Section 9.15, again with a focus on compu-

tation.

One of the easiest ways to clear a room full of practicing mechatronic control engineers is to suggest that

they employ state-space methods for the control of their structure with many lightly damped resonances.

State-space models of highly flexible systems can present severe numerical issues. The models derived

from physical principles often lack structure. Canonical form models, are compact, but obscure any

physical structure and can have coefficients that are highly sensitive to model parameters. What is

needed is a form that has the compact representation of the canonical forms, the physicality of the

forms derived from physical equations, and maintain numerical accuracy and physical intuition, even

after discretization.

The first of these is the Biquad State Space (BSS) [3, 4], based on the Multinotch of Section 6.11.

The BSS captures the endearing characteristics of the Multinotch while providing the flexibility of model

based control. A significant feature of the BSS is the ability to move easily between the states of the

continuous and discrete time forms.

The digital version of the BSS shown in Figure 10.32 looks very similar to the Multinotch, although as

we are more focused on accurate modeling than precomputation, we scale the outputs of each biquad to

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
676

Winter 2022-2023
December 31, 2022

Computation for Control

S SS S

S SS S

- -

u(k)

z
-1

z
-1

z
-1

z
-1

a0,1 a1,1

d (k)0 y (k)0 y (k)1d (k)1

a0,2 a1,2

~ ~ ~~

S SS S

S SS S

- -
z

-1
z

-1

z
-1

z
-1

an-1,1 an,1

d (k)n-1 y (k)n-1 y (k)n y(k)d (k)n

b

an-1,2 an,2

~ ~ ~~

b0,1

~

bn-1,1

~

b1,1

~

bn,1

~

b0,2

~

bn-1,2

~

b1,2

~

bn,2

~

Figure 10.31: The updated biquad cascade, with factored out b0 terms. (Repeat of Figure 6.20.)

get to the proper output states. This form results in a block upper triangular state transition matrix [3].

If one were to mistakenly substitute 1/s for z−1, one would end up with the continuous time structure of

Figure 10.33. Furthermore, if one were to discretize the structure of Figure 10.33 one biquad at a time,

then one would end up with the structure of Figure 10.32, with the added advantage that the signals

at the outputs of the biquads would correspond between the analog and digital versions. Figure 10.34

demonstrates this with a 3-biquad system, where one of the biquads implements an LPF [5]. Note the

tight correspondence between the outputs of both analog and digital biquads. The roll up in phase in

the DT plot is due to mapping the LPFs continuous time zeros at s = −∞ to z = −1.

10.14.6 Rigid Body Modes and the Bilinear State-Space (BLSS) Structure

In this section, we repeat and summarize the discussion of Section 9.28, again with a focus on compu-

tation.

For all the advantages of the BSS for flexible modes, we still need to find some way to not only represent

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
677

Winter 2022-2023
December 31, 2022

Computation for Control

S SS S

S SS S

- -

a01 a11

y0,k+1 y1,k+1b00 b10b00

a02 a12b02

S SS S

S SS S

- -

an-1,1 an1

bn0b ...b bn-1,0 10 00

an-1,2 an2

b01

~

~
b12

~

b11

~

bn-1,1

~

bn-1,2

~
bn2

~

bn1

~

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

d0,k
u0,k

uk

x0,k

x0,k-1

d1,k

x1,k

xn-1,k

xn,k-1

xn,k

dn-1,k dn,k

yn,k+1

yk+1

Figure 10.32: The updated discrete biquad cascade, with factored out bi,0 terms and scaling the
output of each block.

rigid body modes, but also to have the internal states of those structures correspond to the internal states

of the rigid body, e.g. velocity and position. Furthermore, we would also like that rigid body state-space

structure to have an equivalence between the continuous and discrete time forms. This is accomplished

via the Bilinear State-Space (BLSS) structure [5]. Figures 10.35 and 10.36 show continuous and discrete

versions of the Bilinear State-Space form (BLSS) [5] which accomplishes that, and can be combined with

a cascade of biquads into one overall state-space structure. This is shown in the simulation of Figure

10.37. After all, it is a bit embarrassing to go through all the mathematical machinery of state space,

and not be able to access the discrete states for both position and velocity.

10.15 Example Bandwidth Ranges, Applications, and Platforms

In this as in many other sections, there are general statements based upon where the state of the art of

technology (“Moore’s law”[42]) is at the time of the writing. We expect that the specific numbers and

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
678

Winter 2022-2023
December 31, 2022

Computation for Control

1
s

1
s

1
s

1
s

1
s

S SS S

S SS S

- -
u

a01 a11

u0

x0 x1

xn-1 xn

y0 y1
b00 b10b00

a02 a12b02

S SS S

S SS S

- -

1
s

1
s

1
s

an-1,1 an1

yn

y
bn0b ...b bn-1,0 10 00

an-1,2 an2

b01

~

~
b12

~

b11

~

bn-1,1

~

bn-1,2

~
bn2

~

bn1

~

Figure 10.33: The analog biquad cascade, with factored out bi,0 terms and scaling the output of each
block. This is completely analogous to the digital form of Figure 10.32. (Repeat of Figure 9.25.)

ranges will change over time, but the basic idea of what defines a range should remain. The best advice

here seems to be to paraphrase Sun Tzu [333]: “Know your time constants, and know your dynamics,

and you can close 100 loops without disaster.”

We will provide some platform examples, in a direction of ever increasing speed. Of common interest

is the tradeoff between preemption – being able to run multiple tasks by multiplexing – and timing

certainty. As we move down the list, we move towards more and more dedicated hardware to a specific

computation and less opportunities for preemption. The second trend as we move down the list is that

there are a decreasing number of electronic components between the physical system and the electronic

computation. The increase in speed comes along with a potential increase in cost and almost always

decrease in flexibility. However, the march of technology means that as the years pass, more physical

systems with faster time constants move up these layers. One can look across the different computation

technologies as follows:

On a Linux Thread: Linux is a free, customizable operating system. Among the many variants are

complex versions for servers and simple versions that run much of the embedded systems in the world.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
679

Winter 2022-2023
December 31, 2022

Computation for Control

10
0

10
1

10
2

10
3

−60

−40

−20

0

20

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Comparing Analog and Digital Biquad Intermediate Outputs (3 biquads)

10
0

10
1

10
2

10
3

−250

−200

−150

−100

−50

0

Frequency (Hz)

P
ha

se
 (

de
g)

CT Biquads 1−3 Out
DT Biquads 1−3 Out
CT Biquads 2−3 Out
DT Biquads 2−3 Out
CT Biquad 3 Out
DT Biquad 3 Out

Figure 10.34: BSS with three biquads including a low-pass filter in biquad 1. This plot compares the
Bode responses of the individual CT and DT biquad sections. The outputs of biquad 3 and biquad 2
show the magnitude and phase flattening out at high frequency (due to the matched number of poles
and zeros). Once the response of biquad 1 is added in, we see the low pass roll off. At each biquad
output, the match between continuous and discrete responses is incredibly close, a unique and useful
feature of this structure. (Repeat of Figure 9.38.

It is not uncommon to select a Linux thread to run some of the slower real-time applications. Because

a real-time Linux thread can be given higher priority than Non-Real-Time threads, this can reduce the

delay and jitter to acceptable levels for relatively slow applications.

On a Real-Time Operating System (RTOS): An RTOS is the next level up in capability. This is

a compromise between maintaining a preemptive operating system with its ability to manage memory,

communications, and scheduling, with the priority of real-time tasks. Many applications that use Digital

Signal Processing (DSP) chips will fall into this area.

On a bare metal (minimal/no OS) chip: In this case, our need for precise control of timing has

overridden our desire for the convenience of an operating system. Many of these processors are relatively

small and made for running a single process with minimal interruptions.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
680

Winter 2022-2023
December 31, 2022

Computation for Control

S S

-

ui
ui+1

xi+1

yi

yi+1

yi+1

~
1
s xi

S S

- 1
s

xi+1xi
1 1

ai1
ai+1,1

bi0
bi+1,0

bi1

~
bi+1,1

~

Figure 10.35: Continuous time bilinear state-space (CT-BLSS) form. (Repeat of Figure 9.29.)

S S

-

u (k)i

xi+1(k)
y (k) = u (k)i i+1

yi+1(k)y (k)i+1

~

xi(k)

S S

-

xi+1(k+1)xi(k+1)
1 1

ai1

bi0

bi1

~

z
-1

z
-1

ai+1,1 bi+1,1

~

bi+1,0

Figure 10.36: Discrete time bilinear state-space form (DT-BLSS). (Repeat of Figure 9.31.)

On an FPGA or other PL: Programmable logic (PL) started as a way of prototyping custom integrated

circuits (custom ICs) or of generating the glue logic that tied many processing chips together. As the

capabilities have grown, so have the PL chips and market. What FPGAs give is a chance to generate

custom hardware processors for specific mathematical tasks. Instead of multiplexing these tasks in time

as one would have to do on a single processor, they are multiplexed in space on the FPGA . One of

the key features that of algorithms that makes this highly valuable is that many small algorithms are

relatively simple and can be implemented with relatively simple logic. Thus, we are not wasting the

processing power of a large processor by having it switch to these tasks.

On custom digital or mixed signal IC: A custom chip can include mixed analog and digital

signals without incurring any of the (albeit small) overhead of an FPGA chip. The cost of laying out a

custom chip means that this solution is only feasible for either high-cost applications or for mass market

applications. In either case, something has to make up the cost of chip layout to gain that extra speed.

In analog electronics: The fastest speed systems often require us to give up on digital methods in

the Hard-Real-Time layer. With this move to fully analog implementation comes the loss of flexibility,

reproducibility, and updatability that are a key advantage of digital methods.

An alternate view starts with the general speed ranges that we can group by sample rates. Note that

the edges often overlap.

Low End Speed fS ≤ 1Hz: The typical applications include thermal systems, pressure control,

biological reactors, and chemical process control. Such slow systems can often be handled as a Linux

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
681

Winter 2022-2023
December 31, 2022

Computation for Control

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

B
iq

ua
d

S
ig

na
ls

Biquad, TR: Double Int. Test: f
in

 = 1 Hz, f
S
 = 100 Hz

Input/2
d

i,k

y
i,k

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

B
LS

S
 S

ig
na

ls

BLSS, TR: Double Int. Test: f
in

 = 1 Hz, f
S
 = 100 Hz

Input/2
d

i,k

y
i,k

d
i+1,k

y
i+1,k

Figure 10.37: Double integrator with square wave input. Implemented using a trapezoidal rule equiv-
alent biquad (top) and BLSS (bottom). (Repeat of Figure 9.40.)

thread with the API approach diagrammed on the left of Figure 10.26 or using the advanced tools method

diagrammed on the right of Figure 10.26.

Next Level 1Hz ≤ fS ≤ 100Hz: In this zone we currently have rigid systems; typically medium to

large mechatronic systems, or small toy class systems. We might find personal robots in this region.

While the sample rates are pushing the boundaries, one might still find some of these handled by Linux

threads. The more complex or safety critical systems might run on an RTOS, and the chips involved

might move from low end processors to DSP chips.

Next Level 10Hz ≤ fS ≤ 50kHz: Typical applications here might include fast rigid body and/or

mechatronic systems, such as motion stages, fast robotics, flight, safety, automotive, and disk storage.

These would be usually handled with an RTOS or bare medal computing environment. For hardware, we

would have moved away from conventional or inexpensive processors fully in the range of DSP and/or

FPGA chips.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
682

Winter 2022-2023
December 31, 2022

Computation for Control

The Need for Speed 50kHz ≤ fS ≤ 50MHz: Typical applications requiring these sample rates might

include high-end instrumentation, mid-level electronic test, and high-speed small mechatronics, such as

atomic force microscopes (AFMs). These might use DSP chips at the lower end FPGA implementations

at the higher end and run with minimal operating system interference.

10.16 Business Models and Bandwidth

The one-line version of this section reads [31], “You can’t put a $200 FPGA into a $50 disk drive. Sad,

but true.”

Control theory might seem unified, but the space to implement is dramatically varied. As was described

in Section 10.15, the physical system time constants are a main determinant of the required sampling

rates, and these in-turn affect the version of the Three-Layer-Model from Section 10.12.1 that we will

program against.

For very slow applications (e.g. pressure, temperature, or chemical and biological process control) the

computer is so much faster than the process dynamics that we can forget about latency inside the digital

unit. This is where lots of compute intensive learning algorithms are first tried. A great example of

this is Model Predictive Control [29, 334], which finds a natural home performing optimization between

the relatively-slow sample instants of chemical process control systems. At the same time, the types

of dynamic structures for which the control system must compensate are different. Chemical engineers

rarely think about resonances, but are keenly aware of transport delay and the limitations on their sensors

and actuators. Similarly, the long time constants mean that frequency domain measurements are almost

meaningless to this group. What this means is that the raw processing costs will be relatively low. Such

bandwidth requirements can often be met with the API method diagrammed on the left of Figure 10.26.

Where the money will be spent is on the input and output signal chains, where – depending upon the

system – the environment in which those electronics operate often determine the cost.

At the other end of the spectrum are intense, expensive applications (e.g. fighter planes, space launch

and spacecraft, wafer scanners). For these systems, the cost of processing is a tiny part of the machine

cost. For these types of systems, there might be substantial numbers of lightly damped dynamics, as

well as substantial instrumentation challenges. Time constants may be short, prompting higher sample

rates and more stringent computational requirements. However for these systems, the engineering teams

are large and (relatively speaking) resources are flush. Latency, noise, performance limits all matter, but

the proverbial checkbook is open. These systems are characterized in part by being so expensive that

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
683

Winter 2022-2023
December 31, 2022

Computation for Control

each device can be tuned by a team of engineers. Such systems afford high-end, high-cost processing,

and plenty of engineers to design and program each of the layers in Figure 10.27.

Perhaps the largest price-performance demands come from consumer level systems. This may present

the largest challenge and opportunity. The prevalence of feedback-based devices in our everyday use

require a lot of performance in relatively inexpensive processing solutions. These must be increasingly

self-tuning and self-diagnostic. The low unit cost mandates that we cannot afford to have engineers

touch every device. That being said, their penetration to the public is far more visible, so reliability is

critical. The path for these computation systems is usually to start with more complex, powerful chips

and algorithms in the early test phases, and then port the simplified versions down into the low-cost

hardware. While the Hard-Real-Time layer is made as efficient as possible, it is common in these systems

to thin out the top two layers to reduce cost. After all, when it is cheaper to replace a device than to

diagnose and fix it, this makes economic sense. (We are ignoring the more complete accounting costs

on the environment due to throwing away, rather than repairing or recycling broken devices. We do not

endorse this incomplete accounting; we simply view it as a current – and flawed – business practice for

many operations.)

Consumer level devices where the feedback loop is used as a selling point include fuzzy logic washing

machines and rice cookers. The two salient features of these are that the system dynamics are relatively

simple and benign and that the fuzzy logic control is advertised as a feature. They are highly unlikely

to do damage to anyone or anything even with a flawed or failing feedback loop. Such systems feature

hard limits on internal temperature, cooking or cleaning time, and the like, so that even if the feedback

fails, the system will shut down with nothing more than a ruined dinner. If one views fuzzy control as

more of a control implementation method than a control design method [335], then we can realize that

a key feature of these devices was the implementation of feedback on a benign but improvable process.

Few consumers are aware of the key role of feedback in their hard disk drives and optical disks [287,

336, 337, 338]. As the use of optical disks for consumers gets replaced by streaming media and hard

disk drives move out of personal computers and into server farms, there is nothing to indicate that this

trend will reverse. At the same time, devices that visibly depend upon feedback for their are rapidly

becoming prevalent in our society, from all types of robots, to drones, to self-driving modes in vehicles,

to self-driving vehicles themselves. These are not systems with benign dynamics and so the proper

implementation of feedback on a low-cost embedded platform is critical. As control engineers we need

to understand both how to to fit our algorithms into such inexpensive platforms and how to justify our

push for some head space in those systems for improved diagnostics and code revisions. The team will

likely only have one or two engineers with any knowledge of feedback. Being able to communicate design

considerations to everyone from business types, to chemists, to software designers is a critical skill.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
684

Winter 2022-2023
December 31, 2022

Computation for Control

Finally, with all the discussion of machine learning (ML) and artificial intelligence (AI) in the public

consciousness, we can neither shy away from these discussions, turn off our connection to the laws of

physics, nor pout in the corner because we are not getting the same attention. Anya Tsalenko, an expert

in machine learning, big data, and artificial intelligence at Agilent Labs often points out that the main

advancement between the neural network methods of the 1980s and 1990s and today are a massive

increase in the amount of training data and computer power available now. What was once a parallel

scheme run on a single Intel processor is now a massive parallel scheme tuned with terabytes of data on

GPUs (Graphics Processing Units) and implemented in parallel on FPGA s. Still, the demonstrations all

seem to focus on systems for which the dynamics are orders of magnitude slower than the processing.

This is best expressed in a high school mathematical word problem:

Q: If Train A leaves Chicago traveling East at 50 MPH and Train B leaves Buffalo traveling west at

60 MPH . . .

What is the probability that the AI demonstration will involve image classification?

The answer is almost always 1. The answer for our field is that we need to be there with fundamental

systems thinking when ML/AI systems try to make something physical move.

10.17 Chapter Summary and Context

This chapter has been all about how we think about computation for control systems. Most of this has

focused on the real-time portion of the loop, the part that needs to meet nature’s timing constraints.

However, once we enter this real-time world, we realize that we have to consider all the signal chains

coming into and going out of the processing engine. Those necessarily involve analog electronics and

physical computation. We need to consider 4 main blocks of computation in a feedback system: the

plant’s “computation”, the input signal chain, the output signal chain, and the computer itself.

Each of these is a potential source of delay, noise, and jitter. They can each wreck the performance of

even the best control algorithm. Addressing them is each part of successful control design.

Time delay through the system, which we closely associate with phase margin. While this is not a major

issue for a pure filtering context, it is fundamental to a feedback context.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
685

Winter 2022-2023
December 31, 2022

Computation for Control

Our awareness of Bode’s integral theorem discussed in Chapter 7 and how that makes us sensitive to

any noise that enters the loop was also brought up. Understanding the role of real-time computation for

different time constant problems is critical. The three-layer computer model helps us understand how to

program for different parts of the loop.

Finally, none of this can be separated from the business model versus bandwidth tradeoffs.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
686

Winter 2022-2023
December 31, 2022

Chapter 11

Closing Thoughts

My father was an organic chemist, and once, when I was about 5 years old, I asked him why he had a

Doctor of Philosophy degree if he never actually did any philosophy. (Of course, he did the usual dad

stuff, but I was thinking tweed jackets with elbow patches here.) Well, looking back on a lot of the stuff

in this book and the workshop, I realize I have been dropping a lot of control systems philosophy bombs

along the way. I am going to own that whole philosophy part of the Ph.D., so in this chapter I will try

to summarize some of the control systems philosophy pushed throughout the book. Hopefully, that will

give a bit more coherence to what is in here. If not, it’s okay. I like saying them.

11.1 What Different Perspectives Want

I am going to look back here and offer one more view of what two different control perspectives, the

academic/theoretical (AT) and the implementation/industrial (II) are looking for. Hopefully, this view has

been taught in what came before this and now it’s just a summary. The reader should understand that in

order to present these two perspectives I will make very broad generalizations (as I did in Chapter 2) that

won’t apply to any one individual exactly. Call it fuzzy reasoning. The two perspectives I will consider

here are textbook and practical control (or academic/theoretical (AT) and industrial/implementation (II)

in Chapter 2).

Broadly stated, textbook (academic/theoretical (AT)) control wants to:

687

Closing Thoughts

• Take a system model that describes something in the real world.

• Find properties of that model that allow for a new and improved method of control.

• Analyze the new method on the model and show it is “optimal” on some metric.

• Simulate the model in MATLAB /Simulink (or something equivalent) and make it “real” by adding

in Additive White Gaussian Noise (AWGN) and/or some sort of bounded uncertainty.

• Say it will work in practice.

• Hopefully get a paper out of it.

Broadly stated, practical (implementation/industrial (II)) control wants to:

• Hook some real-time controller box into a test system or prototype.

• Push a button that generates excellent measurements of the system and produce model options.

• Push another button that generates an accurate, robust, parametric model for controller design,

and gives the user a design choices menu.

• Push the design button that produces a high performance, robust control design and projects its

behavior against the original measurement.

• Push one more button to transfer the design into a low overhead, high sample rate, real-time

control system.

• Tell their manager they did something innovative and “optimal” only to have their manager ask if

four buttons are really necessary.

I do not want to abandon either of these views. Instead, I want to keep alternating our perspective going

from one side to the other so that we can get to a real solution somewhere in the middle. This is where

I want them to meet:

• Every button push results in a step that is both physically intuitive and mathematically smart

(although not necessarily “optimal”).

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
688

Winter 2022-2023
December 31, 2022

Closing Thoughts

• Models are heavily measurement driven and measurements can be rapidly iterated with data being

passed easily to and from control systems Computer Aided Design (CAD) software. Parametric

models for control design can be rapidly and reliably extracted from measurements.

• Implementation choices and trade-offs are reflected back into the system and design model.

• Measurement, model, and design improvements are easily iterated on the experimental system.

Designs are easily transferred to the real-time experimental system. Experimental and measurement

data are easily transferred back into the CAD program.

• Experiment and design results easily compared to “optimal” model-based projections to see how

close implementation is to theoretical best.

• The ability to reflect “non-control” design choices into the model in an intuitive way for co-design

with other fields.

• Experiments, models, and designs easily saved in a form that is easy to retrieve, easy to display,

and easy to export to many other formats.

The unified approach does not see superiority in either theoretical or practical results, but works to iterate

between the two to achieve a practical system that may not be theoretically optimal but is guided by

optimization to be excellent. Much of the work to connect these two worlds involves a lot of grunt work

in programming, but this programming cannot be done without a system view that stretches from the

physics to the web page. Not only that, but the programming has to take the structure of the physical

system.

For those perspectives to meet, someone has to be the ambassador, the one who ventures forth into

other areas. In the sections that follow, I will try to make the case that it is the person trained in

and skilled with a systems perspective that is best equipped to do this. However, we systems engineers

cannot accomplish this, cannot fulfill the future that our background allows, unless we are willing to

venture beyond the comfortable world of proofs and optimality, into the messy world of physical systems

and their limitations. After all, Francis of Assisi wasn’t sainted for illuminated texts. He only became

important when he ventured out.

In 2008 I was invited down to the University of California at Santa Barbara (UCSB) by Mustafa Kham-

mash. This was my first visit there, although I would make many more in a few years as my oldest

son pursued an undergraduate degree in Chemical Engineering there. I did not know Mustafa at the

time, and so I told him that I had a few hour long talks already prepared (“in the can” as they say in

Hollywood). However, no sooner had I said yes, than I got an email from Professor Karl ström, who

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
689

Winter 2022-2023
December 31, 2022

Closing Thoughts

spent the winter quarter at UCSB at that time, saying essentially, “Now that you’re coming down, you

can give a talk to my advanced controls class.” Okay, now I needed a new talk, which I did create

and later turned into the ACC tutorial paper on “business and bandwidth” [31]. The talks themselves

went well, and interaction with one advanced graduate student in Karl’s class led me to the desperate

but insightful realization that, “Well state-space methods are model based methods and model-based

methods require . . . a good model.”

After the talk, we had a discussion in his office and I was relaying my growing realization that something

had been missing in how we had done stuff over the years. He pointed out to me that in the early days

of control, the control engineer knew the entire system, from the physical plant, to the electronics, to

whatever processing was being done to implement the control law. They worked on the entire loop. Now

(in 2008), he said, most control engineers had a platonic love of control: they wanted to talk about it,

write about it, but they didn’t want to touch a real one.

It seems that many controls researchers view their role as to hand off wisdom from on high, without

actually participating in the messiness of implementation. Unfortunately, this misses the point, because

just as many theoretical concepts cannot be truly learned until one has to derive or apply them in

a homework problem, many of the issues of the physical world can only be appreciated once one is

personally trying to make a real system work. Being there matters. We need to get beyond a platonic

love of control and touch real systems.

To have a seat at the table, control engineers need to once again become the Jacks and Jills of All

Trades that characterized the early days of the field. We need to be comfortable with being dilettantes

in related areas so that we can be ambassadors for our field to our fellow engineers, scientists, and, yes,

even to managers and MBAs. I get it, the real stuff is messy and involves a lot more than just sitting at

your computer. Then again, making a control system to work in the real world is a lot more fun than

watching videos of control systems on YouTube.

11.2 Real Control Design Work Cannot Be Separated from Im-
plementation Details

It would be nice to think that theory and optimization can exist and make progress on their own, but

separation from actual problems creates another issue of relevance: can disconnected math still be

relevant? Of course, there will always be examples of old theory that has been rediscovered and applied

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
690

Winter 2022-2023
December 31, 2022

Closing Thoughts

to a particular class of problems that didn’t exist when the theory was first proposed. The methods of

Lyapunov [339, 340] provide a great example for this. It is my general guess that most researchers would

prefer that their work become applicable earlier than 40 years after their deaths [341].

Contrast this with the Bode Lecture of Gunter Stein [151] for which the video went viral during his

career and for which the companion paper [1], once coaxed out of him, was awarded the IEEE Control

Systems Magazine Best Paper Award. Stein’s seminal talk did not reveal any new theory: it taught some

forgotten theory and tied it to real world examples of things that went wrong when one did not heed

the guidance that Bode’s Integral Theorem [158] afforded. Chapter 7 and the PES Pareto methodology

would not exist, but for that talk. Of course, these are anecdotes, but Stein’s work – by explaining how

to apply a particular theory to guide real world designs – had tremendous impact on the field during his

career. There are many problems in the world for which a fundamental and intuitive understanding of

system theory provides tremendous guidance, but it is up to us to tie this guidance to real problems, up

to us to show people who don’t know all the theorems how they can be useful. To have such an impact,

real control design methodologies cannot be separated from implementation details.

In practice, the controller has often been the last step in the design. This can be for a variety of

reasons, but none of them mitigate the damage that such an approach can have. Often the project

leaders are from different fields and they once “did control.” While not to be trivialized, a few questions

usually reveal that they wrapped a PI loop around a simple system and got it to work (usually at

lower performance than we would think reasonable), and declared victory; that the performance limits

achievable via feedback control were whatever caused their system to ring. Unfortunately, until we can

discuss their simple solution with them using their nomenclature, we are not in any position to explain

to them that substantial improvements can be achieved with the given hardware and science through

some attention to system theory. Not having a discussion about how you can improve things because

you think that PID control is too basic for your level of expertise is a really foolish reason to be excluded

from the conversation.

However, if you’ve gotten anything from this tome or the workshop it accompanies, you know that when

we push for more performance we end up pushing bandwidths, which means pushing actuators, sensors,

and timing. To do this without understanding the limits of our models gets us into trouble. To do this

when our design space has been already limited by scientists and MBAs is a flawed methodology that

we have been reluctant to fight.

To be truly successful, control design needs to be part of the initial design concept. It is at this stage that

slight changes in the mechanical or chemical process design, or of the product instrumentation (where

the sensors and actuators are placed and how many of them they are) can dramatically affect what can

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
691

Winter 2022-2023
December 31, 2022

Closing Thoughts

be achieved through the use of control and system theory. We often evaluate the controllability and

observability of our state-space models, but this is designing in controllability and observability as the

Wright Brothers and the Apollo Program did. Designing these in gives us more than a mathematical

assurance that we can somehow get from here to there (and know where we are along the way); it gives

us a way to make it a lot easier to get from here to there and a lot easier to check our path.

To do that, to have a seat at that product definition and initial design table, we cannot just do math.

We need to understand the entire loop (at least a little bit of all the aspects). It is certain that someone

will have overall responsibility for the entire design and we cannot know everything, but we need to be

curious about and become conversant in most of the aspects of the system. We need to be dilettantes

in the other areas of the design, so we can have the experts add the tweaks that make the control design

space far more manageable. The buzzword for this is co-design, but we need to think more plainly and

understand that this is just good engineering.

Stepping up to this does not come instantly and it does not come without work to understand other

fields we might not have studied since college. Still, it can save a lot of heartache from and performance

for a project. A few examples are presented here simply to illustrate the concept.

A lot of what I have discussed in this tome has its origins in trying to solve control problems related

to high speed Atomic Force Microscopy on the Agilent Labs AFM Project. To be certain, many of the

developments and examples in earlier chapters stem from this project and yet some of the most important

results affecting the achievable control performance were not controls related.

At some point in the Agilent AFM project, I started breaking out of my “role.” I found out that they

ADCs and DACs chosen had huge amounts of pipeline delay, simply because the master circuit designer

didn’t know that delay was a consideration. Had he known, he could have adjusted the design in a

straightforward way. I found out that the analog filtering being done (including anti-alias) made this

problem an order of magnitude worse. (We were able to tweak this, although not without giving up on

some potential aliasing.) No amount of algorithm redesign was going to take away the fact that my

phase margin (and therefore effective bandwidth) had been knocked down by a factor of 10-20.

The lesson I learned from this – and which I still kick myself from not seeing earlier is that we need to

understand enough of the circuits to help drive the choice of input and output systems. We need to

understand enough of the mechanics to shift the resonances to places where they can be more effectively

damped. We need to understand enough of the chemistry or biology to know which processes can

moderate (i.e. act as actuators) the overall system.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
692

Winter 2022-2023
December 31, 2022

Closing Thoughts

To have a seat at this table, be a dilettante in areas outside of control, and be an ambassador for our

field. As Trevor Noah pointed out in his autobiography, Born a Crime, p. 236, [342]:

Nelson Mandela once said, “If you talk to a man in a language he understands, that goes

to his head. If you talk to him in his language, that goes to his heart.” He was so right.

When you make the effort to speak someone else’s language, even if it’s just basic phrases

here and there, you are saying to them, “I understand that you have a culture and identity

that exists beyond me. I see you as a human being.”

When we try to learn about the fields of our co-workers, when we try to speak their language, most (but

not all) will appreciate it enough to start listening to us in ours. People who travel around the world

know this to be true. We need to apply the same idea to our work.

Understand the computing, know how to write code, but also know when you need to push the professional

software types to do something they don’t understand. You cannot do this if the only code you write

will never get close to the implementation (at least when you want to push performance). There are

lots of environments to allow us to forget the implementation. MATLAB has code generation and real-

time blocks in Simulink . Xilinx and Altera (Intel) providing libraries to let AI Python jocks get their

designs into FPGAs without ever understanding one bit of the hardware. For many, many problems, this

is enough. When it fails because of some performance/size/memory/speed limit, you have

no prayer of fixing it unless you know something about what it’s been doing. That’s just

engineering.

I prototype and debug my algorithms in MATLAB . That accelerates the proving out and debugging of

algorithms by a factor of ten or more in my estimation. I am also the one to rewrite them in C/C++/C#

(the collection of which I refer to as C*). I share the C* data back into Matlab and do side by side

comparisons. This helps me debug the C* implementation. When they both produce the same results,

I have a pretty good confidence that the code is right. That being said, I have learned something

unexpected from this:

• For the first chunk of time, my MATLAB implementation is debugging my C* implementation.

• But eventually, my C* implementation always finds bugs in the MATLAB implementation.

• More importantly, I have code “cred” (credibility) with the professional software engineers, so I get

to drive what they do and I get more of their help. (Channel Nelson Mandela and Trevor Noah.)

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
693

Winter 2022-2023
December 31, 2022

Closing Thoughts

Some of my co-workers have suggested that I could spend more time writing algorithms if I left the

end programming to a pure software type, but I have resisted that. The control engineer, the algorithm

person knows what they need the software to do, not just for a set of numbers, but from a fundamental

insight of what the behavior should be. Cut that tie to the actual implementation and the control

engineer has had their direct measurement taken away, which weakens their ability to correct their code

with measurement based feedback. Put another way, I know what the code is supposed to do but I also

need to fix my algorithm with a direct understanding of how it will function. Otherwise, I do not have

direct feedback to fix my algorithms.

When I suggest an anti-alias op-amp circuit to the analog designers on my team, they will instantly

be amused by the crude simplicity of the circuit, but all the pieces I left out that are needed to make

it practical. They will also see what I am trying to get at and suggest another design that should do

the same thing and a design conversation ensues between what the loop designer wants and the circuit

designer knows they can reasonably provide. I’ve spoken to them in their language and now I can give

them the design constraints and objectives in mine. Sure, I feel stupid for my simplistic circuit diagram.

It will pass.

At the same time, understand enough of the system to know when the problem has nothing

to do with software or control laws In my undergraduate days, I was part of the Co-Op Program

at Clemson, spending four semesters working at Milliken & Company, a textile manufacturer based out

of Spartanbrg, SC. During that time span, one of the software developers in our area left to join a

company making textile machinery. I occasionally caught up with him and found out about how he had

a rough first year trying to get the embedded platform to work on this particular machine. On one of

my semesters back at Clemson, I found out that one of my Electrical Engineering professors was also

consulting for that same company. Upon finding out that I knew this software engineer, this generally

reserved and under appreciated professor launched into a rant about the issues at that company and how

the problem with the software was that it wasn’t a software problem. Apparently, the vibrations of the

machine caused the socketed chips on the embedded systems board to wiggle loose, causing intermittent

connection problems. There were also issues with moisture getting onto the circuit boards, but as these

were outside the expertise of the software designer, he ignored them, and had a very tough time. As a

rule, it’s hard to fix fundamental hardware problems by writing code and it’s hard to debug code on a

chip that isn’t always connected to the motherboard.

Never be afraid to be a real engineer. Feeling stupid will pass. Missing a good design will stay with you

for years. Co-design is the right term. Control/system engineers are the ones best equipped to guide

this.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
694

Winter 2022-2023
December 31, 2022

Closing Thoughts

• We look at the whole loop. Few disciplines are built upon that.

• We are in a position to be dilettantes about the design of other blocks in the loop.

• Computer Science, for all its benefits, doesn’t have a concept of physics or timing.

• Most of the sciences don’t have the structural discipline of engineering built in.

• Control spans a lot of different implementation fields. It’s your entry pass to being able to ask

questions of the experts in those fields.

Understand the business opportunity/tradeoffs and marketing. Georges Clemenceau said “War is too

serious a matter to entrust to military men,” [316] although the variant of, “War is too important to

be left to the generals,” is more famous, perhaps because of its use in the movie, Dr. Strangelove

[294]. For our purposes, the translation would be that marketing is too important to leave solely in

the hands of marketing people. This is not a disparagement of marketing: good marketing involves

predicting what future products will meet the previously unknown needs of customers. This is hard;

probably a lot harder than good engineering because it is predicting the behavior of humans which have

a tendency to be nonlinear and time-varying. Deep respect is due to anyone who can repeatedly execute

good marketing. The issue is that to someone who has not learned anything about business models or

marketing, the difference between good marketing and bad marketing (the latter one requiring very little

work) is virtually unobservable during the crucial first few years of a product’s development. Shrewd

bad marketers will push unreasonable market demands on the technical team, often gaining a promotion

before anyone has been able to see that what they were asking for was not feasible with the physics of

the next ten years.

Again, I realized this late in the game on the AFM project. We had a marketing lead that insisted on a

certain size of the image, with a particular scan speed and resolution. No one piece of it was unreasonable

as one could find examples of each of these pieces being done in research laboratories around the world.

This individual had a list of about 100 features that the market demanded, 90% of them being must

have, while most of the rest were strong wants. Any question of why a particular item was on the

list was met with a response of, “The market demands . . . ” After a few years of a fairly smart team

working very diligently to make the items on this list reality, I finally did some simple unit conversion

calculations (as in freshman chemistry). His “market demands” required circuit speeds that would not

be physically possible for another 20 years. I tried to tell the master circuit designer mentioned above

what the “market demanded” of his circuits, but his suggestion in response to me is not printable. I

then took the same back-of-the-envelope spreadsheet analysis and emailed it to the entire project team.

Within a week, the market did not seem to be demanding the physically impossible anymore. Go figure.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
695

Winter 2022-2023
December 31, 2022

Closing Thoughts

Anyone on the project could have done these simple calculations, and yet none of us had. We took what

the marketing person told us at face value, never questioning whether we should check for perpetual

motion machines on their list of must-haves. Some of these checks are like the so called “idiot lights” on

the car dashboard. One doesn’t need an MBA to know that we cannot put a $200 FPGA into a device

that sells for $50 (sad, but true). The consequences of not doing such simple checks often lead us to

algorithms that cannot run on the hardware available. The consequences of doing development without

envisioning more available computation are that one needlessly restricts the design space when another

one might open up in a year. There is no perfect prediction, no perfect answer, but we as engineers

should be as comfortable and competent as any with understanding the limits of our predictions and

making engineering tradeoffs.

Willie Mays was a legendary American baseball player from the late 1940s to the early 1970s. He was

unique among superstar players of that time, being known for both his hitting and fielding prowess. It

was once said of a long ball hit by Mays, “The only man who could have caught that ball just hit it.”

To have those Willie Mays moments, we have to be willing to play in all aspects of the game.

11.3 “Rommel . . . I Read Your Book!”

In the 1970 movie, Patton [343], in which actor George C. Scott would win the Academy Award for Best

Actor for his portrayal of American General George S. Patton, there is an initial battle between Rommel’s

and Patton’s troops. As the battle is clearly turning in favor of the Americans, Patton says to himself,

“Rommel, you magnificent bastard, I read your book!” While a fictionalized account of what could have

happened [344], it’s a teachable moment that we can learn from.

When I introduce feedback systems to middle and high school students at STEM Student Workshops at

the American Control Conferences (ACCs) I often describe feedback in terms of things that we humans

do all the time: adjust the temperature of the water in shower, drive cars, ride bikes. Once they are

familiar with the behaviors I am pointing out, I tell them that we are simply trying to teach machines to

do the kinds of feedback we do all the time. As such, we do fall into one corner of machine intelligence

and machine learning (ML). That being said, anyone taking a broader look at all the hype surrounding

machine learning (ML) and artificial intelligence (AI) knows that we are far from the center of attention.

Like the unnamed scientist described in Section 11.2, much of the technical world thinks of feedback

control as something that they did once. Most of the non-technical world hardly knows that we exist,

until there is some disaster in the news related to a flawed feedback system (or a sensor failure in a

feedback system leading to a disaster in the news).

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
696

Winter 2022-2023
December 31, 2022

Closing Thoughts

When one visits Piazza San Marco (Stain Mark’s Square) in Venice, one can marvel at St. Mark’s

Clock Tower, where the automated bronze figures bang out the hours on the large bell, never giving

much thought to the fact that their banging would be meaningless without the feedback provided by the

escapement within the mechanism. Similarly, those automated highways, self-driving vehicles, easy-to-fly

quadcopters, delivery drones, domestic assistance robots, and virtual assistants all fail almost instantly

without pervasive understanding and application – both at the top level and down in individual devices

– of the fundamentals of feedback.

Part of this is the “gap” between control theory and the practice of control, something that I have tried

to bridge in my career and somewhat in this book. Since the 1960s, the “gap” between theory and

practice has been bemoaned by those of us in the controls research community, and yet in that time, the

control journals and conferences have become increasingly theoretical. The introduction of new journals

that are geared towards applications have not stemmed the tide of the papers in these journals being

almost exclusively written by academics.

A saying usually mis-attributed to Einstein [345], but useful nonetheless, is that, “The definition of

insanity is doing the same thing over and over again and expecting different results.” Even if Einstein

had said that (no evidence of that), we would have to weigh in his lack of belief in purely random

processes (“God does not play dice with the universe.”) and chaos theory. Still, on a macro scale,

and with general ideas of time-invariance over the measurement period, we can expect that the same

large-scale inputs will yield the same large-scale outputs. It should be no great surprise, then that after

60 years we are still having this discussion about the “gap.” I was a member of the IEEE CSS Member

Activities Board (MAB) during the 2000s, and I kept asking the other MAB members – all academics – a

single question: “Of your Ph.D. students who did not go into academia upon graduation, how many (by

number or percentage) were still doing control after five years?” The fact that none of them would ever

give me a direct answer – and they repeatedly shot down the idea of doing a survey of controls professors

– spoke volumes. This was almost two decades ago and the situation has not improved. As it currently

stands, one famous friend at a top engineering school cannot fill their advanced controls classes as all

the students are packing into the machine learning (ML) and artificial intelligence (AI) classes. Industry

research jobs at a project leadership level are lacking, while data scientists are in high demand. In a

world that increasingly needs physical and operational safety from ever increasing numbers of

autonomous measurements, agents, and robots how are we minor players? It is worth taking a

look at the emerging world:

• Autonomy is springing up in isolated/independent systems as well as in large proprietary systems.

• Judging from past industrial booms, there won’t be one unified system for many years. This

raises a serious question about how we make heterogeneous, distributed, autonomous systems

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
697

Winter 2022-2023
December 31, 2022

Closing Thoughts

interact gracefully together. Beyond the nice pictures in presentations, how do we get the low level

stuff to communicate and agree to play nice? (My experience with automating and connecting

measurements does not fill me with optimism.)

• This involves lots of networking and large efforts in fields generally viewed as Computer Science

and network provisioning, but where are the feedback principles?

• While it is true that many large projects include control folks, there is a general feeling that the

thought leaders picked to head these efforts are much more likely to be AI folks.

– AI (artificial intelligence) is now almost exclusively neural networks (NN).

– Most inference is forward propagation convolutional neural networks.

– These are the adaptive FIR filters of the AI world.

– They are applicable to many, many problems but they have no state or memory, and no

feedback.

– Being controls folks we know that they will hit a wall on certain problems: ones that require

feedback to operate with any effectiveness and safety.

• Projects depend on connectivity, network layers, understanding large scale distributed feedback,

understanding small scale, localized feedback, programming, civil engineering, and some machine

learning. Still, the algorithm leads, the so-called thought leaders, are more likely to be folks from

AI than what the controls community would call systems engineers.

• You can’t really ask an AI expert how feedback affects their models, or to quantify the effects of

time delay and how that affects the engineering requirements. You can’t ask them basic control

concepts such as how integral action features in the system or when it is necessary. (There is

integral action in almost all iterative learning.)

Now, those of us who are old enough can remember the over hyping of the first wave of AI, and the

second wave fueled by neural networks in the 1980s and 1990s, as well as the time when we were

supposed to have a “fuzzy future.” I myself have benefited from poking holes in the hype for some of

this [335], and while everything I wrote then applies today and I probably saved my company millions of

dollars for a dead end not chased, there is something that was missed along the way: that Moore’s law

would make the massive computational needs of neural network tuning less of an issue, that the small

and parallel computations enabled by FPGAs would make implementation of the inference engines for

neural networks practical, and that everybody taking pictures with their smart phones would give Apple,

Google, Amazon, FaceBook, and who knows who else tons of training data on which to pre-train many

layers of their networks. It would appear that AI in the form of neural networks has been enabled in a

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
698

Winter 2022-2023
December 31, 2022

Closing Thoughts

practical way, and because of the successes that are made possible with massive amounts of computation

and optimization (when fed with massive amounts of data), there have been some impressive successes,

particularly in visual problems for which the model based methods seemed to struggle. Again, we should

not decry problems that can be solved without the benefit of a fundamental understanding of feedback

principles, but we should be able to map their boundaries and limits, and explain to the general public

why those boundaries exist.

In problems where decent dynamic models are hard to generate, these methods give a chance for success.

That being said, as soon as they are being applied to dynamic systems with time constants that are

less than days and serious consequences for mis-tuning, we are right back at dynamic systems problems.

How do we manage this? How do we establish to the general public that knowledge of fundamental

feedback principles is critical to enabling this world of autonomous devices doing our bidding? We need

to be those dilettantes that delve into other fields, because while a typical control engineer will have

a background that allows them to understand the underlying science of the physical system and the

computational problems posed in making them work. Many AI scientists are skilled algorithm developers

and programmers, but there is a huge potential market for tools that take AI constructs into hardware

implementation automatically because those large groups have no inclination to learn about hardware.

The data scientist will have an impressive resume based on statistics, Bayesian and otherwise, but I have

yet to meet one that questions the functioning of the circuits and ADCs collecting the small data that

makes up their big data. Few of the individuals working with tuning algorithms for neural networks can

tell us how they would function in a real-time embedded system.

We know that these are issues, but we are unlikely to be able to make our case if we cannot communicate

the importance of fundamental control principles to not only these individuals, but the MBAs and

company founders that control the money. We are unlikely to convince this latter group if – when asked

to assist or consulting with their in-house control engineers – we are unable to translate what we know

into improved outcomes for these engineers. We should consider all of these interactions as auditions for

the roles we think we should play.

To take on the larger role, to put the system theory into these systems, we need to do like Patton and

“read their books.” It is well enough to dismiss the hype of fuzzy logic and fuzzy control [335], but

those engineers actually put feedback loops on rice cookers and washing machines and other consumer

products that the controls community ignored. They earned their exposure to the general public because

there were devices they enabled that made life better for the general public. We can chide the adaptive

filtering world for not needing to be concerned with stability in their adaptive FIR filters [24], but let’s

not forget how many devices and technologies that they have enabled. We know they can’t solve tough

feedback problems, but there are plenty of problems where the time constants are slow, or feedback isn’t

critical or the physical parameters don’t need to be known, where their approach has worked fabulously.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
699

Winter 2022-2023
December 31, 2022

Closing Thoughts

I remember a conversation with a DSP specialist at Xilinx, when I was complaining that they had

tremendous tools for synthesizing FIR filters but very few for IIR filters. His response was simply, “Dude,

you [control] guys are 5% of our business. Sorry.” Rather than feeling like losers, we need to appreciate

all the problems that have been addressed by those technologies. Like Patton, we need to read their

book. As Nelson Mandela said, we need to speak to them in their language. When we do this, when

we take this effort, my bet is that we will find plenty of places where feedback principles are critical.

Perhaps more importantly, we will know how to explain this to the ML and AI communities, as well as

the MBAs and the general public.

We must also be attuned to another issue often voiced in the media, that this world of machine learning

and artificial intelligence, of automation and robotics, will displace millions of jobs. There is no doubt of

this, and it can paint a dystopian picture of the future. However, the same arguments were made about

the invention of mechanization, in which steam shovels replaced individuals digging ditches by hand.

Even the American folk hero, John Henry, who beat the steam drill only to die thereafter [346], could

not stop the march of technology. Steam ships fueled by coal burners gave way to ships with internal

combustion engines running on bunk oil because the latter could be pumped and did not require strong

people shoveling fuel into an open fire box. Digging ditches went from being strong folks with shovels

to a device powered by a steam engine (the steam shovel) to the modern backhoe that any homeowner

can rent for the weekend.

Each of these technologies was seen as the destroyer of jobs in their day, but history teaches us that

as those jobs went away, new (and usually better) ones emerged. The democratization of technology,

moving from the few to the many, opens avenues for more humans to be more productive in new ways.

A generation ago, there were programs called Control-C and Matrix-X, based on the original FORTRAN

public domain version of Matlab. When System Control Technology, the company that created the

former, was bought out by British Petroleum, several of the engineers cashed in their stock and spent

a year rewriting the underlying code from FORTRAN to C. Those engineers were Jack Little, Steve

Bangert, and Cleve Moler. The product they created, PC-Matlab, brought high level control and signal

processing CAD to the average engineer’s desktop computer. Even the high end product, Pro-Matlab

(for workstations) had a unique feature in that the program scripts (m-files) and data (mat-files) could

be shared between the two. Those products democratized control and signal processing design for a

generation of engineers. What we are talking about here is another democratization of control and

system theory, not in a new design tool, but in making that fundamental understanding available to folks

from middle school to practicing engineers to the lay public. Today we just know it as MATLAB , and

almost all STEM students in college use it. It is so powerful and useful that even the public domain

imitation, Octave, is a tremendously useful teaching tool in and of itself.

Another everyday example of democratization of technology is the digital camera. Nobody took pictures

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
700

Winter 2022-2023
December 31, 2022

Closing Thoughts

of their dinners when the cameras used 35mm chemical process film, cost $10 per roll of 36 exposures

and another $10 and two weeks to get developed. It was the ubiquity of camera phones, of the free digital

film (memory), and of the instant access to easy to use applications that made everyone an amateur

food photographer.

Even the people most fearful of being replaced, the driver of delivery vehicles, trucks, buses, and even

airplanes, owe their current careers to a technology that was not available 130 years ago. The advent of

the internal combustion engine has created a lot of secondary problems of pollution and global warming,

but it replaced the much dirtier steam engine for large applications and made smaller vehicles practical.

The automobile which was practically unheard of at the turn of the twentieth century was a means

to individual liberation by the middle of that century, as explained so beautifully in Tom Wolfe’s Last

American Hero [347]:

To a great many good old boys a hot car was a symbol of heating up life itself. The

war! Money even for country boys! And the money bought cars. In California they suddenly

found kids of all sorts involved in vast drag-racing orgies and couldn’t figure out what was

going on. But in the South the mania for cars was even more intense, although much less

publicized. To millions of good old boys, and girls, the automobile represented not only

liberation from what was still pretty much a land-bound form of social organization but also

a great leap forward into twentieth-century glamor, an idea that was being dinned in on the

South like everywhere else. It got so that one of the typical rural sights, in addition to the

red rooster, the gray split-rail fence, the Edgeworth Tobacco sign and the rusted-out harrow,

one of the typical rural sights would be . . . you would be driving along the dirt roads and

there beside the house would be an automobile up on blocks or something, with a rope over

the tree for hoisting up the motor or some other heavy part, and a couple of good old boys

would be practically disappearing into its innards, from below and from above, draped over

the side under the hood. It got so that on Sundays there wouldn’t be a safe straight stretch

of road in the county, because so many wild country boys would be out racing or just raising

hell on the roads. A lot of other kids, who weren’t basically wild, would be driving like hell

every morning and every night, driving to jobs perhaps thirty or forty miles away, jobs that

were available only because of automobiles. In the morning they would be driving through

the dapple shadows like madmen.

These were not people with advanced education, but 50 years into its existence, the car had become

regular enough, understandable enough, so that individuals with an interest but little formal education

could be automobile mechanics. This technology liberated them from the land, allowing them access

jobs that had been out of reach a decade before. We should not fault those who worry that some

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
701

Winter 2022-2023
December 31, 2022

Closing Thoughts

“new technology” (in this case automation and AI) will replace their old “new technology.” We should

transition them and ourselves to the new jobs that these technologies will enable. In every step, whether

it is the steam engine, the automobile, or an advanced CAD tool that could run on underpowered personal

computers, the democratization of technology moves us all upstream, so long as we are willing to teach

more and more people how to use that technology.

The challenge with the new technologies are never truly about adoption or eventual benefit to society,

but about the responsibility to educate the public so that the jobs lost by some technological advance

are replaced by newer and better opportunities enabled by that advance. Those of us who create new

technologies have a social responsibility not just to make those technologies useful, but to make them

tools for greater democratization and greater economic freedom.

11.4 You Said You Were a Doctor of Philosophy

An understanding of industrial research is not something that happens instantaneously, but over years

of practice. My first job at HP Labs was to do MIMO control on an optical disk system. Having been

weaned on MATLAB throughout graduate school, I decided that I wanted to be able to dump MIMO

designs from MATLAB direction into my real time DSP system. It took 15 months of tool building to

make this work, so that I could start really doing my original job. At the time, it seemed as if this tool

building time might have been wasted, but it resulted in a sophisticated real time system that was I

used for research over the next seven years. The difficulty of having to implement a system to translate

my algorithmic work into something useful was a first insight into the differences between the academic

and industrial worlds. This insight was broadened when I was about seven years out of graduate school.

In about 1994, two events happened that led me to a much fuller understanding of the philosophical

differences between academic and industrial research.

During that year, I was doing research on the control of hard disk drives at Hewlett-Packard Labs. I got

a phone call from a Ph.D. student at an East Coast school. (If I ever find out who it was, I will apologize

for what happened next.) The graduate student told me they were finishing their Ph.D. on this and

that subject and then said, “I am very interested in working on optimal control.” Almost reflexively, the

words leaped out of my mouth, “Me, too, pal.”

While I feel bad that this might have sounded callous, the difference in points of view was right on. The

graduate student had a tool that they wanted to apply to do whatever amazing things the tool could do.

I, as an industrial researcher, had a tool bucket and a problem to solve. While it would have been nice to

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
702

Winter 2022-2023
December 31, 2022

Closing Thoughts

be able to concentrate on one particular tool, I have found that it is more important to understand how

to select the right tool to make headway on the physical problem. While successful academic researchers

often chase a particular algorithm, successful industrial researchers rarely have that luxury. The student

is stuck following Hanlon’s Razor, “When all you have is a hammer, every problem looks like a nail.”

The industrial guy is handed something that with high probability, bears no resemblance to a nail.

The second thing that happened is that some friends and I attended a martial arts seminar on Brazilian

Jiu Jitsu taught by Rickson Gracie. Those who know about mixed martial arts competition know him as

one of the all time greats in that sport. In person, he is physically imposing. And yet, techniques aside,

he made two philosophical statements about competition against an opponent [348]:

• “You can’t do what you want. You must do what they give you.”

• “The more you want to use this stuff for the real thing, the more you need your opponent’s reaction

to help you.”

Now, coming from such a physically imposing person, this made us all think, “Well if he has to react to

each situation, what do the rest of us have to do?” For me, though, I realized that those same thoughts

could be rewritten for industrial engineering research:

• You can’t do what you want. You must solve the problem they give you.

• The more you want to use this stuff (e.g. control theory) for the real thing, the more you need

your problem’s characteristics to help you.

Furthermore, it is important to look up from our algorithms and realize the truth in the words of Star

Trek’s Lt. Montgomery Scott (Scotty) “I can’t change the laws of physics![349]” This fundamental

realization that no algorithm can make the physics of the problem disappear, is key to making progress

on applying control to physical problems. Whenever anyone says, “You don’t need to understand the

problem; X will take care of it,” alarms should go off in the listener’s head. Hogwarts [350], The

Force [351], perpetual motion machines, warp speed [352], etc. are not in evidence on this planet. More

importantly, knowing when someone is relying on one of those is useful. Put in today’s terms, magical

thinking doesn’t end pandemics; listening to science and responsible scientists does.

So, what use are algorithms in real problems? Well, like a surfer on a big wave, good algorithms ride

the physics of the problem, rather than trying to change them. The problems determine the control

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
703

Winter 2022-2023
December 31, 2022

Closing Thoughts

algorithm. No one “hammer” can solve them all. However, the prepared engineer is most likely to find

the right tool, especially if they are agnostic in their selection. By taking this philosophy, they are more

likely to find the fracture points in a real problem: those hidden places where significant progress can be

made. One of the hardest lessons for a highly skilled controls person to learn and accept is that often,

the best solution to the servo problem often has nothing to do with control. Like Han Solo, we are not

looking for a mystical energy field, but applying our simple tricks and nonsense [10]1 . And like Pope

John Paul I, once we realize what algorithm can help with a particular problem, we always wish we had

studied it harder [353]2.

In the book and the movie, “A Bridge Too Far,” [8, 9] an American paratrooper group is on one side of

the bridge at Nijmegen. The general in command comes up to one of his colonels and asks him, “What’s

the best way to take a bridge?” The response, “Both ends at once.” That’s when the colonel finds out

he is leading his men across the river to assault the far end of the bridge.

The point of this workshop was not to teach control theory anew, but to show how we can make our

physical control systems (moving metal and sloshing goop) better by attacking the bridge from both

sides, looking at both the theory that helps explain most of what is going on and the practical limitations

that we must deal with in any real problems. I have started calling this group the Pareto Theory, that

20% of the theory that gets us 80% of the understanding of what is going on. Like a wrestler’s or

judoka’s three favorite moves, we keep coming back to these Pareto Theories to give us insight. Without

them we would be blind, but without trying to apply them to understanding physical problems we would

have 20-20 vision with no visual reference points. We need both.

Throughout this workshop, we have seen a lot of individual problems, loop components, side issues, etc.

that can limit how we design our control loops. We have analog designers making circuits, programmers

writing code, mechanical engineers designing structures, scientists wanting to make measurements, digital

designers wanting to work with logic. Although engineers like to tackle these problems in isolation, and

managers like having an individual who “owns” one aspect of the project, all of the above need to be

tackled from a systems point of view. The systems/control engineer need not be an expert in all areas,

but they are better off when they are conversant in all these areas.

Only someone with a systems view can balance the different design constraints. However, we cannot

do that simply by putting some equations on a white board (or worse in a PowerPoint presentation).

We have to be the craftspeople that get into the lab and measure things, that go and ask the scientists

about the process, that get advice from the professional programmers, that have our op-amp diagrams

1“There’s no mystical energy field that controls my destiny. It’s all a bunch of simple tricks and nonsense. – Han Solo
2“If someone had told me I would be Pope one day, I would have studied harder.” – Pope John Paul I

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
704

Winter 2022-2023
December 31, 2022

Closing Thoughts

laughed at by the circuits experts. If we want to call ourselves systems engineers, then we cannot be

afraid to walk around the entire system. And if we want someone to pay for it, be it a company or a

government funding agency, we had better be prepared to share this system view with people who are

smart but not trained in our field.

Perhaps one more theme can be expressed in the mantra I have been using for a few years now, Op-

timality sucks.3. Let me explain: Optimality, as we think of it, is based on a cost criterion applied

to a limited model of the system. This limited model is by definition always flawed when describing

the real world. The net effect of pushing for optimality then is often to cause the design to fail when

applied to anything real. On the other hand, knowing optimal conditions for a model, and knowing

how closely that model describes reality allows us to get excellent control. This is why on real physical

systems, optimality conditions are, as Captain Barbossa would say, “more of what you’d call ‘guidelines’

than actual rules.”[354] Thus, the above mantra, Version 2.0, would read Optimality sucks – but

excellence rocks4. Still, as Bill and Ted might say [355], “Being excellent is not bad.”

If there is anything that I have learned on this journey it is that lack of analysis and optimality doesn’t stop

most people from working on “control systems.” In fact, the explosion of cheap sensors and actuators,

as well as inexpensive computation platforms such as the Raspberry Pi and the MicroZed mean that we

have witnessed only the tip of the iceberg. Guidance from the control community would be welcomed,

but it has to be in clear, physically intuitive terms which are extensions of what they are doing now, not

wholesale replacement.

I have never been a fan of the KISS (Keep It Simple, Stupid) acronym because it implied the inability

to do complex things, either from the speaker or the listener. It also implies that one or both lack

intelligence. However, it is my belief that we often make complex things overly intimidating and even

the brightest of us are keenly aware of the number of times we have done boneheaded things. Hence, I

would like to propose the KICK acronym, which stands for Keep It Clear, Knucklehead. We

need to keep our explanations clear and physical, as the folks listening are our customers. And we need

to make sure that the advanced methods provide at least as much bang for the computational buck as

the simple methods.

We must also internalize the fact thatmethods that kept working in practice did so for one or more

fundamental reasons. The advanced control background that caused me to look for those underlying

factors revealed a lot that, in retrospect, seems quite intuitive. Furthermore, if there is one absolute

take away from this work, it is that putting in the work up front to make high fidelity measurements

3©that.
4©that, too.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
705

Winter 2022-2023
December 31, 2022

Closing Thoughts

something that is repeatable and easy, whether in the design stage or in the operation of the system,

pays dividends far beyond many of our most sophisticated optimization methods. A long time ago, Gene

Franklin quipped to me, “Well, you can only control as well as you can measure.” Likewise, you can only

model what you can accurately measure.

There are tremendous benefits of model-based methods. They promise a close tie to the physical

dynamic equations, something that has been restored with the connection between analog and digital

BSS models. They appeared to give a systematic way to handle MIMO systems. It seems, though that

the intuition preserving approach may yield benefits there. Measuring a 2× 2 mechatronic system still

requires input-output FRFs of the four SISO systems and only after those individual systems have been

curve fit, can one really talk about combining them into a more compact model. In such systems, how

close do dynamics have to be to be considered common? By what metric will these be evaluated? If the

BSS preserves the model precision of a SISO system, how do we choose between close biquad pairs to

reduce the model of our MIMO system? These seem like worthwhile directions to pursue. The goal is

not to ignore model-based or optimization methods, but to provide a rapprochement between them and

the physical intuition of classical methods. The goal is not to ignore practicing engineers and hobbyists

for dealing with a too trivial set of mathematics, but to have a set of tools that starts with their intuitive

understanding and can be iteratively improved to take care of more and more dynamic features. We

might call this approach Optimization Inspired Classical Control.

American football coaching legend Lou Holtz was once asked if the small town he was working in was

the end of the world. His response was, “No, but you can see it from here.” Are we at the point where

a few button pushes lead to measurement based, mathematically excellent designs? No, but we can see

it from here.

I have been fond of quoting Han Solo’s “There’s no mystical energy field that controls my destiny. It’s

all a lot of simple tricks and nonsense.”[10] When one is down in the weeds trying to make individual

pieces of a complex design work, it may seem like a bunch of simple tricks, nonsense, and sweat. That

may be, but if we have some guiding intuition and understanding, if our design is tied closely to our

physical system, then when we take a step back, all those simple tricks and nonsense tend to look like a

mystical energy field. Sure, we can’t defeat the laws of physics, but we can read the fine print.

Surf’s up.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
706

Winter 2022-2023
December 31, 2022

Bibliography

[1] G. Stein, “Respect the unstable,” IEEE Control Systems Magazine, vol. 23, no. 4, pp. 12–25,

August 2003.

[2] D. Y. Abramovitch, “A tutorial on PES Pareto methods for analysis of noise propagation in feed-

back loops,” in Proceedings of the 2020 IEEE Conference on Control Technology and Applications,

IEEE. Montreal, Canada: IEEE, August 2020.

[3] ——, “The discrete time biquad state space structure: Low latency with high numerical fidelity,”

in Proceedings of the 2015 American Control Conference, AACC. Chicago, IL: IEEE, July 2015,

pp. 2813–2818.

[4] ——, “The continuous time biquad state space structure,” in Proceedings of the 2015 American

Control Conference, AACC. Chicago, IL: IEEE, July 2015, pp. 4168–4173.

[5] ——, “Adding rigid body modes and low-pass filters to the biquad state space and multinotch,”

in Proceedings of the 2018 American Control Conference, AACC. Milwaukee, WI: IEEE, June

2018, pp. 6024–6030.

[6] J. Burke, Day the Universe Changed. Little Brown & Co, 1986, iSBN: 978-0316116954.

[7] S. Hawking, A Brief History of Time. New York, NY: Bantam Dell Publishing Group, 1988, iSBN:

978-0-553-10953-5.

[8] C. Ryan, A Bridge Too Far. Simon & Schuster, 1966.

[9] W. Goldman, A Bridge Too Far. MGM, 1977.

[10] H. Solo, “Musings on mystical energy fields,” in Star Wars, Episode IV, G. Lucas, Ed., Lucasfilm.

A galaxy far away from here: 20th Century Fox, 1977.

707

Bibliography

[11] D. Y. Abramovitch, “Measurements for the design of control systems: Step and frequency response

methods,” in Presented at Applications Friday during the 2016 American Control Conference,

Boston, MA, July 2016.

[12] D. Y. Abramovitch and S. B. Andersson, “Understanding and tuning PID controllers,” in Presented

at Applications Friday during the 2016 American Control Conference, Boston, MA, July 2016.

[13] K. Ogata, Modern Control Engineering, 3rd ed., ser. Prentice-Hall Instrumentation and Controls

Series. Englewood Cliffs, New Jersey: Prentice-Hall, 1970.

[14] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, 5th ed.

Upper Saddle River, New Jersey: Prentice Hall, 2006.

[15] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, 3rd ed.

Menlo Park, California: Addison Wesley Longman, 1998.

[16] K. J. ström and B. Wittenmark, Computer Controlled Systems, Theory and Design, 2nd ed.

Englewood Cliffs, N.J. 07632: Prentice Hall, 1990.

[17] D. Abramovitch, “Thoughts on furthering the control education of practicing engineers,” The IEEE

Control Systems Magazine, vol. 43, no. 1, February 2023.

[18] D. A. Mindell, Digital Apollo: Human and Machine in Spaceflight. Cambridge, MA: The MIT

Press, September 30 2011.

[19] D. Y. Abramovitch, “Trying to keep it real: 25 years of trying to get the stuff I learned in grad

school to work on mechatronic systems,” in Proceedings of the 2015 Multi-Conference on Systems

and Control, IEEE. Sydney, Australia: IEEE, September 2015, pp. 223–250.

[20] B. W. Bequette, Process Control: Modeling, Design, and Simulation. Prentice Hall, 2006.

[21] MathWorks. (2016) Temperature control in a heat exchanger. [Online; accessed

June 21, 2016]. [Online]. Available: http://www.mathworks.com/help/control/examples/

temperature-control-in-a-heat-exchanger.html

[22] S. Padhee, “Controller design for temperature control of heat exchanger system: Simulation stud-

ies,” WSEAS Transactions on Systems and Control, vol. 9, pp. 485–491, 2014.

[23] D. Y. Abramovitch, “Using feedback control principles as guiding metaphors for business pro-

cesses,” in Proceedings of the 2022 American Control Conference, AACC. Atlanta, GA: IEEE,

June 2022, pp. 3088–3093.

[24] B. Widrow and S. D. Stearns, Adaptive Signal Processing. Englewood Cliffs, New Jersey: Prentice-

Hall, 1985.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
708

Winter 2022-2023
December 31, 2022

http://www.mathworks.com/help/control/examples/temperature-control-in-a-heat-exchanger.html
http://www.mathworks.com/help/control/examples/temperature-control-in-a-heat-exchanger.html

Bibliography

[25] D. J. Hand, Dark Data: Why What You Don’t Know Matters: Illustrated Edition. Princeton

University Press, February 18 2020, iSBN-10: 069118237X ISBN-13: 978-0691182377.

[26] R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. New York: McGraw-Hill,

1978.

[27] D. Y. Abramovitch, S. B. Andersson, L. Y. Pao, and G. Schitter, “A tutorial on the mechanisms,

dynamics, and control of atomic force microscopes,” in Proceedings of the 2007 American Control

Conference, AACC. New York, NY: IEEE, July 11–13 2007, pp. 3488–3502.

[28] D. E. Seborg, T. F. Edgar, D. A. Mellichamp, and F. J. Doyle, Process Dynamics and Control,

4th ed. Wiley, 2016.

[29] J. B. Rawlings, “Tutorial overview of model predictive control,” IEEE Control Systems Magazine,

vol. 20, no. 3, pp. 38–52, June 2000.

[30] D. Y. Abramovitch, “Phase-locked loops: A control centric tutorial,” in Proceedings of the 2002

American Control Conference, AACC. Anchorage, AK: IEEE, May 2002.

[31] ——, “A tale of three actuators: How mechanics, business models and position sensing affect

different mechatronic servo problems,” in Proceedings of the 2009 American Control Conference,

AACC. St. Louis, MO: IEEE, June 10-12 2009, pp. 3357–3371.

[32] S. Tzu, The Art of War: Translated and with an Introduction by Samuel B. Griffith. London,

Oxford, New York: Oxford University Press, 1971, iSBN 0-19-501476-6.

[33] D. Y. Abramovitch, “The Multinotch, Part II: Extra precision via ∆ coefficients,” in Proceedings

of the 2015 American Control Conference, AACC. Chicago, IL: IEEE, July 2015, pp. 4137–4142.

[34] D. Abramovitch, T. Hurst, and D. Henze, “An overview of the PES Pareto Method for decomposing

baseline noise sources in hard disk position error signals,” IEEE Transactions on Magnetics, vol. 34,

no. 1, pp. 17–23, January 1998.

[35] ——, “The PES Pareto Method: Uncovering the strata of position error signals in disk drives,”

in Proceedings of the 1997 American Control Conference, AACC. Albuquerque, NM: IEEE, June

1997, pp. 2888–2895.

[36] T. Hurst, D. Abramovitch, and D. Henze, “Measurements for the PES Pareto Method of identifying

contributors to disk drive servo system errors,” in Proceedings of the 1997 American Control

Conference, AACC. Albuquerque, NM: IEEE, June 1997, pp. 2896–2900.

[37] D. Abramovitch, T. Hurst, and D. Henze, “Decomposition of baseline noise sources in hard disk

position error signals using the PES Pareto Method,” in Proceedings of the 1997 American Control

Conference, AACC. Albuquerque, NM: IEEE, June 1997, pp. 2901–2905.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
709

Winter 2022-2023
December 31, 2022

Bibliography

[38] B. Widrow, “A study of rough amplitude quantization by means of Nyquist sampling theory,” IRE

Transactions on Circuit Theory, vol. 3, pp. 266–276, 1956.

[39] Wikipedia. (2018) Winston Churchill. [Online; accessed March 28, 2018]. [Online]. Available:

https://en.wikipedia.org/wiki/Winston Churchill#%22We shall never surrender%22

[40] D. Y. Abramovitch, “A unified framework for analog and digital PID controllers,” in Proceedings of

the 2015 Multi-Conference on Systems and Control, IEEE. Sydney, Australia: IEEE, September

2015, pp. 1492–1497.

[41] L. Carroll, Alice’s Adventures in Wonderland. Macmillan, 1898.

[42] Wikipedia. (2022) Moore’s law. [On line; accessed September 21, 2022]. [Online]. Available:

https://en.wikipedia.org/wiki/Moore’s law

[43] B. Widrow, K. M. Duvall, R. P. Gooch, and W. C. Newman, “Signal cancellation phenomena in

adaptive antennas: Causes and cures,” IEEE Trans. on AP, vol. 30, pp. 469–478, 1982.

[44] L. Ljung and T. Glad, Modeling of Dynamic Systems. Upper Saddle River, NJ: Prentice Hall,

1994.

[45] L. Ljung, System Identification: Theory for the User, ser. Prentice-Hall Information and System

Sciences Series. Englewood Cliffs, New Jersey 07632: Prentice-Hall, 1987.

[46] L. Ljung and T. Söderström, Theory and Practice of Recursive Identification, ser. MIT Press Series

in Signal Processing, Optimization, and Control. Cambridge, MA 02142: MIT Press, 1983.

[47] G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and Control, ser. Information and

Systems Science Series. Englewood Cliffs, N.J. 07632: Prentice-Hall, 1984.

[48] K. J. ström, “Theory and applications of adaptive control – a survey,” Automatica, vol. 9, pp.

471–486, 1983, this paper is an expanded and updated version of a plenary lecture given at the

8th IFAC Congress in Kyoto 1981.

[49] L. Ljung, System Identification Toolbox for Use with Matlab, The MathWorks, Inc., 24 Prime Park

Way, Natick, MA 01760, May 1995, 3rd Printing.

[50] EDN. (2014, November 6) S-parameters basics. [On line; accessed December 3, 2022]. [Online].

Available: https://www.edn.com/s-parameters-basics/

[51] J. R. Ragazzini and G. F. Franklin, Sampled-Data Control Systems. New York, N. Y.: McGraw-Hill

Book Company, 1958.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
710

Winter 2022-2023
December 31, 2022

https://en.wikipedia.org/wiki/Winston_Churchill#%22We_shall_never_surrender%22
https://en.wikipedia.org/wiki/Moore's_law
https://www.edn.com/s-parameters-basics/

Bibliography

[52] G. F. Franklin and J. D. Powell, Digital Control of Dynamic Systems, 1st ed. Menlo Park,

California: Addison-Wesley, 1980.

[53] R. C. Blackham, J. A. Vasil, E. S. Atkinson, and R. W. Potter, “Measurement modes and digital

demodulation for a low-frequency analyzer,” Hewlett-Packard Journal, vol. 38, no. 1, pp. 17–25,

January 1987.

[54] D. Y. Abramovitch, “The Multinotch, Part I: A low latency, high numerical fidelity filter for

mechatronic control systems,” in Proceedings of the 2015 American Control Conference, AACC.

Chicago, IL: IEEE, July 2015, pp. 2161–2166.

[55] B. Wdrow, J. John R. Glover, J. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler,

J. Eugene Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,”

Proceedings of the IEEE, vol. 63, no. 12, pp. 1692–1716, December 1975.

[56] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, 3rd ed.

Menlo Park, California: Addison-Wesley, 1994.

[57] K. Ogata, Modern Control Engineering, 4th ed., ser. Prentice-Hall Instrumentation and Controls

Series. Englewood Cliffs, New Jersey: Prentice-Hall, 2001.

[58] R. A. Witte, Electronic Test Instruments: Theory and Applications. Englewood Cliffs, NJ:

Prentice-Hall, Inc., 1993.

[59] M. S. Holcomb, S. O. Hall, W. S. Tustin, P. J. Burkart, and S. D. Roach, “Design of a mixed-signal

oscilloscope,” Hewlett-Packard Journal, pp. 13–22, April 1997.

[60] E. Upton and G. H. and, Raspberry Pi User Guide, 3rd ed. John Wiley & Sons, 2014.

[61] L. H. Crockett, R. A. Elliot, M. A. Enderwitz, and R. W. Stewart, The Zynq Book: Embedded

Processing with the Arm Cortex-A9 on the Xilinx Zynq-7000 All Programmable Soc. Strathclyde

Academic Media, 2014.

[62] F. Wang, D. Abramovitch, and G. Franklin, “A method for verifying measurements and models of

linear and nonlinear systems,” in Proceedings of the 1993 American Control Conference, AACC.

San Francisco, CA: IEEE, June 1993, pp. 93–97.

[63] D. Abramovitch, F. Wang, and G. Franklin, “Disk drive pivot nonlinearity modeling Part I: Fre-

quency Domain,” in Proceedings of the 1994 American Control Conference, AACC. Baltimore,

MD: IEEE, June 1994, pp. 2600–2603.

[64] E. Levy, “Complex-curve fitting,” IRE Transactions on Automatic Control, vol. AC-4, pp. 37–43,

1959.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
711

Winter 2022-2023
December 31, 2022

Bibliography

[65] J. L. Adcock, “Curve fitter for pole-zero analysis,” Hewlett-Packard Journal, vol. 38, no. 1, pp.

33–37, January 1987.

[66] M. D. Sidman, F. E. DeAngelis, and G. C. Verghese, “Parametric system identification on loga-

rithmic frequency response data,” IEEE Transactions on Automatic Control, vol. 36, no. 9, pp.

1065–1070, September 1991.

[67] R. L. Dailey and M. S. Lukich, “MIMO transfer function curve fitting using Chebyshev polynomi-

als,” October 1987, presented at the SIAM 35th Anniversary Meeting, Denver, CO.

[68] J. S. Epstein, G. R. Engel, D. R. Hiller, J. Glen L. Purdy, B. C. Hoog, and E. J. Wicklund,

“Hardware design for a dynamic signal analyzer,” Hewlett-Packard Journal, vol. 35, no. 12, pp.

12–17, December 1984.

[69] Control System Development Using Dynamic Signal Analyzers: Application Note 243-2, Hewlett-

Packard, 1984.

[70] HP 3563A Control Systems Analyzer, Hewlett-Packard, 1990.

[71] Multichannel Analysis System Type 3550, Brüel & Kjær, 1984.

[72] The Fundamentals of Signal Analysis: Application Note 243, Hewlett-Packard, 1994.

[73] J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures, 3rd ed.,

ser. Wiley Series on Probability and Statistics. New York, NY: John Wiley & Sons, 2000.

[74] ——, Engineering Applications of Correlation and Spectral Analysis, 2nd ed. New York, NY:

John Wiley & Sons, 1993.

[75] ——, Random Data: Analysis and Measurement Procedures, 2nd ed. New York, NY: John Wiley

& Sons, 1986.

[76] D. Abramovitch, “The Banshee Multivariable Workstation: A tool for disk drive servo research,”

in Proceedings of the ASME Winter Annual Meeting, ASME. Anaheim, CA: ASME, November

1992.

[77] D. Y. Abramovitch and C. P. Taussig, “Determination of open loop responses from closed loop

measurements,” Hewlett-Packard, Palo Alto, CA USA, United States Patent 5,446,648, August

29 1995.

[78] R. N. Bracewell, The Fourier Transform and Its Applications, 1st ed. New York: McGraw-Hill,

1965.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
712

Winter 2022-2023
December 31, 2022

Bibliography

[79] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing. Englewood Cliffs, N. J.: Prentice

Hall, 1970.

[80] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The

Art of Scientific Computing. Cambridge: Cambridge University Press, 1988.

[81] R. A. Witte, Spectrum and Network Measurements. Englewood Cliffs, NJ: Prentice-Hall, Inc.,

1993.

[82] H. W. McKinney, “Band-selectable fourier analysis,” Hewlett-Packard Journal, vol. 64, pp. 20–24,

April 1975.

[83] N. Thrane, “ZOOM-FFT,” Brüel & Kjær Technical Review, no. 2, pp. 3–43, 1980.

[84] Wikipedia. (2012) Lock-in amplifier. [Online; accessed December 30, 2014]. [Online]. Available:

http://en.wikipedia.org/wiki/Lock-in amplifier

[85] D. Y. Abramovitch, “Low latency demodulation for atomic force microscopes, Part I: Efficient

real-time integration,” in Proceedings of the 2011 American Control Conference, AACC. San

Francisco, CA: IEEE, June 29–July 1 2011.

[86] ——, “Low latency demodulation for atomic force microscopes, Part II: Efficient calculation of

magnitude and phase,” in Proceedings of the IFAC 18th World Congress, IFAC. Milan, Italy:

IFAC, August 28–September 2 2011.

[87] ——, “Built-in stepped-sine measurements for digital control systems,” in Proceedings of the 2015

Multi-Conference on Systems and Control, IEEE. Sydney, Australia: IEEE, September 2015, pp.

145–150.

[88] 7 Series DSP48E1 Slice Users Guide, Ug479 (v1.6) ed., Xilinx, August 7 2013.

[89] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier

series,” Math. Comput., vol. 19, no. 2, pp. 297–301, April 1965, reprinted in Digital Signal Pro-

cessing, ed. L. R. Rabiner and C. M. Rader, pp. 223-227, New York: IEEE Press, 1972.

[90] R. Pintelon and J. Schoukens, System Identification: A Frequency Domain Approach, 1st ed.

Piscataway, NJ: IEEE Press, 2001.

[91] T. Oomen, R. van Herpen, S. Quist, M. van de Wal, O. Bosgra, and M. Steinbuch, “Connecting

system identification and robust control for next-generation motion control of a wafer stage,” IEEE

Control Systems Magazine, vol. 22, no. 1, pp. 102–118, January 2014.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
713

Winter 2022-2023
December 31, 2022

http://en.wikipedia.org/wiki/Lock-in_amplifier

Bibliography

[92] J. B. Hoagg, S. L. Lacy, V. Babus̈ka, and D. S. Bernstein, “Sequential multisine excitation sig-

nals for system identification of large space structures,” in Proceedings of the American Control

Conference, AACC. Minneapolis, MN: IEEE, June 2006.

[93] J. Schoukens, R. M. Pintelon, and Y. J. Rolain, “Broadband versus stepped sine FRF measure-

ments,” IEEE Transactions on Instrumentation and Measurement, vol. 49, no. 2, pp. 275–278,

April 2000.

[94] Wikipedia. (2016) IEEE-488. [Online; accessed June 26, 2016]. [Online]. Available: https://en.

wikipedia.org/wiki/IEEE-488

[95] N. Instruments. (2012, August 14) History of GPIB. [Online; accessed June 26, 2016]. [Online].

Available: http://www.ni.com/white-paper/3419/en/

[96] LabView Internet Toolkit Home Page, National Instruments,

http://www.natinst.com/labview/internet/, main starting page for information on the Lab-

View software package Internet Developers Toolkit for adding web based functionality to LabView

virtual instruments.

[97] Wikipedia. (2016) Standard Commands for Programmable Instruments. [Online; accessed

June 26, 2016]. [Online]. Available: https://en.wikipedia.org/wiki/Standard Commands for

Programmable Instruments

[98] M. Borrello, “Measurements for the design of control systems: Dynamic signal analyzers: The

forgotten tool of control systems engineering,” in Presented at Applications Friday during the

2016 American Control Conference, Boston, MA, July 2016.

[99] Wikipedia. (2016) Cuneiform script. [Online; accessed June 26, 2016]. [Online]. Available:

https://en.wikipedia.org/wiki/Cuneiform script

[100] nPoint. (2015) Multi-axis stages. [Online; accessed February 5, 2015]. [Online]. Available: http://

www.npoint.com/multi-axis-stages

[101] R. Bracewell, The Fourier Transform and Its Applications, 3rd ed., ser. McGraw-Hill Series in

Electrical and Computer Engineering. Circuits and Systems. McGraw-Hill, June 8 1999.

[102] Curve Fitting in the HP 3562A, Product note HP 3562A-3 ed., Hewlett-Packard, 1989.

[103] D. Y. Abramovitch and C. R. Moon, “Automatic tuning of atomic force microscope,” USPTO,

Keysight Technologies Santa Rosa, CA USA, United States Patent 9,678,103, June 13 2017.

[104] z-Domain Curve Fitting in the HP 3563A Analyzer, Hp 3563a-1 product note ed., Hewlett-Packard,

1989.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
714

Winter 2022-2023
December 31, 2022

https://en.wikipedia.org/wiki/IEEE-488
https://en.wikipedia.org/wiki/IEEE-488
http://www.ni.com/white-paper/3419/en/
https://en.wikipedia.org/wiki/Standard_Commands_for_Programmable_Instruments
https://en.wikipedia.org/wiki/Standard_Commands_for_Programmable_Instruments
https://en.wikipedia.org/wiki/Cuneiform_script
http://www.npoint.com/multi-axis-stages
http://www.npoint.com/multi-axis-stages

Bibliography

[105] H. W. Bode, “Relations between attenuation and phase in feedback amplifier design,” Bell System

Technical Journal, vol. 19, pp. 412–454, July 1940.

[106] J. A. Butterworth, L. Y. Pao, and D. Y. Abramovitch, “Fitting discrete-time models to frequency

responses for systems with transport delay,” in ASME 2011 International Mechanical Engineering

Congress and Exposition, ASME. ASME, 2011.

[107] D. Y. Abramovitch, “Task list for fully automated PID tuning,” Agilent Laboratories, Internal

Report/Memo, September 21 2007.

[108] D. Y. Abramovitch, S. Hoen, and R. Workman, “Semi-automatic tuning of PID gains for atomic

force microscopes,” in Proceedings of the 2008 American Control Conference, AACC. Seattle,

WA: IEEE, June 11–13 2008.

[109] D. Y. Abramovitch, S. T. Hoen, and R. K. Workman, “Automatic generation of PID parameters

for a scanning probe microscope,” Agilent Technolgies, Inc., Santa Clara, CA USA, United States

Patent 7,987,006, July 26 2011.

[110] D. Y. Abramovitch and C. R. Moon, “Cascaded digital filters with reduced latency,” World Intel-

lectual Property Organization, International Application Published Under the Patent Cooperation

Treaty WO 2012/118483, September 9 2012.

[111] D. Y. Abramovitch, “Curve fits on high-Q mechatronic systems in the presence of noise,” in To

be submitted to the 2016 American Control Conference, AACC. Boston, MA: IEEE, July 2016.

[112] J. A. Butterworth, L. Y. Pao, and D. Y. Abramovitch, “Fitting discrete-time models to frequency

responses for systems with transport delay,” in ASME Int. Mechanical Engr. Congress & Exposition.

ASME, 2011.

[113] ——, “The effect of nonminimum-phase zero locations on the performance of feedforward model-

inverse control techniques in discrete-time systems,” in Proceedings of the American Control

Conference, AACC. Seattle, WA: IEEE, June 2008.

[114] Wikipedia. (2018) Padé approximant. [Online; accessed June 6, 2018]. [Online]. Available:

https://en.wikipedia.org/wiki/Pade approximant

[115] K. J. ström and T. Hägglund, PID Controllers: Theory, Design, and Tuning. ISA Press, 1995.

[116] Wikipedia. (2016) Apollo guidance computer. [Online; accessed June 26, 2016]. [Online].

Available: https://en.wikipedia.org/wiki/Apollo Guidance Computer

[117] J. Tylko, “MIT and navigating the path to the moon,” AeroAstro, 2008–2009. [Online]. Available:

http://web.mit.edu/aeroastro/news/magazine/aeroastro6/mit-apollo.html

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
715

Winter 2022-2023
December 31, 2022

https://en.wikipedia.org/wiki/Pade_approximant
https://en.wikipedia.org/wiki/Apollo_Guidance_Computer
http://web.mit.edu/aeroastro/news/magazine/aeroastro6/mit-apollo.html

Bibliography

[118] K. J. ström and T. Hägglund, Advanced PID Control, ser. Oxford Series on Optical and Imaging

Sciences. ISA Press, August 15 2005.

[119] M. A. Johnson and M. H. Moradi, Eds., PID Control: New Identification and Design Methods.

London: Springer-Verlag, 2005.

[120] T. Wescott, “PID without a PhD,” Embedded Systems Programming, pp. 86–108, October 2000.

[121] W. Messner, “The development, properties, and application of the complex phase lead compen-

sator,” in Proceeding of the 2000 American Control Conference, AACC. Chicago, IL: IEEE, June

2000, pp. 2621–2626.

[122] W. C. Messner, M. D. Bedillion, L. Xia, and D. C. Karns, “Lead and lag compensators with

complex poles and zeros,” IEEE Control Systems Magazine, vol. 27, no. 1, pp. 44–54, February

2007.

[123] W. Messner, “Formulas for asymmetric lead and lag compensators,” in Proceeding of the 2009

American Control Conference, AACC. St. Louis, MO: IEEE, June 2009, pp. 3769–3774.

[124] K. M. Moudgalya, Digital Control. John Wiley & Sons, 2007.

[125] D. Abramovitch, “Lyapunov Redesign of classical digital phase-lock loops,” in Proceedings of the

2003 American Control Conference, AACC. Denver, CO: IEEE, June 2003, pp. 2401–2406.

[126] J. G. Ziegler and N. E. Nichols, “Optimum settings for automatic controllers,” Transactions of

the ASME, vol. 64, pp. 759–768, November 1942.

[127] J. Ziegler and N. B. Nichols, “Process lags in automatic control circuits,” Transactions of the

ASME, vol. 65, no. 5, pp. 433–444, November 1942.

[128] D. Croft, G. Shed, and S. Devasia, “Creep, hysteresis, and vibration compensation for piezoactua-

tors: Atomic force microscopy application,” ASME J. Dyn., Sys., Meas., & Ctrl., vol. 128, no. 35,

pp. 35–43, 2001.

[129] T. Ando, T. Kodera, E. Takai, D. Maruyama, K. Saito, and A. Toda, “A high-speed atomic force

microscope for studying biological macromolecules,” PNAS, vol. 98, pp. 12 468–12 472, 2001.

[130] G. Schitter, K. J. ström, B. DeMartini, G. E. Fantner, K. Turner, P. J. Thurner, and P. K. Hansma,

“Design and modeling of a high-speed scanner for atomic force microscopy,” in Proc. Amer. Ctrl.

Conf., Minneapolis, MN, June 2006, pp. 502–507.

[131] MFP-3D Atomic Force Microscope Controller – Fully Digital, Fast, Low Noise for High Perfor-

mance, Asylum Research, www.asylum.com, August 2004.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
716

Winter 2022-2023
December 31, 2022

Bibliography

[132] The New NanoScope V Controller: New Power and Capabilites for Multimode V, Dimension V,

NanoMan VS and PicoForce, Veeco Instruments, www.veeco.com, 2006.

[133] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, 3rd ed.

Add. Wesl. Long., 1998.

[134] K. J. ström and T. Hägglund, Advanced PID Control. ISA Press, 2005.

[135] R. C. Smith, M. V. Salapaka, A. Hatch, J. Smith, and T. De, “Model development and inverse

compensator design for high speed nanopositioning,” in Proc. IEEE Conf. Dec. & Ctrl., Dec. 2002,

pp. 3652–3657.

[136] D. Croft and S. Devasia, “Vibration compensation for high speed scanning tunneling microscopy,”

Rev. Sci. Instrum., vol. 70, no. 12, pp. 4600–4605, December 1999.

[137] G. Schitter and A. Stemmer, “Identification and open-loop tracking control of a piezoelectric tube

scanner for high-speed scanning-probe microscopy,” IEEE T. Contr. Syst. T., vol. 12, no. 3, pp.

449–454, 2004.

[138] T. Sulchek, R. Hsieh, J. D. Adams, G. G. Yaralioglu, S. C. Minne, C. F. Quate, J. P. Cleveland,

A. Atalar, and D. M. Adderton, “High-speed tapping mode imaging with active Q control for

atomic force microscopy,” Applied Physics Letters, vol. 76, p. 1473, 2000.

[139] N. Kodera, H. Yamashita, and T. Ando, “Active damping of the scanner for high-speed atomic

force microscopy,” Rev. Sci. Instrum., vol. 76, p. 053708, 2005.

[140] N. Kodera, M. Sakashita, and T. Ando, “Dynamic proportional-integral-differential controller for

high-speed atomic force microscopy,” Rev. Sci. Instrum., vol. 77, p. 083704, 2006.

[141] G. Schitter, P. Menold, H. Knapp, F. Allgöwer, and A. Stemmer, “High performance feedback for

fast scanning atomic force microscopes,” Rev. Sci. Instrum., vol. 72, no. 8, pp. 3320–3327, 2001.

[142] A. Sebastian, M. V. Salapaka, and J. P. Cleveland, “Robust control approach to atomic force

microscopy,” in Proc. IEEE Conf. Dec. & Ctrl., Maui, HI, Dec. 2003, pp. 3443–3444.

[143] A. Sebastian and S. Salapaka, “Design methodologies for robust nano-positioning,” IEEE T. Contr.

Syst. T., vol. 13, no. 6, pp. 868–876, 2005.

[144] S. Salapaka, A. Sebastian, J. P. Cleveland, and M. V. Salapaka, “High bandwidth nano-positioner:

A robust control approach,” Rev. Sci. Instrum., vol. 73, no. 9, pp. 3232–3241, 2002.

[145] G. Schitter, R. W. Stark, and A. Stemmer, “Fast contact-mode atomic force microscopy on

biological specimen by model-based control,” Ultramicroscopy, vol. 100, no. 3-4, pp. 253–257,

2004.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
717

Winter 2022-2023
December 31, 2022

Bibliography

[146] J. M. Rieber, G. Schitter, A. Stemmer, and F. Allgöwer, “Experimental application of ℓ1-optimal

control in atomic force microscopy,” in Proc. IFAC World Congress, Prague, Czech Republic, July

2005.

[147] G. Schitter, F. Allgöwer, and A. Stemmer, “A new control strategy for high-speed atomic force

microscopy,” Nanotechnology, vol. 15, no. 1, pp. 108–114, 2004.

[148] L. Y. Pao, J. A. Butterworth, and D. Y. Abramovitch, “Combined feedforward/feedback control

of atomic force microscopes,” in Proc. Amer. Ctrl. Conf., New York, NY, July 2007.

[149] M. Khammash and H. El-Samad, “Systems biology: From physiology to gene regulation,” IEEE

Control Systems Magazine, pp. 62–76, August 2004.

[150] Wikipedia. (2018) Sandro Botticelli’s “The Birth of Venus”. [Online; accessed June 10, 2018].

[Online]. Available: https://en.wikipedia.org/wiki/The Birth of Venus

[151] G. Stein, “Respect the unstable,” December 1989, bode Lecture presented at the 1989 IEEE

Conference on Decision and Control, Tampa FL.

[152] D. Y. Abramovitch, “Lyapunov Redesign of analog phase-lock loops,” The IEEE Transactions on

Communication, vol. 38, no. 12, pp. 2197–2202, December 1990.

[153] P. C. Parks, “Liapunov redesign of model reference adaptive control systems,” IEEE Trans. on

Automatic Control, vol. AC-11, no. 3, July 1966.

[154] R. E. Best, Phase-Locked Loops: Design, Simulation, and Applications, 4th ed. New York:

McGraw-Hill, 1999.

[155] D. H. Wolaver, Phase-Locked Loop Circuit Design, ser. Advanced Reference Series & Biophysics

and Bioengineering Series. Englewood Cliffs, New Jersey 07632: Prentice Hall, 1991.

[156] F. M. Gardner, Phaselock Techniques, 2nd ed. New York, NY: John Wiley & Sons, 1979, iSBN

0-471-04294-3.

[157] D. Y. Abramovitch, “Analysis and design of a third order phase-lock loop,” in Proceedings of the

IEEE Military Communications Conference. IEEE, October 1988.

[158] H. W. Bode, Network Analysis and Feedback Amplifier Design. New York: Van Nostrand, 1945.

[159] S. Boyd and C. A. Desoer, “Subharmonic functions and performance bounds on linear time-

invariant feedback systems,” IMA J. of Mathematical Control and Information, vol. 2, pp. 153–170,

1985, also in Proc. 1984 Conf. on Decision and Control.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
718

Winter 2022-2023
December 31, 2022

https://en.wikipedia.org/wiki/The_Birth_of_Venus

Bibliography

[160] I. M. Horowitz, Quantitative Feedback Theory (QFT). 4470 Grinnel Ave., Boulder, CO 80303:

QFT Publications, 1992.

[161] C. Mohtadi, “Bode’s integral theorem for discrete-time systems,” Proceedings of the IEE, vol. 137,

no. 2, pp. 57–66, March 1990.

[162] J. C. Doyle and G. Stein, “Multivariable feedback design: Concepts for a classical/modern syn-

thesis,” IEEE Trans. Aut. Control, vol. AC-26, no. 1, pp. 4–16, Feb. 1981.

[163] R. A. Mueller, “Optimizing the performance of the pilot control loaders at the NASA vertical

motion simulator,” American Institute of Aeronautics and Astronautics (AIAA) Journal of Aircraft,

vol. 47, no. 2, pp. 682–693, March-April 2010.

[164] Wikipedia. (2020) Cascaded integrator-comb filter. [On line; accessed April 19, 2020]. [Online].

Available: https://en.wikipedia.org/wiki/Cascaded integrator-comb filter

[165] D. Y. Abramovitch, “A comparison of ∆ coefficients and the δ parameterization, Part I: Coefficient

accuracy,” in Proceedings of the 2017 American Control Conference, AACC. Seattle, WA: IEEE,

May 2017.

[166] ——, “A comparison of ∆ coefficients and the δ parameterization, Part II: Signal growth,” in

Proceedings the 2018 American Control Conference, AACC. Milwaukee, WI: IEEE, June 2018,

pp. 5231–5237.

[167] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing. Englewood Cliffs, N. J.: Prentice

Hall, 1975.

[168] P. Horowitz and W. Hill, The Art of Electronics, 1st ed. Cambridge University Press, October 31

1980.

[169] T. Instruments, TMS320C4x User’s Guide, Texas Instruments, 1993.

[170] Wikipedia. (2020) Data processing inequality. [On line; accessed June 16, 2020]. [Online].

Available: https://en.wikipedia.org/wiki/Data processing inequality

[171] T. Kailath, Linear Systems. Englewood Cliffs, N.J. 07632: Prentice-Hall, 1980.

[172] J. O. Smith, Introduction to Digital Filters with Audio Applications. http://www.w3k.org/books/:

W3K Publishing, 2007.

[173] P. M. Embree, C Algorithms for Real-Time DSP. Upper Saddle River, NJ 07458: Prentice Hall

PTR, 1995.

[174] Spartan-6 FPGA DSP48A1 Slice User Guide, Ug389 (v1.1) ed., August 13 2009.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
719

Winter 2022-2023
December 31, 2022

https://en.wikipedia.org/wiki/Cascaded_integrator-comb_filter
https://en.wikipedia.org/wiki/Data_processing_inequality

Bibliography

[175] Virtex-5 FPGA XtremeDSP Design Considerations User Guide, Ug193 (v3.5) ed., January 26 2012.

[176] LogiCORE IP Floating-Point Operator v6.0, Ds816 (v1.2) ed., Xilinx, January 18 2012.

[177] R. H. Middleton and G. C. Goodwin, “Improved finite word length characteristics in digital control

using δ operators,” IEEE Transactions on Automatic Control, vol. 31, no. 11, pp. 1015–1021,

November 1986.

[178] R. M. Goodall and B. J. Donoghue, “Very high sample rate digital filters using the δ operator,”

IEE Proceedings-G, vol. 140, no. 3, pp. 199–206, June 1993.

[179] G. Li and M. Gevers, “Comparative study of finite wordlength effects in shift and delta operator

parameterizations,” IEEE Transactions on Automatic Control, vol. 38, no. 5, pp. 803–807, May

1993.

[180] G. C. Goodwin, J. I. Yuz, J. C. Agüero, and M. Cea, “Sampling and sampled-data models,” in

Proceedings of the 2010 American Control Conference, AACC. Baltimore, MD: IEEE, June 2010.

[181] J. Kauraniemi, T. I. Laakso, I. Hartimo, and S. J. Ovaska, “Delta operator realizations of direct-

form IIR filters,” IEEE Transactions on Circuits and Systems–II: Analog and Digital Signal Pro-

cessing, vol. 45, no. 1, pp. 41–52, January 1998.

[182] D. Y. Abramovitch and C. R. Moon, “Cascaded digital filters with reduced latency,” USPTO,

United States Patent Application US 2014/0040339 A1, February 6 2014.

[183] D. Y. Abramovitch and E. Johnstone, “State space system simulator utilizing bi-quadratic blocks

to simulate lightly damped resonances,” World Intellectual Property Organization, International

Application Published Under the Patent Cooperation Treaty WO 2013/130076, September 6 2013.

[184] D. Y. Abramovitch and E. S. Johnstone, “State space system simulator utilizing bi-quadratic

blocks to simulate lightly damped resonances,” USPTO, Patent Application Publication US

2015/0006133 A1, January 1 2015.

[185] D. Y. Abramovitch, “The Demod Squad: A tutorial on the utility and methodologies for using

modulated signals in feedback loops,” in Proceedings of the 2020 IEEE Conference on Control

Technology and Applications, IEEE. Montreal, Canada: IEEE, August 2020.

[186] S. A. C. Doyle, The Sign of Four. London: Lippincott’s Monthly Magazine, 1890.

[187] D. Abramovitch, “Rejecting rotational disturbances on small disk drives using rotational accelerom-

eters,” in Proceedings of the 1996 IFAC World Congress, IFAC. San Francisco, CA: IEEE, July

1996, pp. 483–488 (Volume O).

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
720

Winter 2022-2023
December 31, 2022

Bibliography

[188] D. Y. Abramovitch and G. Hsu, “Mitigating the effects of disturbances of a disk drive,” in Pro-

ceedings of the 2015 Multi-Conference on Systems and Control, IEEE. Sydney, Australia: IEEE,

September 21-23 2015, pp. 1473–1478.

[189] A. Sacks, M. Bodson, and W. Messner, “Advanced methods for repeatable runout compensation

(disc drives),” in Digests of The Magnetic Recording Conference 1994. Pittsburg, PA: IEEE,

August 1994.

[190] M. Bodson, A. Sacks, and P. Khosla, “Harmonic generation in adaptive feedforward cancellation

schemes,” IEEE Transactions on Automatic Control, vol. 39, no. 9, pp. 1939–1944, September

1994.

[191] L. Y. Pao, J. A. Butterworth, and D. Y. Abramovitch, “Combined feedforward/feedback control

of atomic force microscopes,” in Proceedings of the 2007 American Control Conference, AACC.

New York, NY: IEEE, July 11–13 2007, pp. 3509–3515.

[192] H. Perez, Q. Zou, and S. Devasia, “Design and control of optimal feedforward trajectories for

scanners: Stm example,” in Proceedings of the 2002 American Control Conference, AACC. An-

chorage, AK: IEEE, May 2002, pp. 2305–2312.

[193] M. Tomizuka, “Zero phase error tracking algorithm for digital control,” ASME Journal of Dynamic

Systems, Measurement, and Control, March 1987.

[194] L. Y. Pao and K. E. Johnson, “Control of wind turbines,” IEEE Control Systems Magazine, vol. 31,

no. 2, pp. 44–62, April 2011.

[195] J. S. McAllister, “The effect of disk platter resonances on track misregistration in 3.5 inch disk

drives,” IEEE Transactions on Magnetics, vol. 32, no. 3, pp. 1762–1766, May 1996.

[196] ——, “Characterization of disk vibrations on aluminum and alternate substrates,” IEEE Transac-

tions on Magnetics, vol. 33, no. 1, p. 968, May 1996.

[197] ——, “Disk flutter: Causes and potential cures,” Data Storage, vol. 4, no. 6, pp. 29–34, May/June

1997.

[198] 3585A Spectrum Analyzer Operating Manual, Part number 03585-90003 ed., Hewlett Packard,

February 1979.

[199] CXA X-Series Signal Analyzer, Multi-touch N9000B: 9 kHz to 3.0, 7.5, 13.6, or 26.5 GHz Data

Sheet, Part number 5992-1274en ed., KeySight, February January.

[200] 8566B Spectrum Analyzer: 100 Hz–2.5GHz/2-22GHz, Manual, Part number 08566-90040 ed.,

Hewlett Packard, March 1984.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
721

Winter 2022-2023
December 31, 2022

Bibliography

[201] R. G. Lyons, “Reducing ADC quantization noise,” Microwaves and RF Magazine, pp. 10–21, June

2005.

[202] W. Kester, Ed., Linear Design Seminar Notes, 1st ed. Norwoood, MA: Analog Devices, Inc.,

1995.

[203] C. E. Shannon, “A mathematical theory of communication,” Bell Systems Technical Journal,

vol. 27, pp. 379–423,623–656, 1948.

[204] Wikipedia. (2020) Parseval’s theorem. [On line; accessed May 22, 2020]. [Online]. Available:

https://en.wikipedia.org/wiki/Parseval’s theorem

[205] T. Wolfe, The Right Stuff. Farrar, Straus and Giroux, January 1 1979.

[206] D. Y. Abramovitch, “The Banshee Multivariable Workstation: A tool for disk drive research,” in

Advances in Information Storage Systems, Vol. 5, B. Bhushan, Ed. New York, NY: ASME Press,

1993, pp. 59–72.

[207] R. Loughridge and D. Y. Abramovitch, “A tutorial on laser interferometry for precision measure-

ments,” in Proceedings of the 2013 American Control Conference, AACC. Washington, DC:

IEEE, June 17–19 2013.

[208] A. E. Bryson and Y. C. Ho, Applied Optimal Control. 1010 Vermont Ave., N. W., Washington,

D.C. 20005: Hemisphere Publishing Co., 1975.

[209] M. Spock, “Only nixon could go to china,” in Star Trek, VI: The Undiscovered Country, L. Nimoy,

L. Konner, and M. Rosenthal, Eds., Star Fleet. Alpha Quadrant: Paramount Pictures, 1991.

[210] J. Burke, The Day the Universe Changed. Boston and Toronto: Little, Brown and Company,

1985.

[211] D. Abramovitch, “Customizable coherent servo demodulation for disk drives,” IEEE/ASME Trans-

actions on Mechatronics, vol. 3, no. 3, pp. 184–193, September 1998.

[212] ——, “Customizable coherent servo demodulation for disk drives,” in Proceedings of the 1998

American Control Conference, AACC. Philadelphia, PA: IEEE, June 1998, pp. 3043–3049.

[213] D. Y. Abramovitch, “Disk drive servo demodulation system which supresses noise on the position

error signal,” Hewlett-Packard, Palo Alto, CA USA, United States Patent 5,801,895, September

1 1998.

[214] W. H. Calvin, “Normal repetitive firing and its pathophysiology,” in Epilepsy: A Window to Brain

Mechanisms, J. Lockard and A. A. Ward, Eds. New York: Raven Press, 1980, pp. 97–121.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
722

Winter 2022-2023
December 31, 2022

https://en.wikipedia.org/wiki/Parseval's_theorem

Bibliography

[215] B. Widrow, Y. Kim, and D. Park, “The Hebbian-LMS learning algorithm,” IEEE Computational

Intelligence Magazine, pp. 37–53, November 2015.

[216] Q. Zhong, D. Inniss, K. Kjoller, and V. Ellings, “Fractured polymer/silica fiber surface studied by

tapping mode atomic force microscopy,” Surf. S. Lett., vol. 290, no. 1-2, pp. L688–L692, Jun.

1993.

[217] V. B. Elings and J. A. Gurley, “Jumping probe microscope,” Digital Instruments, Santa Barbara,

CA USA, United States Patent 5,266,801, November 30 1993.

[218] D. M. Harcombe, M. G. Ruppert, and A. J. Fleming, “A review of demodulation techniques for

multifrequency atomic force microscopy,” Beilstein Journal of Nanotechnology, vol. 11, pp. 76–91,

January 2020.

[219] M. R. P. Ragazzon, S. Messineo, J. T. Gravdahl, D. Harcombe, and M. G. Ruppert, “General-

ized lyapunov demodulator for amplitude and phase estimation by the internal model principle,”

in Conference: 8th IFAC Symposium on Mechatronic Systems, IFAC. Vienna, Austria: IFAC,

September 2019.

[220] Wikipedia. (2020) Amplitude modulation. [On line; accessed April 12, 2020]. [Online]. Available:

https://en.wikipedia.org/wiki/Amplitude modulation

[221] ——. (2020) Phase modulation. [On line; accessed April 12, 2020]. [Online]. Available: https://

en.wikipedia.org/wiki/Phase modulation

[222] ——. (2020) Frequency modulation. [On line; accessed April 12, 2020]. [Online]. Available:

https://en.wikipedia.org/wiki/Frequency modulation

[223] ——. (2020) Quadrature amplitude modulation. [On line; accessed April 12, 2020]. [Online].

Available: https://en.wikipedia.org/wiki/Quadrature amplitude modulation

[224] C. Kitchin and L. Counts, “RMS to DC conversion application guide, 2ND edition,” Analog Devices,

Inc., Product Guide, 1986.

[225] K. S. Karvinen and S. O. R. Moheimani, “A high-bandwidth amplitude estimation technique for

dynamic mode atomic force microscopy,” Review of Scientific Instruments, vol. 85, no. 2, p.

023707, 2014.

[226] M. G. Ruppert, K. S. Karvinen, S. L. Wiggins, and S. O. R. Moheimani, “A Kalman filter for

amplitude estimation in high-speed dynamic mode atomic force microscopy,” IEEE Transactions

on Control Systems Technology, vol. 24, no. 1, pp. 276–284, January 2016.

[227] J. E. Volter, “The CORDIC trigonometric computing technique,” IRE Transactions on Electronic

Computation, vol. 8, pp. 330–334, 1959.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
723

Winter 2022-2023
December 31, 2022

https://en.wikipedia.org/wiki/Amplitude_modulation
https://en.wikipedia.org/wiki/Phase_modulation
https://en.wikipedia.org/wiki/Phase_modulation
https://en.wikipedia.org/wiki/Frequency_modulation
https://en.wikipedia.org/wiki/Quadrature_amplitude_modulation

Bibliography

[228] P. K. Meher, J. Valls, T.-B. Juang, K. Sridharan, and K. Maharatna, “50 years of CORDIC: Al-

gorithms, architectures, and applications,” IEEE Transactions on Circuits and Systems – I:Regular

Papers, vol. 56, no. 9, pp. 1893–1907, September 2009.

[229] A. Blanchard, Phase-Locked Loops. New York, NY: John Wiley & Sons, 1976.

[230] A. J. Viterbi, Principles of Coherent Communication, ser. McGraw-Hill Series in Systems Science.

New York, NY: McGraw-Hill, 1966.

[231] R. E. Best, Phase-Locked Loops: Design, Simulation, and Applications, 3rd ed. New York:

McGraw-Hill, 1997.

[232] J. A. Crawford, Frequency Synthesizer Design Handbook. Norwood, MA 02062: Artech House,

1994.

[233] D. Abramovitch and G. Franklin, “Disk drive control: The early years,” Annual Reviews in Control,

vol. 26, no. 2, pp. 229–242, February 2003.

[234] D. Abramovitch, “Lyapunov Redesign of analog phase-lock loops,” in Proceedings of the 1989

American Control Conference, AACC. Pittsburg, PA: IEEE, June 1989, pp. 2684–2689.

[235] H. De Bellescize, “La réception synchrone,” L’onde électrique, vol. 11, pp. 225–240, May 1932.

[236] D. Y. Abramovitch, “Efficient and flexible simulation of phase locked loops, Part I: Simulator

design,” in Proceedings of the 2008 American Control Conference, AACC. Seattle, WA: IEEE,

June 11–13 2008, pp. 4672–4677.

[237] ——, “Efficient and flexible simulation of phase locked loops, Part II: Post processing and a design

example,” in Proceedings of the 2008 American Control Conference, AACC. Seattle, WA: IEEE,

June 11–13 2008, pp. 4678–4683.

[238] ——, “Coherent demodulation with reduced latency adapted for use in scanning probe micro-

scopes,” Agilent Technologies, Santa Clara, CA USA, United States Patent 7,843,627, November

30 2010.

[239] D. Croft, G. Shed, and S. Devasia, “Creep, hysteresis, and vibration compensation for piezoactu-

ators: Atomic force microscopy application,” ASME Journal of Dynamic Systems, Measurement,

and Control, vol. 128, no. 35, pp. 35–43, March 2001.

[240] D. Croft and S. Devasia, “Vibration compensation for high speed scanning tunneling microscopy,”

Review of Scientific Instruments, vol. 70, no. 12, pp. 4600–4605, December 1999.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
724

Winter 2022-2023
December 31, 2022

Bibliography

[241] K. K. Leang, Q. Zou, and S. Devasia, “Feedforward control of piezoactuators in atomic force

microscope systems: Inversion-based compensation for dynamics and hysteresis,” IEEE Control

Systems Magazine, vol. 19, pp. 70–82, 2009.

[242] K. K. Leang and S. Devasia, “Feedback-linearized inverse feedforward for creep, hysteresis, and vi-

bration compensation in AFM piezoactuators,” IEEE Transactions on Control Systems Technology,

vol. 15, no. 5, pp. 927–935, 2007.

[243] J. A. Butterworth, L. Y. Pao, and D. Y. Abramovitch, “Combined feedforward/feedback control

of atomic force microscopes,” in Proceedings of the American Control Conference, AACC. New

York, NY: IEEE, June 2007.

[244] ——, “A comparison of control architectures for atomic force microscopes,” in Proceedings of the

2008 IFAC Triennial World Congress, AACC. Seoul, Korea: IEEE, July 2008.

[245] ——, “A comparison of control architectures for atomic force microscopes,” Asian Journal of

Control, vol. 11, no. 2, pp. 175–181, March 2009.

[246] ——, “Adaptive-delay combined feedforward/feedback control for raster tracking with applications

to AFMs,” in Proceedings of the American Control Conference, AACC. Baltimore, MD: IEEE,

June 2010.

[247] ——, “Analysis and comparison of three discrete-time feedforward model-inverse control tech-

niques for nonminimum-phase systems,” Mechatronics, vol. 22, no. 5, pp. 577–587, August 2012.

[248] ——, “A discrete-time single-parameter combined feedforward/feedback adaptive-delay algorithm

with applications to piezo-based raster tracking,” IEEE Transactions on Control Systems Technol-

ogy, vol. 20, no. 5, pp. 416–423, March 2012.

[249] ——, “A comparison of ILC architectures for nanopositioners with applications to AFM raster

tracking,” in Proceedings of the American Control Conference, AACC. San Francisco, CA: IEEE,

June 2011.

[250] ——, “Dual-adaptive feedforward control for raster tracking with applications to AFMs,” in Pro-

ceedings of the IEEE International Conference on Control Applications, CCA 2011, IEEE. Denver,

CO, USA: IEEE, September 28-30 2011.

[251] Wikipedia. (2017) Q factor. [Online; accessed February 6, 2017]. [Online]. Available: https://en.

wikipedia.org/wiki/Q factor

[252] T. Sulchek, G. G. Yaralioglu, S. C. Minne, and C. F. Quate, “Characterization and optimization of

scan speed for tapping mode atomic force microscopy,” Rev. Sci. Instrum., vol. 73, p. 2928, 2002.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
725

Winter 2022-2023
December 31, 2022

https://en.wikipedia.org/wiki/Q_factor
https://en.wikipedia.org/wiki/Q_factor

Bibliography

[253] R. W. Stark, G. Schitter, and A. Stemmer, “Tuning the interaction forces in tapping mode atomic

force microscopy,” Physical Review B, vol. 68, pp. 085 401–1–085 401–5, 2003.

[254] B. Anczykowski, B. Gotsmann, H. Fuchs, J. P. Cleveland, and V. B. Elings, “How to measure

energy dissipation in dynamic mode atomic force microscopy,” Appl. Surf. Sci., vol. 140, pp.

376–382, 1999.

[255] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization. London: Academic Press, 1981.

[256] Mentor Graphics, ModelSim, Mentor Graphics, www.mentor.com/products/fpga/simulation/modelsim,

2011.

[257] S. Vadlaman and W. Mahmoud, “Comparison of CORDIC algorithm implementations on FPGA

families,” in Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory, 2002.,

2002, pp. 192–196.

[258] Xilinx, CORDIC v4.0, Xilinx Corporation, www.xilinx.com, April 29 2009.

[259] R. Proksch, J. Cleveland, D. Bocek, T. Day, M. Viani, and C. Callahan, “Fully digital controller for

cantilever-based measurements,” Asylum Research Corporation, Santa Barbara, CA USA, United

States Patent 7,234,342, June 26 2007.

[260] K. Technologies, “Keysight 9500 AFM,” Keysight Technologies, Data Sheet, 2016.

[261] M. G. Ruppert and S. O. R. Moheimani, “Multimode Q control in tapping-mode afm: Enabling

imaging on higher flexural eigenmodes,” IEEE Transactions on Control Systems Technology, 2016.

[262] M. R. P. Ragazzon, Parameter Estimation in Atomic Force Microscopy: Nanomechanical Properties

and High-speed Demodulation. Trondheim: Norwegian University of Science and Technology, April

2018.

[263] D. Y. Abramovitch, “Turning the tracking problem sideways: Servo tricks for DVD+RW clock

generation,” in Proceedings of the 2000 American Control Conference, AACC. Chicago, IL: IEEE,

June 2000, pp. 2615–2620.

[264] D. Abramovitch, D. Towner, C. Perlov, J. Hogan, M. Fischer, C. Wilson, I. Çokgör, and C. Taus-

sig, “High Frequency Wobbles: A write clock generation method for rewritable DVD that en-

ables near drop-in compatibility with DVD-ROMs,” in Technical Digest of ISOM/ODS 1999:

Joint International Symposium on Optical Memory and Optical Data Storage 1999 Conference,

IEEE/LEOS,OSA,SPIE,JSAP. Koloa, HI: SPIE, July 1999, pp. 56–58.

[265] D. Y. Abramovitch, “Magnetic and optical disk control: Parallels and contrasts,” Agilent Labs,

Palo Alto, CA 94304, On-Line Full Draft of Paper, June 2001, http://www.labs.agilent.com/-

personal/Danny Abramovitch/pubs/hd vs od servo.pdf.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
726

Winter 2022-2023
December 31, 2022

Bibliography

[266] ——, “References for: Magnetic and Optical Disk Control: Parallels and Contrasts,” Agilent Labs,

Palo Alto, CA 94304, On-Line Bibliography of Paper, June 2001, http://www.labs.agilent.com/-

personal/Danny Abramovitch/pubs/hd vs od servo refs.pdf.

[267] E. Hecht and A. Zajac, Optics, ser. Addison-Wesley Series in Physics. Reading, MA: Addison-

Wesley, 1979.

[268] M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference,

and Diffraction of Light, 6th ed. Oxford, England: Pergamon Press, 1980.

[269] S. Ramo, J. R. Whinnery, and T. V. Duzer, Fields and Waves in Communication Electronics,

2nd ed. New York, NY: John Wiley & Sons, 1984.

[270] J. William H. Hayt, Engineering Electromagnetics, 4th ed., ser. Electrical & Electronic Engineering.

McGraw-Hill Inc., 1981.

[271] J. N. Dukes and G. B. Gordon, “A two-hundred-foot yardstick with graduations every microinch,”

Hewlett-Packard Journal, pp. 2–9, August 1970.

[272] H. Butler, “Position control in lithographic equipment: An enabler for current-day chip manufac-

turing,” IEEE Control Systems Magazine, pp. 28–47, October 2011.

[273] R. M. Schmidt, G. Schitter, and J. V. Eijk, The Design of High Performance Mechatronics: High-

Tech Functionality by Multidisciplinary System Integration. Delft, NL: IOS Press (Delft University

Press), September 15 2011.

[274] J. Wen and B. Potsaid, “An experimental study of a high performance motion control system,” in

Proceedings of the 2004 American Control Conference, AACC. Boston, MA: IEEE, June 2004,

pp. 5158–5163.

[275] B. P. Rigney, L. Y. Pao, and D. A. Lawrence, “Nonminimum phase dynamic inversion for settle time

applications,” IEEE Transactions on Control Systems Technology, vol. 17, no. 5, pp. 989–1005,

2009.

[276] N. C. Singer and W. P. Seering, “Using acausal shaping techniques to reduce robot vibration,”

in Proceedings of the 1989 IEEE International Conference on Robotics and Automation, IEEE.

Scottsdale, AZ: IEEE, April 24-29, 1988, pp. 1434–1439.

[277] ——, “Design and comparison of command shaping methods for controlling residual vibration,”

in Proceedings of the 1989 IEEE International Conference on Robotics and Automation, IEEE.

Scottsdale, AZ: IEEE, May 14-19, 1989, pp. 888–893.

[278] A. Sacks, M. Bodson, and W. Messner, “Advanced methods for repeatable runout compensation

(disc drives),” IEEE Transactions on Magnetics, vol. 31, no. 2, pp. 1031–1036, March 1995.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
727

Winter 2022-2023
December 31, 2022

Bibliography

[279] B. Francis and W. M. Wonham, “The internal model principle for linear multivariable regulators,”

Applied Mathematics and Optimization, vol. 2, pp. 170–194, 1975.

[280] M. Tomizuka, T.-C. Tsao, and K.-K. Chew, “Discrete-time domain analysis and synthesis of

repetitive controllers,” in Proceedings of the 1988 American Control Conference, AACC. Atlanta,

GA: IEEE, June 1988, pp. 860–866.

[281] T.-C. Tsao and M. Tomizuka, “Adaptive and repetitive digital control algorithms for noncirculating

machining,” in Proceedings of the 1988 American Control Conference, AACC. Atlanta, GA: IEEE,

June 1988, pp. 115–120.

[282] K. K. Chew and M. Tomizuka, “Digital control of repetitive errors in disk drive systems,” IEEE

Control Systems Magazine, vol. 10, no. 1, pp. 16–20, January 1990.

[283] C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties. New York: Aca-

demic Press, 1975.

[284] D. Y. Abramovitch, “Rejection of disturbances on a disk drive by use of an accelerometer,” Hewlett-

Packard, Palo Alto, CA USA, United States Patent 5,663,847, September 2 1997.

[285] M. White and M. Tomizuka, “Increased disturbance rejection in magnetic disk drives by acceleration

feedforward control,” Control Engineering Practice, vol. 5, no. 6, pp. 741–751, 1997.

[286] A. Jinzenji, T. Sasamoto, K. Aikawa, S. Yoshida, and K. Aruga, “Acceleration feedforward control

against rotational disturbance in hard disk drives,” IEEE Transactions on Magnetics, vol. 37, no. 2,

pp. 888–893, March 2001.

[287] D. Y. Abramovitch, “Magnetic and optical disk control: Parallels and contrasts,” in Proceedings

of the 2001 American Control Conference, AACC. Arlington, VA: IEEE, June 2001, pp. 421–428.

[288] D. B. Davies and M. D. Sidman, “Active compensation of shock, vibration, and wind-up in disk

drives,” in Advances in Information Storage Systems, Vol. 5, B. Bhushan, Ed. New York, NY:

ASME Press, 1993, pp. 5–20.

[289] V. L. Knowles and D. M. Hanks, “Shock and vibration disturbance compensation system for disc

drives,” Hewlett-Packard Co., Corporate Patent Department, M/S 20B-O, 3000 Hanover Street,

Palo Alto, CA 94304 USA, European Patent Application 871065555.3, June 1987.

[290] M. White and M. Tomizuka, “Increased disturbance rejection in magnetic disk drives by acceleration

feedforward control,” in Proceedings of the 1996 IFAC World Congress, IFAC. San Francisco,

CA: IEEE, July 1996, pp. 489–494 (Volume O).

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
728

Winter 2022-2023
December 31, 2022

Bibliography

[291] D. Y. Abramovitch, “Introducing feedback control to middle and high school stem students, Part 1:

Basic concepts,” in Proceedings of the 12th IFAC Symposium on Advances in Control Education,

IFAC. Philadelphia, PA: IFAC, July 2019.

[292] ——, “Introducing feedback control to middle and high school stem students, Part 2: Control

system math,” in Proceedings of the 12th IFAC Symposium on Advances in Control Education,

IFAC. Philadelphia, PA: IFAC, July 2019.

[293] Wikipedia. (2022, December 11) 800-pound gorilla. [On line; accessed December 11, 2022].

[Online]. Available: https://en.wikipedia.org/wiki/800-pound gorilla

[294] S. Kubrick, Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb. Columbia

Pictures, 1964.

[295] C. E. Shannon, “Communication in the presence of noise,” Proceedings of the IRE, vol. 37, no. 1,

pp. 10–21, January 1949.

[296] Wikipedia. (2022, December 11) Nyquist-Shannon sampling theorem. [On line; accessed December

12, 2022]. [Online]. Available: https://en.wikipedia.org/wiki/Nyquist-Shannon sampling theorem

[297] M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory and Practice Using MATLAB, 2nd ed.,

ser. Wiley. New York, NY: Addison-Wesley, 2001.

[298] D. Y. Abramovitch, “Determining Kalman filter input noises using PES Pareto,” in Proceedings

of the 2021 American Control Conference, AACC. New Orleans, LA: IEEE, May 2021, pp.

4292–4298.

[299] H.-W. Kim and S.-K. Sul, “A new motor speed estimator using kalman filter in low speed range,”

IEEE Transactions on Industrial Electronics, vol. 43, no. 4, pp. 498–504, August 1996.

[300] M. T. White, M. Tomizuka, and C. Smith, “Improved track following in magnetic disk drives

using a disturbance observer,” IEEE/ASME Transactions on Mechatronics, vol. 5, no. 1, pp. 3–11,

March 2000.

[301] R. Miklosovic, A. Radke, and Z. Gao, “Discrete implementation and generalization of the extended

state observer,” in Proceedings of the 2006 American Control Conference, AACC. Minneapolis,

MN: IEEE, June 2006, pp. 2209–2214.

[302] K. J. ström and R. M. Murray, Feedback Systems, 2nd ed. Princeton Univ. Press, 2016.

[303] D. Y. Abramovitch, “The discrete time biquad state space structure: Low latency with high

numerical fidelity,” in Proc. Amer. Ctrl. Conf. Chicago: IEEE, 2015.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
729

Winter 2022-2023
December 31, 2022

https://en.wikipedia.org/wiki/800-pound_gorilla
https://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem

Bibliography

[304] ——, “The continuous time biquad state space structure,” in Proc. Amer. Ctrl. Conf. Chicago:

IEEE, 2015.

[305] E. Johnstone and D. Y. Abramovitch, “Quintessential Phase: A method of mitigating turbulence

effects in interferometer measurements of precision motion,” in Proceedings of the 2013 American

Control Conference, AACC. Washington, DC: IEEE, June 17–19 2013.

[306] D. Abramovitch, “Notes on the peak finding in mass spectrometry,” Agilent Mass Spectrometry

Division, 5301 Stevens Creek Blvd., MS: 3U, Santa Clara, CA 95051, White Paper, December

6 2017. [Online]. Available: http://dj.scs.agilent.com/danny/tex/mass spec/architecture notes/

peak finding/peak finding notes.pdf

[307] G. Schitter, G. E. Fantner, P. Thurner, J. Adams, and P. K. Hansma, “Design and characterization

of a novel scanner for high-speed atomic force microscopy,” in Proc. 4th IFAC-Symp. Mech. Sys.,

2006.

[308] D. Y. Abramovitch, S. B. Andersson, L. Y. Pao, and G. Schitter, “A tutorial on the mechanisms,

dynamics, and control of atomic force microscopes,” in Proc. Amer. Ctrl. Conf., New York, NY,

July 2007.

[309] D. Y. Abramovitch, “The Multinotch, Part I: A low latency, high numerical fidelity filter for

mechatronic control systems,” in Proc. Amer. Ctrl. Conf. Chicago: IEEE, 2015.

[310] ——, “The Multinotch, Part II: Extra precision via ∆ coefficients,” in Proc. Amer. Ctrl. Conf.

Chicago: IEEE, 2015.

[311] ——, “A unified framework for analog and digital PID controllers,” in Proc. Multi-Conf. Sys. &

Ctrl. Sydney: IEEE, 2015.

[312] ——, “Trying to keep it real: 25 years of trying to get the stuff I learned in grad school to work

on mechatronic systems,” in Proc. Multi-Conf. Sys. & Ctrl. Sydney: IEEE, 2015.

[313] D. Y. Abramovitch and E. Johnstone, “State space system simulator utilizing bi-quadratic blocks

to simulate lightly damped resonances,” Agilent Technologies, Santa Clara, CA USA, Patent

Application PCT/US1227149, February 29 2012.

[314] Wikipedia. (2022) Newton’s laws of motion. [On line; accessed September 21, 2022]. [Online].

Available: https://en.wikipedia.org/wiki/Newton’s laws of motion

[315] D. Y. Abramovitch, S. B. Andersson, K. K. Leang, W. S. Nagel, and S. D. Ruben, “A tutorial

on real-time computing issues for control systems,” in Proceedings of the 2023 American Control

Conference, AACC. San Diego, CA: IEEE, May 31–June 2 2023.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
730

Winter 2022-2023
December 31, 2022

http://dj.scs.agilent.com/danny/tex/mass_spec/architecture_notes/peak_finding/peak_finding_notes.pdf
http://dj.scs.agilent.com/danny/tex/mass_spec/architecture_notes/peak_finding/peak_finding_notes.pdf
https://en.wikipedia.org/wiki/Newton's_laws_of_motion

Bibliography

[316] G. Clemenceau. (1932) War is too important a matter to be left to the military. [Online; accessed

May 7, 2018]. [Online]. Available: https://en.wikiquote.org/wiki/Georges Clemenceau

[317] K. Ogata, Discrete-Time Control Systems, 2nd ed. Englewood Cliffs, New Jersey: Prentice-Hall,

1994.

[318] Wikipedia. (2022) Phase noise. [On line; accessed September 28, 2022]. [Online]. Available:

https://en.wikipedia.org/wiki/Phase noise

[319] ——. (2022) Jitter. [On line; accessed September 28, 2022]. [Online]. Available: https://en.

wikipedia.org/wiki/Jitter

[320] S. D. Ruben, “Respecte the implementation: Using NI myRIO in undergraduate control education,”

in Proceedings of the 2016 American Control Conference, AACC. Boston, MA: IEEE, July 6-8

2016, pp. 7315–7320.

[321] Keysight Technologies, “What is the difference? between an equivalent time sampling oscilloscope

and a real-time oscilloscope,” Keysight Technologies, Santa Rosa, CA USA, Application Note

5989-8794, April 9 2021, [On line; accessed September 28, 2022]. [Online]. Available: https://

www.keysight.com/us/en/assets/7018-01852/application-notes/5989-8794.pdf

[322] D. Y. Abramovitch, Practical Methods for Real World Control Systems. Self, December 1 2022.

[323] K. J. ström and B. Wittenmark, Computer Controlled Systems, Theory and Design, 3rd ed. En-

glewood Cliffs, N.J. 07632: Prentice Hall, 1997.

[324] S. B. Andersson, “Lessons from the advanced tool world,” in Proceedings of the 2023 American

Control Conference, AACC. San Diego, CA: IEEE, May 31–June 2 2023.

[325] Xilinx. (2022) Xilinx adaptive SoCs. [On line; accessed October 4, 2022]. [Online]. Available:

https://www.xilinx.com/products/silicon-devices/soc.html

[326] Intel. (2022) Intel FPGAs and Soc FPGAs. [On line; accessed October 4, 2022]. [Online].

Available: https://www.intel.com/content/www/us/en/products/details/fpga.html

[327] S. D. Ruben, “Controller implementation via analog computers,” in Proceedings of the 2023

American Control Conference, AACC. San Diego, CA: IEEE, May 31–June 2 2023.

[328] W. S. Nagel, A. Mitrovic, G. M. Clayton, and K. K. Leang, “Discrete input-output sliding-mode

control with range compensation: Application in high-speed nanopositioning,” in Proceedings of

the 2022 American Control Conference, AACC. Atlanta, GA: IEEE, May 31–June 2 2023, pp.

4371–4376.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
731

Winter 2022-2023
December 31, 2022

https://en.wikiquote.org/wiki/Georges_Clemenceau
https://en.wikipedia.org/wiki/Phase_noise
https://en.wikipedia.org/wiki/Jitter
https://en.wikipedia.org/wiki/Jitter
https://www.keysight.com/us/en/assets/7018-01852/application-notes/5989-8794.pdf
https://www.keysight.com/us/en/assets/7018-01852/application-notes/5989-8794.pdf
https://www.xilinx.com/products/silicon-devices/soc.html
https://www.intel.com/content/www/us/en/products/details/fpga.html

Bibliography

[329] W. S. Nagel and K. K. Leang, “Discrete input-output state-space models for real-time control,”

in Proceedings of the 2023 American Control Conference, AACC. San Diego, CA: IEEE, May

31–June 2 2023.

[330] J. Madden and D. Anderson, One Size Doesn’t Fit All. Jove, October 1 1989.

[331] D. Y. Abramovitch, “A comparison of the δ parameterization and the τ parameterization,” in

Proceedings of the 2019 American Control Conference, AACC. Philadelphia, PA: IEEE, July

2019.

[332] V. VanDoren, “Understanding PID control and loop tuning fundamentals,” Control Engineering

Magazine, 2023, [On line; accessed September 30, 2022]. [Online]. Available: https://www.

controleng.com/articles/understanding-pid-control-and-loop-tuning-fundamentals/

[333] S. Tzu, S. B. Griffith, and B. H. L. Hart, The Art of War, reissue ed. Oxford University Press,

January 1 1963, iSBN-10: 0195015401 ISBN-13: 978-0195015409.

[334] R. R. Negenborn and J. M. Maestre, “Distributed model predictive control: An overview and

roadmap of future research opportunities,” IEEE Control Systems Magazine, vol. 34, no. 4, pp.

87–97, August 2014.

[335] D. Y. Abramovitch, “Some crisp thoughts on fuzzy logic,” in Proceedings of the 1994 American

Control Conference, AACC. Baltimore, MD: IEEE, June 1994, avalable at dabramovitch.com.

[336] W. Messner and R. Ehrlich, “A tutorial on controls for disk drives,” in Proceedings of the 2001

American Control Conference, AACC. Arlington, VA: IEEE, June 2001, pp. 408–420.

[337] D. Y. Abramovitch and G. F. Franklin, “A brief history of disk drive control,” IEEE Control Systems

Magazine, vol. 22, no. 3, pp. 28–42, June 2002.

[338] ——, “Disk drive control: The early years,” in Proceedings of the 2002 IFAC World Congress,

IFAC. Barcelona, ES: IEEE, July 2002.

[339] R. E. Kalman and J. E. Bertram, “Control system analysis and design via the “Second Method”

of Lyapunov, Part 1: Continuous-Time Systems,” Transactions of the ASME, 1959.

[340] ——, “Control system analysis and design via the “Second Method” of Lyapunov, Part 2: Discrete-

Time Systems,” Transactions of the ASME, 1959.

[341] Wikipedia. (2020) Aleksandr lyapunov. [On line; accessed July 6, 2020]. [Online]. Available:

https://en.wikipedia.org/wiki/Aleksandr Lyapunov

[342] T. Noah, Born a Crime: Stories from a South African Childhood. Random House Publishing

Group, November 15 2016, iSBN-10: 0399588183; ISBN-13: 978-0399588181.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
732

Winter 2022-2023
December 31, 2022

https://www.controleng.com/articles/understanding-pid-control-and-loop-tuning-fundamentals/
https://www.controleng.com/articles/understanding-pid-control-and-loop-tuning-fundamentals/
https://en.wikipedia.org/wiki/Aleksandr_Lyapunov

Bibliography

[343] Wikipedia. (2020) Patton (film). [On line; accessed July 6, 2020]. [Online]. Available: https://

en.wikipedia.org/wiki/Patton (film)

[344] ——. (2020) Infantry attacks. [On line; accessed July 6, 2020]. [Online]. Available: https://en.

wikipedia.org/wiki/Infantry Attacks

[345] Garson O’Toole Quote Investigator. (2017, March 23) Insanity is doing the same thing over and

over again and expecting different results. [On line; accessed May 6, 2020]. [Online]. Available:

https://quoteinvestigator.com/2017/03/23/same/

[346] Wikipedia. (2020) John henry (folklore). [On line; accessed July 6, 2020]. [Online]. Available:

https://en.wikipedia.org/wiki/John Henry (folklore)

[347] T. Wolfe, “The last American hero,” in The Kandy-Kolored Tangerine-Flake Streamline Baby.

New York: Farrar, Straus and Giroux, 1965, ch. 1, pp. 121–166.

[348] R. Gracie, “Gracie jiu jitsu,” Martial Arts Seminar, March 1994, various quotations from Rickson’s

seminar.

[349] L. M. Scott, “The naked time,” Star Trek Episode 7, Season 1, September 29 1966, stardate

1704.2.

[350] J. Rowling, Harry Potter and the Philosopher’s Stone. Bloomsbury, Scholastic, 1997.

[351] G. Lucas, Star Wars. Skywalker Ranch, CA: Lucasfilm, 1977.

[352] G. Roddenberry, Star Trek: The Original Series. Los Angeles, CA: Desilu Productions, 1966.

[353] Pope John Paul I, “If someone had told me ...” http://www.saidwhat.co.uk/quotes/famous/pope john paul

August 1978.

[354] G. Verbinski, Pirates of the Caribbean: The Curse of the Black Pearl. Walt Disney Pictures,

2003.

[355] S. Herek, Bill & Ted’s Excellent Adventure. De Laurentiis Entertainment Group (DEG), 1989.

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
733

Winter 2022-2023
December 31, 2022

https://en.wikipedia.org/wiki/Patton_(film)
https://en.wikipedia.org/wiki/Patton_(film)
https://en.wikipedia.org/wiki/Infantry_Attacks
https://en.wikipedia.org/wiki/Infantry_Attacks
https://quoteinvestigator.com/2017/03/23/same/
https://en.wikipedia.org/wiki/John_Henry_(folklore)

Bibliography

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
734

Winter 2022-2023
December 31, 2022

Alphabetical Index

academic/theoretical (AT), 61, 102, 687

acausal, 108

additive, white, Gaussian noise (AWGN), 364,

367, 571

analog-to-digital converter (ADC), 650

analog-to-digital converter (ADC, A2D), 83,

105, 365, 385, 403, 647

anti-alias filter, 366, 419, 420, 647, 648, 674

atomic force microscope (AFM), 88, 256, 257,

270, 425, 657, 683

auto-regressive (AR), 102

auto-regressive, moving-average (ARMA), 102

backward rule (BR) equivalent, 116, 123, 601

backwards rule (BR) equivalent, 621, 622

band-pass filter (BPF), 653

Banshee Multivariable Workstation (BMW),

656

bilinear state space (BLSS), 85, 548, 616

biquad, 211, 212

biquad state space (BSS), 546, 589, 595, 596,

601, 629

bit error rate tester (BERT), 657

Bode plot, 108, 623

Bode’s integral theorem, 52, 270, 280, 281,

288, 361, 365, 376, 686

Bode’s integral theorem for discrete time, 284

causal, 108

chemical process control (CPC), 88, 104, 136,

213, 516

chirped sine, 104

closed-loop peaking, 108

coherence function, 156, 157

coherent demodulation, 361, 431, 443

computer science (CS), 660, 661

continuous-time Biquad State Space (CT-BSS),

629

controllable, 584

controller canonical form, 583

demodulation in feedback, 424

device under test (DUT), 105

digital signal processing (DSP), 302

digital signal processor (DSP), 83

digital storage oscilloscopes (DSO), 104

digital-to-analog converter (DAC, D2A), 83,

105, 365, 385, 403, 647, 653, 654

digital-to-analog converter (DAC, D2a), 654

discrete-time biquad state space (DT-BSS), 629

embedded software (ESW), 662

empirical transfer function estimate (ETFE),

105

fast Fourier transform (FFT), 104, 165, 166,

175, 547

feedback context, 80, 637, 685

735

Alphabetical Index

feedforward, 602

field-programmable gate array (FPGA), 83, 173,

185, 631, 636, 659, 663, 681–683, 685

filtering context, 80, 637, 685

final value theorem (FVT), 51, 146, 208, 210

finite impulse response (FIR) filter, 102, 103,

302, 334

firmware (FW), 662

first order plus dead time (FOPDT) (see first

order plus time delay (FOPTD)), 103,

213

first order plus time delay (FOPTD) (see first

order plus dead time (FOPDT)), 103,

213

Fourier transform (FT), 107, 163, 379

frequency domain, 108, 361, 643

frequency response, 153

frequency response function (FRF), 105, 108,

188, 270

full-state feedback (FSFB), 556, 558

gain margin (GM), 108

Gaussian distribution, 643

hard disk drive (HDD), 485, 536, 537

hardware (HW), 662

head disk assembly (HDA), 536

imaginary axis, 108

implementation/industrial (II), 61, 687, 688

infinite impulse response (IIR) filter, 102, 301

interferometer (IF), 500, 502, 505, 507

jitter, 644, 645

Keep It Clear, Knucklehead (KICK), 58

Keep It Simple, Stupid (KISS), 58

Laplace transform (LT), 107, 108

lead filter, 208

least mean squares (LMS), 103, 131

linear time-invariant (LTI), 61, 66, 100, 107,

108, 552, 556, 558

linear, time-invariant (LTI), 655

Linux, 83

lock-in amplifier, 431, 443

low-pass filter (LPF), 84, 647, 653, 677, 680

missed samples, 644

model predictive control (MPC), 88

modulation of sine waves, 429

Moore’s law, 57, 98, 105, 631–634, 637, 655,

678, 698

moving-average (MA), 102

multi-input, multi-output (MIMO), 103, 555,

582, 645

multinotch, 297

Newton’s laws, 632, 637, 655, 665

Nichols chart, 108

noise filtering in feedback, 366

non-coherent demodulation, 429

non-minimum phase (NMP), 291–293, 295,

296, 640–642

Nyquist frequency, 286–288, 290, 294, 421,

648, 649

Nyquist plot, 108

object oriented programming (OOP), 252, 308

observable, 584

observer canonical form, 584

op amps, operational amplifiers, 646

Padé approximation, 195, 291, 639–642

Parseval’s theorem, 187, 368

persistent excitation (PE), 131

PES Pareto, 49, 50, 52, 91, 92, 361, 362,

366–372, 374, 375, 378, 382, 386, 387,

390, 392, 395, 397, 414, 418, 515, 575,

647, 652, 691

phase delay, 643, 644

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
736

Winter 2022-2023
December 31, 2022

Alphabetical Index

phase margin (PM), 108, 685

phase noise, 643, 644

phase-locked loop (PLL), 88, 271–273, 303,

433, 435, 436

position error signal (PES), 287, 288, 367, 411,

416

power spectral density (PSD), 166, 367, 368,

378, 379, 382, 411

precision lock-in amplifier (see lock-in

amplifier), 443

pressure control, 136

proportional-derivative (PD) control, 208

proportional-integral (PI) control, 207, 218,

224, 226, 274

proportional-integral-derivative (PID) control,

56, 63, 201, 297

pulse modulation, 426

pulse width modulation (PWM), 203, 266,

426–428, 653–655

quantization, 365, 385, 403, 647, 651–653, 671

radio frequency (RF), 303

repetitive control (RC), 516

Routh-Hurwitz, 108

sample period, 254, 644, 645

sample rate, 89, 95, 98, 100, 103–105, 107,

123, 131, 132, 136, 137, 172–175, 177,

184, 185, 204, 224, 257, 280, 286, 287,

290, 293, 303, 348, 353, 357, 361, 394,

398, 402, 421, 423, 428, 432, 445, 446,

463, 468, 484, 486, 497, 535, 537–539,

547, 602, 633, 639, 644, 648–650, 666,

681–683

sample-and-hold, 647

sensitivity functions, 280–282

signal chain, 685

signal-to-noise ratio (SNR), 131–133, 136, 149,

153, 154, 160, 175, 177, 197, 388, 425,

547, 671

single-input, multi-output (SIMO), 582

single-input, single-output (SISO), 555, 582,

589, 592, 645

stepped-sine (see also swept-sine), 104, 160,

173, 175

swept-sine (see also stepped-sine), 104, 602

thermal control, 136

three-layer computer model, 656, 658

time delay, latency, 289, 291, 639, 685

transfer function (TF), 107, 108

trapezoidal rule (TR) equivalent, 118, 123, 125,

317, 601, 621, 625

voltage-controlled oscillator (VCO), 435

Widrow quantization model, 365, 368, 385,

403, 647, 651, 652

Windows, Microsoft Windows, 83

Z transform, 107

zero-order hold (ZOH) equivalent, 84, 122, 619,

625

D. Abramovitch
© 2018–2022

Practical Methods for Real World Control Systems
737

Winter 2022-2023
December 31, 2022

	Forward
	The Purpose of the Workshop
	The Purpose of this Book
	The Style of this Book
	Intended Audience for the Workshop and Book
	Prerequisites

	Introduction
	Introduction to the Introduction
	Use the Digital, Luke
	Low-Order Models
	Integrator
	Integrator with Delay
	First Order Low Pass with Delay
	Bilinear Filter
	Double Integrator
	Double Integrator with Delay
	Pure Delay
	Simple Resonance with No Zeros
	Simple Resonance with One Zero
	Resonance with Anti-Resonance (notch)
	Some General Ideas

	The Filtering Framework versus the Feedback Framework
	Stuff Happens
	Sampling
	Delay
	Time Constants
	Nonlinearities
	Noise

	Skill Sets
	Introduction Summary

	System Models and Characterizing Them with Measurements
	In This Chapter
	Chapter Ethos
	System Models & Meas. Intro.
	Brief Discussion of Domains
	Outline of the Rest of Chapter
	Brief Review of Discretization
	Discretization Via Numerical Integration Equivalents
	Forward Rectangular Rule
	Backward Rectangular Rule (BR) Equivalent
	Trapezoidal Rule (TR) Equivalent
	Numerical Integration Equivalent Summary
	Matched Pole-Zero Equivalent
	The Zero-Order Hold Equivalent
	Discretization Summary

	The Fate of Physical Parameters in Discretization
	A Brief Look at Discrete-Time Time Domain Identification
	Some Things to Note
	When Discrete-Time, Time-Domain ID Goes Bad

	Step Response Measurements
	Signal Segmentation
	Extracting Step Response Parameters
	LTI Testing
	Gain
	Transport Delay or Startup Time
	Settle Time
	Overshoot
	Rise Time

	Extracting Model Parameters from Step Response Data
	The Mythical First Order Section
	The Mythical Second Order Section
	Gain from Step Response
	Extracting Data from Ringing
	Extracting Data from Overshoot
	Extracting Data from Settling Time

	Frequency Response Measurements
	Practical Limits on Frequency Response Methods
	Clearing Up Some Frequency Response Terminology
	A Note on Notation

	Frequency Response Options
	The Coherence Function
	Closed-Loop Measurements: Two vs. Three Wire
	Fourier Analysis
	Fourier Transforms
	Fourier Series

	FFT Based Analysis
	FFTs
	Power Spectral and Cross Spectral Densities

	The Stepped-Sine Integral
	Stepped-Sine Stimulus and Integration for FPGAs
	Software Pre and Post Processing
	FFT versus Stepped-Sine Tradeoffs
	The Case for Connected Measurements
	The Case for Built-In Stepped-Sine
	Simulation and Measurement Results
	Extracting a Parametric Mode
	Improved Curve Fitting for Mechatronic Systems
	The Effect of Delay on Curve Fits
	Chapter Summary

	Simple Controllers for Simple Models (or why so many controllers are PIDs
	In This Chapter
	Chapter Ethos
	Chapter Introduction
	What is a PID and When is It Useful?
	Recalling the Final Value Theorem

	Lags, Leads, Lag-Leads, Double Leads, and the Like
	PID Control: A Unified Framework
	Derivative Filtering Versus Whole PID Filtering
	PID Regions
	Unfiltered Analog PID and Second Order Sections
	Discrete PID
	Backward Rectangular Discrete PID
	Notes on Backwards Rule Discrete PID

	Closed-Loop Responses
	Closed-Loop PID on an Integrator
	Closed Loop PID on a First Order Low Pass
	Closed Loop PID on a Double Integrator
	Closed Loop PID on a Simple Resonance

	General Thoughts on Closed-Loop Analysis for Second Order Models
	Intuitive and Manual Tuning
	Relay Tuning of PID Controllers
	Loop Shaping
	Examples of PID Code
	Examples of PID Control
	PID Controller Response Shapes
	Atomic Force Microscopes and PI Control
	Loop Shaping on an AFM Actuator Using PID

	Integrators, Saturation, and Wind-Up
	Slow Applications and PWM
	PIDs as an Explanation
	Conclusions

	Practical Loop Design, Or Why Most Open Loops Should Be an Integrator
	In This Chapter
	Phase-Locked Loops: So Much Feedback, Such Simple Analysis
	Making color push BluePCcolor pop an Integrator
	Bode's Theorem on Sensitivity Function
	Sensitivity Functions
	Bode's Integral Theorem
	Bode's Integral Theorem for Discrete Time
	What does it mean?
	Effect of Sample Rate

	Once More with the Dirt
	The Effects of Time Delay on Loop Shaping
	Time Delay and the Padé Approximation

	IterativelyTuning the Integrator Response
	Loop Shaping on Systems with Multiple Resonances
	Example: Loop Shaping on an AFM with Multiple Resonances

	When All We Have is Step Response
	When All We Have is Operational Data
	Chapter Summary and Context

	Resonances, Anti-Resonances, Filtering, and Equalization
	In This Chapter
	Chapter Ethos
	Basic Digital Filter Ideas
	Programming Our SISO Digital Filter
	Filter Programming Tips

	Generating Filter Coefficients
	Basic Filter Types & Understanding
	First Order Digital Low Pass

	Averaging Filter
	Mini Summary

	Two Simple Methods to Remove Outliers
	Some Useful Filters
	Second Order Low Pass Filter
	Second Order High Pass Filter
	Biquad Low Pass Filter
	Biquad High Pass Filter
	Two Biquad Band Pass Filter
	Biquad Notch Filter
	Biquad Peak Filter

	Filter Summary
	The Multinotch
	Digital Filter Equations and Biquads
	Biquads
	Higher Order Filters as a Series of Biquads
	An Improved Structure
	Multinotch Filter Coefficients
	Multinotch Examples
	Effects of a Relatively Small color push BlueTScolor pop
	color push Bluecolor pop Coefficients
	Computing Scaling
	Implementing color push Bluecolor pop Coefficients

	color push Bluecolor pop Coefficient Examples
	color push Bluecolor pop Coefficients Versus color push Bluecolor pop Parameterization and Floating Point
	Multinotch Summary
	Filters without Direct Feedthrough
	The color push Bluecolor pop Parameterization
	Filters for Loop Shaping: Do's and Don'ts
	Chapter Summary and Context

	Signal Detection, Sensors, Sample Rates, and Noise (Oh My)
	In This Chapter
	Motivation: Why Talk About Signals, Sensors, and Noise?
	Noise Filtering in Feedback Introduction
	An Introduction to PES Pareto
	Bode's Theorem and Noise Shaping
	Noise Analysis and PSDs
	Useful PSDs from Measurements
	Power Spectral and Cross Spectral Densities
	Quantization Noise: The Widrow Model and Others
	Using PSDs in PES Pareto

	Using the HDD Example Guide Us
	Measurements for PES Pareto
	Measurements in Open and Closed Loop
	Measurements/Modeling of Power Amplifier Noise
	Measurements/Modeling of Plant Disturbance
	Measurements/Modeling of ADC and DAC Noise
	Channeling Sherlock Holmes

	Noise Sources and Noise Strata
	Using Pareto Models for Extrapolation
	PES Pareto Summary
	Minimizing Noise Before It Enters the Loop
	Thoughts About Anti-Alias Filters
	Analog Notches

	An Introduction to Demodulation for Use in Feedback Loops
	Pulse Modulations
	Basic Modulation of Sine Waves
	Non-Coherent AM Demodulation
	Basic IQ Demodulation: Lock-In Amplifiers
	Basic Coherent Demodulation: Phase-Lock Methods
	Precision Integration Lock-In
	Discrete Approximation of the Integral
	Coherent Demodulation for AFMs
	Practical Implementation of the Discrete Integration
	Pre and Post Integration Filtering
	AFM Demodulation Examples
	Magnitude and Phase Calculations
	Calculating Magnitude Using Table Lookup
	Calculating Phase Using Table Lookup
	Using a PLL to Simplify Magnitude and Phase Calculations
	Surface Stick Detection

	Magnitude and Phase Calculation Examples
	Summary of Coherent Demodulator for AFM

	Example: Servo Signal Demodulation in Hard Disk Drives
	Example: Optical Disk Precision Clocking: DVD+RW
	Example: Laser Interferometry
	Demodulation Summary
	Chapter Summary

	Integrating in Feedforward Control
	In This Chapter
	Chapter Introduction
	What Do We Mean When We Say ``Feedforward Control''?
	Basic Concepts in Feedforward Control
	Measurements for Feedforward-Feedback Control
	A Practical Example of Using FCLI Based Feedforward with Feedback
	Input Shaping Feedforward
	Repetitive Feedforward Control
	An Adaptive Feedforward Canceler
	Add-In Repetitive Controller Primer
	Repetitive Control Versus Adaptive Feedforward Correction

	Feedforward from Auxiliary Sensors
	Feedforward Control Summary
	Change Log for Chapter 8
	Chapter Summary and Context

	State Space: The Good, the Bad, and the Practical
	In This Chapter
	Chapter Ethos
	State Space Control for High Schoolers
	A Note on Notation
	The Separation Principle
	Full-State Feedback and the Dual Problem
	System versus Realization
	Full State Feedback with an LTI Model
	The Dual Problem: Observers
	Some Simple Controllability/Observability Examples

	A Model Based Measurement Tutorial
	A More Generic Continuous Time Model
	Discrete-Time Version of Spring-Mass-Damper System
	Linear, Time-Invariant, Discrete-Time Modeling of the Real World
	Error Dynamics of Current Observers
	What the heck is different about a Kalman Filter?
	Back to Our Simple Second-Order System
	What Makes Model Based Measurements Hard?

	The Canonical Forms
	State Space for MIMO Systems
	What's Up with Implementing State Space?
	The Transfer Function of a State Space Realization
	Adding an Integrator to State Space
	Adding Feedforward to State Space
	State Space Midpoint Summary
	The Biquad State Space Structure
	The Biquad Decomposition of Digital Filters
	A Biquad State Space Form
	The Matrices, Reloaded
	Current Estimator and State Feedback
	Adding Rigid Body Dynamics: Double Integrator
	Discrete Time Examples
	Continuous Time Biquads
	The Analog Biquad State Space Form
	Discretization of the Analog BSS
	The Matrices, Reloaded, Part Deux
	Continuous Time Rigid Body Dynamics and Low Pass Filters
	Handling the Lack of Direct Feedthrough
	Bilinear State-Space Form
	Discretization Choices
	Discrete Time Rigid Body Models
	Rigid Body to BSS Examples
	Continuous Time Examples
	Biquad State Space Summary
	Chapter Summary and Context
	Change Log for Chapter 9

	Real-Time Computing Issues for Control Systems
	In This Chapter
	Motivation: Why Talk About Computation?
	Why is Discussing Computation for FB Hard?
	High-Level View of Computing for Feedback
	Time Delay and Sampling
	Understanding Phase Delay, Phase Noise, and Jitter
	The Input Signal Chain: The Real World to Computation
	Anti-Alias and Oversampling
	Analog to Digital Converters

	Quantization ``Noise''
	The Output Signal Chain: Computation to the Real World
	Digital to Analog Converters

	Pulse Width Modulation
	The Plant's ``Computation''
	The Computer Itself
	The Three-Layer Model
	Doing Time: Hard Real Time
	Non Real Time: What we learn in CS classes
	When Non Real Time is so much faster than the real world
	The advanced tool approach
	Issues with connecting the layers

	Control Algorithm Programming
	It's a Filter
	The Wire

	Numerics, Parameterization, and Operations
	Understanding Sampling and Discretization Methods
	PIDs
	Filter Structures and Latency
	The Multinotch
	The Biquad State-Space (BSS)
	Rigid Body Modes and the Bilinear State-Space (BLSS) Structure

	Example Bandwidth Ranges, Applications, and Platforms
	Business Models and Bandwidth
	Chapter Summary and Context

	Closing Thoughts
	What Different Perspectives Want
	Real Control Design Work Cannot Be Separated from Implementation Details
	``Rommel …I Read Your Book!''
	You Said You Were a Doctor of Philosophy

	Bibliography
	Alphabetical Index

