
What’s a Control System and Why Should I
Care? A whirlwind tour through the basics
of control systems for students about to take

that first class. �

Daniel Y. Abramovitch ∗

∗ URL: dabramovitch.com (e-mail: abramovitch@stanfordalumni.org).

Abstract: This paper is designed as a primer for college level STEM students about to take
their first formal class in feedback control systems. This means that the explanations assume the
reader has had some necessary math, science, and programming classes. With that in mind, this
document aims to provide not only an overview of what the student will see in learning about
control, but context for why those methods are used and why the whole field is important. Even
for the scientist or engineer who has long ago finished college or turned in that doctoral thesis,
this basic context for the field of feedback systems can provide some useful understanding.

Keywords: Control primer, tutorial, second-order systems, closed loops, computers, transforms.

1. INTRODUCTION

As Dennis Bernstein so eloquently wrote in in his seminal
2002 paper (Bernstein (2002)) feedback is the hidden thread
of many world changing technologies of the 1900s. As
we progress through our ever automating world of the
2000s, Dennis’ insight appears to be the proverbial tip of
the iceberg. With agents, networks, robots, self driving
cars, smart grids, swarms of drones, etc. the prevalence
of human built feedback systems in our lives is increasing
exponentially. In parallel, the growing consciousness of the
role of feedback in biological and environmental systems –
and the need to model and quantify these – cries out for a
public understanding of the need for, uses of, and pitfalls in
feedback systems.

At the same time, the prevalence of cheap real-time comput-
ing platforms and hobbyist accessible programmable cars,
house automation, robotics, and drones means that there
will be a proliferation of computer controlled devices, with
most of the code written by people with not even a basic
understanding of feedback systems.

This document is written as a primer, a cheat sheet, an
introduction for students about to take their first college
level class in control systems. Having taken a few of those
classes myself, it is a wonder that I ended up working in the
field of control. What is often missing from those first classes
is context (the “Why are we doing what we are doing?”
part) and a motivated road map. The course syllabus might
point out a bunch of topics to cover, but why they are
� Daniel Y. Abramovitch is research engineer working in Silicon
Valley. Copyright (c©) Daniel Y. Abramovitch. Permission to share
document in an unaltered form is granted. Permission to excerpt, alter,
or sell any portion of this document is withheld without the express
written permission of the author. This document represents the best
effort of the author. There are no warranites expressed or implied
about the accuracy or utility of its content.

being covered is often left as a meditational exercise for the
student. Being of a simpler, more direct mindset, I thought
I’d go through that stuff so that you (the student) can
actually be motivated to learn the material. You are still
free to align your chakras. Namaste.

It is important to me (and to the larger world) that you
actually have a clue about this stuff by the time you
finish the class. Not being in control of your class (no
pun intended) I can best affect this by giving you a clue
before the class starts. Why does this matter? Isn’t machine
learning (ML), big data (BD), and artificial intelligence
(AI) a lot hotter this days? Yeah, they are but these fields
are not mutually exclusive and while system theory (which
encompasses controls and signal processing) can function
without AI and ML (and have been doing so for years),
the converse is not true (at least in the physical world). A
good analogy can be made from riding a bike. The visual
processing, the path planning, the adjustment to weather
conditions, the improvement of technique is all a higher
level learning process, akin to AI and ML. However, none
of that can happen if you can’t keep the bike upright or
steer it away from danger, or simply get it to move in the
correct direction. These more low level tasks are akin to
the control and signal processing fields. They respond more
quickly and more simply to instantaneous events. Improving
one’s biking ability might be machine learning, but the
instantaneous operation is all about system theory.

What’s more, there are some bedrock principles that get
exposed when one learns system theory that are extremely
useful “laws of physics” type rules that can guide and
sanity check machine learning. Anyone who has done any
programming, built any machine or circuit, or tried to make
some sort of algorithm work learns very quickly that it’s
important to have sanity checks put in along the way to
make sure we are creating something that has a chance

What’s a Control System and Why Should I Care? Verson 1.0

of working. So it is that system theory principles can be
applied to sanity checking machine learning. (Analogously,
when we do signal processing and/or control we have to be
careful not to violate the laws of physics. Any algorithm
that depends on a violation of the laws of physics is likely
to fail.)

So, I hope you will find this useful, both as a standalone
document, but also as a cheat sheet to help you with that
first (and perhaps only) controls class. The goal isn’t to
beat theory and proofs into you. That’s a good job for
professors. The goal is to help you see why all that stuff
they are yapping about and all those theorems and proofs
might just be worth your while.

2. UNDERSTANDING THE AUDIENCE AND
PREREQUISITES

In any attempt to teach material, it is important to under-
stand the level of the audience so as to create an “impedance
match” between the teacher and audience. As this document
is a primer, a cheat sheet for those of you entering your
first formal control systems/theory class, I have to assume
a few things about what you already know. Some things are
almost mandatory: that is, you will get something out of this
document but then the actual class will be a struggle. Some
of it is optional: your understanding will be a lot deeper,
but you shouldn’t flunk that first class. By the same token,
if I’m going to be enough of a tool to tell you that certain
things are necessary, I should at least be kind enough to
tell you why I think that’s true. But enough about me; let’s
talk about you.

This document assumes that you are a third or fourth
year college student studying a STEM (Science, Technology,
Engineering, and Math) field and you are about to start
your first class on control systems. Maybe it’s called control
theory or automatic control or feedback systems. That
particular detail isn’t important because no matter what
they call it, they’ll show you a few drawings of systems that
might use what you are about to learn and then dump a
crapload of math on you, so that at the end of the quarter
or semester, you are still wondering what you learned and
why it is at all useful.

By this time in your STEM college career, you should be
completely done with calculus (differential, integral, multi
variable), will have slugged your way through that first class
in differential equations, should have had a class in linear
algebra, and have had some transform theory (and probably
hated that, too). You will have had college chemistry and
college physics, although if you are a computer science
major, it’s not clear that the last statement is true. You
will have had at least one programming class, although
that might very well have been a class where you are
programming in Matlab or Python. Still, the idea of writing
code to implement a mathematical algorithm should not be
foreign to you. All of these have a critical piece to play in
understanding the mathematical underpinnings of control
systems. Sadly, the how and why of each of these pieces is
often neglected in the class themselves and in the control
systems class you are about to start. Sorry; not my fault;
trying to help.

Depending on your major, you may have had some biology.
At this point, it is not clear if you have had probability and
statistics. The last three are very useful, but not critical to
learning basic control systems work. Similarly, you may have
had a first class in circuits (if you are an electrical engineer),
or dynamic systems (if you are a mechanical engineer), or
process dynamics (if you are a chemical engineer). Again,
very useful for context but not absolutely necessary. Even
those that have had a few circuits classes have probably
not gotten to the point of op-amp (operational amplifier)
circuits which is really the part that applies best to controls
work.

So, why are these subjects important? I’ll stick to the
critical ones here. We observe/model the physical world
with science. Some science is entirely experimental: observe
stuff, write it down. However, for science to actually be
useful in doing more stuff, the observations must lead to
an abstraction, a model of what is going on. One of my
favorite quotes on models comes from Stephen Hawking in
his book, A Brief History of Time:

I shall take the simple minded view that a theory
is just a model of the universe, or a restricted part
of it, and a set of rules that relate quantities in
the model to observations that we make. It exists
only in our minds and does not have any other
reality (whatever that might mean). A theory is a
good theory if it satisfies two requirements. It must
accurately describe a large class of observations
on the basis of a model that contains only a few
arbitrary elements, and it must make definite pre-
dictions about the results of future observations.
(Hawking (1988))

Science gives us a mathematical descriptions/models. Usu-
ally, the more descriptive and precise the model, the higher
its complexity, which can make it hard to actually work
with. To do something with a model, we often have to
simplify it. The big question is whether our simplifications
take us too far from describing the physical system behavior
that we observe.

Now, for some specifics. Physical systems are often de-
scribed by differential equations. Of great interest are linear,
time-invariant differential equations (linear: double the in-
put, you double the output; time-invariant means that the
equations describing the system don’t change if the system
is hit with an input tomorrow versus if it’s hit with an input
today. We can’t guarantee that the world can be modeled
this way and in fact,it often can’t, but there are a lot of
advantages to making this modeling approximation, and so
we do it whenever it’s at all reasonable.

It is for this reason that we start by using science to give
us a model of some system that is often in the form of a
differential equation. If it is linear and time-invariant, great.
If not, we likely will try to linearize it and assume that the
rate of change of the system parameters are slow enough
relative to our signals in the system so that we can more or
less assume that they are time-invariant.

When the differential equation that describes the system
behavior is less than ideal (almost always), we would like
to change this. We do this by feeding back a portion

Copyright (c©) Daniel Y. Abramovitch
2

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

of the system response (there might be more than one
measurement for different points of the response, but for
now let’s act like one of those old, terrible “Highlander”
movies and assume there can only be one). When we feed
back that portion of the system response and combine it
with the reference input to the system we produce a new
system and the governing differential equation of that new
feedback system (as the output was fed-back) is different
from the original system.

In other words, with feedback, we have changed
the characteristic differential equation of the system
we are trying to control. That’s it. That’s what
feedback control does: it allows us to change the
equations governing our system’s behavior. Now,
that can be good or that can be bad, and the rest
of the field of control theory is about doing this in a
way so that it is good. The “how-it’s-done” details
are what the whole class is about, but it’s good to
know why we are here in the first place.

Okay, so we are going to change the behavior of differential
equations, but if you remember that class your first or
second year, that wasn’t a whole lot of fun. It’s hard to
get intuition beyond a first order system. Okay, you worked
out the second order response with those sine and cosine
terms and that decaying exponential, but life’s too short
to work out that 10th order solution. Especially in the days
before digital computers (what you call computers, but they
were once made with analog circuits as well). That’s why
there are tricks to get around this stuff and the two most
useful are transform theory and linear algebra.

Transform theory passes a differential equation through a
special integral to map that equation in the signal domain,
say time (t), to some frequency variable, say s. In the case of
a Laplace Transform, s is a complex variable valid all over
the complex plane, but in the case of a Fourier Transform,
we restrict s to a single line, the imaginary or jω axis. When
the differential equation is linear and time-invariant, there
is a one-to-one correspondence between the signal domain
and the transform domain. This means that we can take
a signal/description/model in the time domain, map it to
the transform domain solve the problem there, and then
transform it back to get the answer we want.

At this point one might ask why anyone would go through
those extra steps. The answer (and there has to be a reason
to incur what seems like a lot of extra work) is that that long
path is often a lot simpler, with a lot more intuition. One of
the main reasons is that when a signal described by a time
domain function enters a system described by a differential
equation, the response is obtained by a convolution integral.
Not only is the convolution integral a pain, but one has
to redo it for each new signal. On the other side of the
transformation, though, the signal transform is multiplied
by the model transform and multiplication is a lot – and
I mean a lot – easier than convolution. Plus, once we have
that transform of the system model, we can use it over and
over again by multiplying it via other signal transforms.

When we work with systems then, there is an input/output
relationship of the system in the transform domain called a
transfer function. The roots of the characteristic polynomial

of the transfer function correspond to the roots of the
homogeneous solutions of the differential equation, but in
the transform domain, we are doing algebra in place of
solving differential equations, and algebra is a heck of a
lot simpler. And that’s it: we need to know the transform
domain stuff because it allows us to solve the differential
equation more simply and get a lot more intuition than we
can get from the differential equation on its own.

What about that linear algebra? Well, you may or may
not remember that we are able to turn an nth order linear,
time-invariant differential equation into a series of n first
order differential equations, stack them into a matrix, and
then the properties of the matrix tell us about the behavior
of the differential equation. In fact, the eigenvalues of that
matrix correspond to the roots of the denominator of the
corresponding transfer function. Different ways of looking
at the same problem.

So, we need to know differential equations as those will
describe our systems. We need to know transform theory
and linear algebra so as to simplify dealing with interactions
between multiple interconnected systems. We need science
for our initial modeling and understanding. We need some
programming because when we design the thing that will
adjust the signal that was fed back, the feedback signal, we
will almost certainly build that in a computer program.

3. BASIC PRINCIPLES AND TOPIC AREAS

The basic principles for teaching control in this document
are to start at a high level with physical examples, and
follow up with the underlying principles that tie those
examples together. The process iterates as we select topics
that are of importance in the study of control systems, with
each level adding both physical and general insights into
some aspect of control systems.

The examples are drawn from both history and everyday
life. Since we are all humans in the loop at many points in
our daily lives, these systems are particularly helpful. They
are physical, they are ever present, and the decision process
that humans have to make can be easily visualized. It is
a simple step to then say that what we are really doing is
teaching machines to do the same thing.

Likewise, simple mechanical feedback systems provide a
very visual understanding of human built feedback systems.
They span history, from the earliest outriggers and water
clocks (Abramovitch (2005); Mayr (1970)) to the ubiquitous
toilet examples. It is a simple process to turn these systems
into a block diagram and then discuss how we would teach
a machine to make those decisions.

Along with that, there are some fundamental topics that
need to be covered for any students to begin to have an
understanding of control systems. They include:

• Outer loops (big picture) versus inner loops (small
picture).

• Discretization: why it’s a big deal, what are the bene-
fits, and what are the pitfalls.

• Delay and latency: how it matters little in signal pro-
cessing and how it is all defining in feedback systems.

Copyright (c©) Daniel Y. Abramovitch
3

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

• Modeling of systems: how we get models from science
and why we need them.

• Math: where does it come in with modeling, and how
does it help us understand our systems.

4. TOP LEVEL: DEFINING SOME BASIC TERMS

One place where the first controls class is often a bit meager
is to motivate and define the basic terms used. I’ll give a few
basic definitions here, but there should be a more complete
practical glossary at the end of this document (Section 23).
At a top level, the following definitions are useful:

Control: Make something move where you want. That’s
pretty much it: control is about making stuff move in a
way that you want it to move. Originally, we would have
been talking about moving physical objects around, but
the idea of moving stuff can refer to electricity, chemicals,
data, etc. Still, when we talk about moving something in
a way that we want it to move, we are talking about
control.

Feedforward: Estimate (guess) how to push it but never
use where you see it going to adjust how you are pushing.
If we think about how we often think about doing things
for which we are very familiar, we do it in a feedforward
way. When we are cooking something that we have
cooked a hundred times and we know the recipe cold,
we just execute it without having to taste the food in
intermediate steps. That’s feedforward and when we know
things really well, it’s a very efficient way to do things.

Feedback: Look at where it’s going as you push it and
adjust how you are pushing. When we aren’t familiar with
the recipe, or we are working in a new kitchen with new
tools, we taste the food a lot to see if it’s cooking the
way we want it to. This is feedback: make a sample of
the output of what we are doing and compare it to where
we want to be moving to. Again, this can be feedback of
signals moving inside a computer as much as a car moving
down the street.

With these definitions, we span the basic field of control.
One thing to realize is that the principles of control and the
phenomena of control in nature is fairly ubiquitous. Con-
trol in general and feedback in particular happens
everywhere in nature and that people are doing
control all the time (when we throw a ball, ride
a bike, drive a car, put a key in a lock, or find
a keypad on a phone). Once we internalize these
examples from everyday life, we can get to what we
are really doing with control design: we are teaching
machines to do what we humans do all the time and
what happens in many natural systems.

Okay, we have a few definitions. Let’s look at a control
system that is hopefully fairly universal. There are lots of
choices here, but I have found the shower loop example to
be most universal. This is displayed with the diagram on
the left of Figure 1, and the “almost block diagram” on the
right. The steps are phrased in both the physical steps that
the person takes and in their control system nomenclature.
From here, it is easy to see that this is an example of a
universal set of steps, that show up in all feedback loops:

Adjust
Knob

Stick Hand
in Water

Compare

Desired
Water
Temp

Difference

Water
Temp

(Actuate)

(Measure)

(Reference)

Fig. 1. A common feedback system, and the “loop” abstrac-
tion.

• a reference signal,

• a measurement,

• a comparison element, and

• an adjustment mechanism.

Reference Physical
System

Actuate
Feedback

Adjustment

Error
System

Input

Measured Output

Output
Compare

Measurement

Fig. 2. The basic elements of a feedback loop.

We now move from the “physical” block diagram on the
right of Figure 1 to a more generalized block diagram of
Figure 2. Figure 2 names the internal elements of the loop
more clearly, and adds something about its function. Every
feedback mechanism has (Mayr (1970)):

• a sensing element (that which makes the measure-
ment),

• a comparator (that which compares the sensed value to
the reference signal and turns it into an adjustment),

• and an actuator (that which physically makes the
adjustment).

• Furthermore, it runs in closed-loop – that is – a portion
of the sensed output is fed back into the system.

Food
Digested

Pancreas
Secretes

Insulin

Glucose
Absorbed

in Cells

Compare

Nominal
Glucose Level

(Reference)

Glucose Level

Food

Fig. 3. A simple blood sugar feedback loop.

With the generalization of Figure 2, let’s look at another
feedback loop that is present in nature: the sugar loop in
which our bodies regulate our blood sugar, shown in Figure
3. Now, this loop is internal and relates to something that
many folks understand, that the pancreas wants to maintain
a steady range of blood sugar, despite disturbances (food

Copyright (c©) Daniel Y. Abramovitch
4

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

input, stress, etc.). Historically, understanding relationship
between insulin and blood sugar led to first diabetes treat-
ment. As most folks know, diabetics need to measure their
blood sugar and adjust (by eating or injecting insulin). In
other words: diabetics are closing the loop themselves.

This also brings a natural discussion of sample rates into
view, since most diabetics will only do this check 4-6 times a
day, while a non-diabetic system will make this adjustment
constantly. In the past few decades, insulin pumps have
been developed, but this run open loop, that is without
being regulated by a measure of the person’s blood sugar.
This is a natural segue into the area of artificial pancreas
(Haidar (2016)), which are a big topic of controls research
and practical application.

One of the major differences between the manual
measurements and adjustments made by diabetics
and the automatic ones done by a healthy body is
that the healthy body makes these measurements
and adjustments on a continuous basis. The diabetic
must make periodic measurements and adjustments
throughout the day. How often do they need to
measure? How representative of their actual blood
sugar are their periodic measurements? How well do
their periodic adjustments represent the ideal ad-
justments that would be made continuously? These
are all issues of sampling and discrete-time feed-
back. It is a subject unto itself, but it is critical to
the understanding of how we do control on physical
systems with computers, which can only look at the
data at discrete measurement times (Sections 7 and
19).

Lest you think that human built control systems are a recent
thing, I have a couple of examples that date back in history.
The first is the water clock of Ktesibios, an ancient Greek
inventor who lived in Gaza, in the third century B.C.E.
(Mayr (1970)), shown on the left side of Figure 4).

Float

Orifice

T
im

e
 S

c
a

le

Fig. 4. The float valve of Ktesibios and its modern day
descendant.

Ktesibios lived in a time when the primary mode of time-
keeping was with a sundial. Not only do they not work well
at night or on cloudy days, but the hours are literally longer
in summer than in winter. The mechanical clock wouldn’t be
invented until sometime in the 13th century CE, somewhere
in Central Europe (Jespersen and Fitz-Randolph (1999);
Barnett (1998)). Ktesibios, living in a warm Mediterranean

region, created a water clock that measured the flow of time
by how fast the bottom reservoir was filled from the top
reservoir (on the left of Figure 4).

The issue is that water flows faster when the supply is
higher, meaning the measure of time in the lowest chamber
(marked by water level) would not be uniform. Ktesibios’
clever solution was the float valve, which kept the level of an
intermediate reservoir roughly constant, allowing the lower
reservoir to fill at a more constant rate. The float valve is a
feedback mechanism, as it regulates the level of the middle
chamber based on a combined measurement of the level and
actuation (sealing the inlet). The feedback accomplishes the
task of stabilizing the flow of water into the lower chamber
to an effectively constant rate. Water clocks don’t work too
well in places where water freezes, and I’ve never seen a
water wristwatch, but it was a clever invention. Float valves
are still used in the modern day toilets (another ubiquitous
example). Lift the tank lid on your home toilet and you will
see a float valve that seals the inlet when the water level in
the tank rises to the proper level. Impress your friends at
parties by taking them into the bathroom, removing the
toilet tank lid, and regaling them with the history and
significance of the float valve.

Fig. 5. The outrigger is also a great, physical example, and
much older than the float valve (Abramovitch (2005)).

CG

B

A

Fb

mg
B

L

Fig. 6. Diagram of the operation of an outrigger. On
the left, the half cylinder canoe has a very small
righting moment and can easily capsize. On the right,
the addition of an outrigger uses a combination of
buoyancy and weight to stabilize the roll of the boat.

I have a particular affinity for the outrigger (as seen on an
outrigger canoe) (Figures 5 and 6) as an example of ancient
feedback, since it is more fun than a toilet, and is at least
1200 years older than the water clock (Abramovitch (2005)).

Copyright (c©) Daniel Y. Abramovitch
5

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

I only realized it was a feedback mechanism after my then
three year old son pointed to an outrigger on the beach and
asked, “How does that work?” “Well, it’s a float so when
the boat tips one way, the buoyancy helps straighten it out.
It’s also heavy so when the boat tips the other way, the
weight of the float tends to bring it back down.” And as
I spoke, I realized I was describing a feedback mechanism.
Some research led to the study in (Abramovitch (2005)).

Fig. 7. Drawing of a Watt flyball governor attached to a
steam engine. (Bernstein (2002))

Now, both of these examples are very simple in their
operation and can be understood quite intuitively. In fact,
little in the way of math was applied to analyzing either
one of them. All that changed late in the 19th century,
CE, when the industrial revolution was in full swing and
steam engines needed to be regulated. The solution was a
flyball governor (Bernstein (2002)), sketched in Figure 7.
The operation of the governor is that as the steam builds
up, the engine speeds up, causing the balls to fly up farther.
They are connected by levers to a valve that opens up as
they rise, literally “letting off steam” and slowing down the
engine. Thus, they regulate the speed of a steam engine with
feedback.

The main historical note about the flyball governor is that
it is when feedback control first “went viral,” at least in
the pre-electricity days. Because it was so useful in the
operation of steam engines, and coming right at a time
when mathematics was first being applied to engineering,
it represents the first feedback device for which was studied
with significant mathematical analysis. The first technical
articles trying to explain the behavior of the feedback
mechanism were written about flyball governors, one of
them by James Clerk Maxwell (Maxwell (1868)) (he of the
Maxwell Equations from electricity and magnetism).

It is also worth emphasizing that there are two types of
feedback. Positive feedback in devices as in life, causes
something or someone to amplify (or do more) of what
it was doing before. Positive feedback will cause a system
to amplify the input. If the gain is high enough, the
output can grow until one of two things happens: something
saturates (hits some limit and then bounces back and forth

Fig. 8. Picture of the reactor at Chernobyl that exploded
after it went into thermal runaway. The final trigger
was caused by conditions in the reactor having changed
so that the control being applied was positive feedback.

between limits, which is useful for building devices such as
oscillators) or something blows up (which is generally not
that useful and can be directly related to such disasters as
the explosion of the Soviet nuclear reactor at Chernobyl
(Figure 8,Stein (1989, 2003))).

Negative feedback (in both devices and life) causes some-
thing or someone to deviate less from some desired path
than before. Negative feedback will cause a system to be-
come less sensitive to changes. It generally trades absolute
gain for stability of gain. For example in building electronic
amplifiers, their overall gain is limited by using feedback,
but that gain remains steady despite temperature changes,
wear, etc. which allows us to build devices that behave
reliably the same way time after time.

It turns out that much of control design and a large part
of your first control class will be doing math to show that
the model describing the feedback system is stable: that is
that the roots of the differential equation of the feedback
system are all stable. After all, it makes no sense to try
to improve the behavior of a system with feedback only to
have it oscillate wildly out of control. It’s as if one has a
steering augmentation system in a car that makes it fly off
the road. We will talk about some of the basic math behind
this in Section 13, but for now it’s just good to know that
this is a thing.

One of the repeated themes will be that we can have
a basic feedback control design that is stable for some
parameter values and is not stable for others. A big part
of our design then is to improve performance while still
providing some margin, some slack for stability. There will
be parameter values for which our system goes unstable,
i.e. for which oscillations start growing until something
breaks. Bad things happen when negative feedback becomes
positive feedback. Chernobyl is the perfect example. A
simple explanation for what usually causes this is that the
correction lags the error by too much time, a too much too
late scenario.

Copyright (c©) Daniel Y. Abramovitch
6

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

In this section we’ve gone from broad definitions to some-
thing that is a current topic of control research and applica-
tion in a few minutes. Each step builds on the use of physical
examples, to abstraction, to application to more physical
examples. If we stopped at this point, you would be able
to tell someone what a feedback system was, describe its
components, and give two simple examples. At this point,
we are able to circle back and give you considerably more
detail.

5. ABSTRACTION TO BLOCK DIAGRAMS AND
THEIR COMPONENTS

Physical
System

Computation Actuators
Convert

for
Actuation

Measurement

Measured
Outputs

Small
Signals

Large
Signals

Physical
Outputs

Fig. 9. Control loop with more detail on the components.
This loop lacks feedback.

Now that we’ve gone through a bunch of principles and
examples of feedback, we’re going to want to generalize.
We need to go up lone level in abstraction and talk about
the generic block types in a control loop block diagram.
Figure 9 is a nice starting point for a discussion about
the components of a control loop and how they affect the
size and complexity of systems for which we can build
controllers. Each of these components needs to be defined.
For example:

Sensors: tell us what is happening.

Converters: change what sensors see into something we
can compute with and back again into something that
does something about it.

Computation: make decisions about what to do.

Physics: what the real world is really doing.

Modeling: how we describe this to our computation.

Actuators: do something about it.

With these items defined, we can go into a bit more detail.
I have assumed that all of you have taken at least one
programming class. Here is where that becomes useful.
Simply writing down the math of the feedback controller
does not get it built into a working system. It has to be
implemented. The list above talks about the pieces of the
block diagram that make a control system. The top diagram
of Figure 9 has a physical system on the far right. This
is what we want to control. We can push on this system
with an actuator, a physical device that translates electrical
signals into specific actions that affect the system (upper
branch). We can measure the outputs of this system (lower
branch). To drive the actuator, we have commands coming
from some form of computation. Those commands need
to be translated into signals that make the actuator do
something. In humans, the computation is in the brain,
the conversion of signals is through the nerves, and the
actuation is via muscles that cause part of the body to move.

In a modern day car, the computation is via a specialized
computer that sends signals to converters, that in turn
scale up those signals to cause the tires to turn, or the
fuel injection to increase, or the brakes to be applied. The
generic blocks are always there in most systems, but their
specific realizations are all over the map. Note that in this
diagram, the measured signal does not get back to the
computation. There is no feedback, and so the operation
of this particular diagram is open loop.

Physical
System

Computation Actuators

Convert
for

Computation

Convert
for

Actuation

Measurement

Measured
Outputs

Small
Signals

Small
Signals

Large
Signals

Physical
Outputs

Fig. 10. The diagram of Figure 9 with feedback added.

Figure 10 is our first iteration on this diagram, in chich we
have fed the measured output(s) back into the computation
engine. Important side note here: we are feeding back the
measured output, which may or may not be the output we
need to control. One might correctly guess that there is
another whole branch of this that involves how me make
measurements and where we put our sensors. Suffice it
to say, measuring the speed of a bicycle is a lot more
benign than trying to measure the temperature inside a
nuclear reactor. For right now, it’s enough to realize that
a measurement is a representation of the signal we want to
know about and the speed and quality of that measurement
may (and does) affect what we can do with the feedback
loop in a major way. For simplicity, we will stick with single-
input, single-output (SISO) systems in this document, but
it should be obvious that we can measure a lot of different
signals on a system and we can put multiple actuators on
it to push on different places. It just makes understanding
the principles a lot more complicated.

With Figure 10 we now have a feedback loop, in which some
portion of the measured output or outputs are fed back
into the computation engine in order to generate an error
signal (or signals). Our computation can take that error
signal and massage it into a form that allows us to give the
right commands to the input of the physical system (going
through the signal converter and actuator). Honestly, the
point of a controls class is to teach you mostly how to do
that massaging, that shaping of the response to the error,
given what you know about the other pieces in the loop.

Physical
System

Op Amp
Circuit

Actuators

Analog
Filters

Power
Amplifier

Sensor

Measured
Outputs

Small
Electrical
Signals

Small
Electrical
SignalsElectrical

Reference

Large
Electrical
Signals

Force/
Current/

Flow/
Etc.

Physical
Outputs

Fig. 11. The diagram of Figure 10 where the computation
is done via analog circuitry.

We haven’t said anything about how we are doing the
computation, but Figures 11 and 12 show two iconic and
important cases. Figure 11 involves implementing the math

Copyright (c©) Daniel Y. Abramovitch
7

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

Physical
System

Digital
Computer

Actuators

Analog
Filters

Power
Amplifier

Digital to
Analog

Sensor

Measured
Outputs

Small
Electrical
Signals

Small
Electrical
Signals

Digital
Signals

Digital
Signals

Digital
Reference

Large
Electrical
Signals

Force/
Current/

Flow/
Etc.

Physical
Outputs

Analog
to Digital

Fig. 12. The diagram of Figure 10 where the computation
is done via digital computation.

computation in analog circuitry. This was the dominant
form of electronics from the 1930s well up to the 1980s.
The measurement would return an electronic signal and
that signal could be routed through circuits to modify it
accordng to the differntial equations that described the
circuit components. Most of the time, folks thought of this
in the Laplace Transform domain, converting ths system
model, the models for the actuators, sensors, and conversion
circuits, and the control circuits into their transfer function
form. The Laplace Transform turned the issues of stability
of the closed-loop differential equation into an algebra prob-
lem, which was much easier to understand. A huge number
of devices were built this way, including the early age of
communications, flight, the space race, radio, television, etc.

Fig. 13. A “program” on an analog computer. Can you spot
the “typo”? Yeah, me neither.

One issue with analog circuitry is that the input and output
values of any circuit can take on a multitude of values.
Secondly, the behavior of the circuits may change over time
or due to environmental conditions or aging of the circuits.
Finally, and perhaps most importantly, it is easier to change
a computer program than it is to rewire a circuit. The mess
of wires in Figure 13 is an actual program in an analog
computer. No idea what the code is saying or how to debug
it. This means that if we can somehow replace the circuits
to do the math required to implement a controller, then we
will almost always choose to do that. The issue that dogged
the latter approach for many years was that implementing
real-time math (math that had to keep up with things going
on in the real world) in digital computers was difficult and
expensive for many years.

It was NASA’s Apollo program of sending people to the
moon and bringing them back safely that pushed digital
real-time computation. For all the benefits above, NASA
made the very prophetic choice to go digital. In the years
since then, the march of Moore’s Law and the ever shrinking
of both the size and power requirements of computation,
while raising the available computation speed has made
these issues go away for entire classes of physical problems.
Thus, digital computers (what you know simply as com-

puters) replaced analog computation for most applications.
Looking at Figure 12, we see the main addition is an extra
set of converters to take the electrical signals into and out
of a digital form that is usable by the computer.

Analog circuit implementations of control laws are a far less
significant part of the modern control landscape than even
a few decades ago. An emphasis that makes sense is one
that replaces the op-amp circuit computation of Figure 11
with a digital controller shown in Figure 12.

That being said, I wouldn’t be fair to history if I jumped
straight into digital control examples without giving exam-
ples of things that were made possible by the first analog
electronic circuits and their use in control systems, as shown
in Figure 11.

Analog feedback was significant in the development of tele-
phony, both positive feedback for oscillators and negative
feedback for amplifiers (Bernstein (2002)). The idea of using
negative feedback in amplifiers was first proposed by Black
(Bernstein (2002)) when working at Bell Labs. It worked
amazingly well, although engineers there noticed that things
could go unstable and started trying to understand the
mechanisms that caused this. The names of Nyquist and
Bode become prominent in this time as they did the first
work on understanding how to keep those “operational
amplifiers” (op-amps) stable. At no point did these folks
connect the stability of these amplifiers to the behavior of
flyball governors. That “aha” moment had yet to arrive.

Fig. 14. Pictures of the German V1 flying bomb, which
flew on a straight line to the target using automatic
feedback control provided by analog electronics. On
the right is a picture of the American M9 gun director
which directly tied radar into the pointing mechanism
for the gun and calculated by how much to lead the
target, also using analog electronics. In 1944-45, these
devices engaged in what was the first battle between
automated devices.

At the same time, World War II was on the horizon and the
Americans and Germans were both working on rockets and
controlling them. The British and Americans were working
on radar, and the issue of using radar to guide anti-aircraft
guns had become critical as humans really could no longer
track fighter planes or bombers manually. David Mindell’s
book and articles (Mindell (1995a,b, 2002)) bring to life the
fascinating parallel evolution of German rockets guided by
electronic feedback loops and American anti-aircraft gun
directors, which used analog electronics to close the loop
between the radar tracking and the accurate firing of the
guns. This resulted in the first “robot battle” between the
German V1 cruise missiles and the M9 Anti-Aircraft gun
director (Figure 14).

Copyright (c©) Daniel Y. Abramovitch
8

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

For all the potential issues with digital control which we
will discuss in Section 7, the analog computer program of
Figure 13 should convince anyone that digital is the way to
go. That being said, even with digital controllers, we still
use analog circuits to help us “touch the real world”, but
these circuits are now signal conduits, not decision engines.
The picture of an analog computer patch panel makes the
reason for this obvious: it is really hard to program and
debug anything complex on an analog computer (Figure
13). Again, what we are all about in designing control
systems is teaching a computer to do what a human does,
but now we’ve added the detail that we are using sensors
and actuators to intelligently move stuff around.

6. DELVING DEEPER: FEEDBACK LOOPS OCCUR
AT MULTIPLE LEVELS

One thing that we all kind of know, but we don’t intuitively
acknowledge is that feedback loops occur at multiple levels.
In many cases, a subsystem of a larger system controlled
via feedback has its own feedback loop. We can consider the
simple example of a plane flying from California to Maui,
shown in Figure 15.

Pitch, yaw, roll, height
control loops.

Path following.

Find the island.

Take off before
end of runway.

Land gently on
runway.

Fig. 15. An example that has loops within a loop.

This diagram is illustrative of the different levels of feedback
loops in everyday systems. There is the big path, which is
the main mission of the plane.

• Take off from the runway.

• Find the island.

• Land on the runway.

Within the big path, there are small feedback loops that
help ensure that the main path can be accomplished, with
the added bonus of the passengers and crew being alive at
the end of the flight:

• Roll control (don’t flip the plane).

• Height control (keep the plane at the correct height).

• Yaw control (keep the plane pointing in the right
horizontal direction).

• Internal air pressure control (keep the passengers alive
by providing air at 35,000 foot altitude).

• Temperature control (it’s cold at 35,0000 foot alti-
tude).

• Other controls: engine, flight control surfaces, etc.

When we look at any complex system, we can see these
kinds of loops within loops. From the perspective of the
inner loop, the outer loop provides the reference commands

and does something with the measured output. From the
perspective of the outer loop, the inner loop becomes simply
a component with a well defined behavior.

7. DISCRETIZATION

Fig. 16. A pictorial representation of sampling.

One of the fundamental differences between how control
systems have been implemented in the past 50 years has
been that the implementation of the math to build com-
pensators has been done increasingly via digital computers.
Even though this has become almost universal in the past
30 years, dealing with sampled data systems (where the
real-time data is sampled at discrete-time intervals) does
not usually get taught until the second controls class, one
on digital control. Still, it is worth understanding what
happens to the data when it has go get into a computer.
I’ll start with the generic sampling diagram of Figure 16.

Fig. 17. Analog entertainment. On the left is a reel-to-reel
tape recorder favored by serious audiophiles. On the
right is an old analog color television console.

Fig. 18. Digital entertainment. On the left is a smart
phone that holds more music that your grandparents’
entire house. On the right is a high definition digital
television, with much more resolution, a much larger
screen, and a much smaller depth than it’s analog
ancestor.

The diagram of Figure 12 and the common experience of
most of our lives indicates that there is a lot of stuff being
done with digital computers, but you really have not been
told what is up with discretization. That is, nobody has
really told you how the data gets into and out of the

Copyright (c©) Daniel Y. Abramovitch
9

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

computers. Prepare for a crash course in the form of a short
paragraph.

Computers can only work in discrete cycles: logic combina-
tions flip from one set of 0s and 1s to another in multiple
layers throughout the system. They are interpreted in dif-
ferent ways, but there is always a clock. Furthermore, since
there are only 0s and 1s, any real number, anything that
might represent the real world can only take on a finite (but
possibly huge) set of values. To bring data into a computer
then, we need to first convert it into an electronic signal
(that’s the job of a sensor) and then sample the signal
from this sensor at discrete-time intervals. Furthermore,
the data can only take on a finite set of values. This is
usually accomplished with a circuit called an analog-to-
digital converter (ADC). To get data back out, to the real
world, one has to do the inverse of this path, eventually
putting out an analog signal to an actuator via a digital-to-
analog converter (DAC).

If one looks at the true square wave signal in Figure 16, it
has beautiful, sharp edges. By the time it has gone through
any analog circuitry, those edges get rounded by the “low
pass” nature of most things. The rounding might be trivially
small, but it is there. Sometimes it is significant. We sample
not the perfect signal, but that rounded signal, and then we
only get a finite number of values with which to represent
it. An 8-bit ADC can generate only 28 = 256 possible
values, a 16-bit ADC 216 = 65536. Finally, relating system
models based on differential equations to what ends up
inside a computer requires a slightly different set of math.
Playing the Devil’s Advocate here, this means that digital
(“computer”) control is bad because:

• The mathematical descriptions are less like the real
world, so modeling the real world is harder.

• Signals are approximated by a certain number of bits
(Figure 16) and are sampled in time which means that
we only look at data every so often and assume it
behaves.

Logically, the devices of Figure 18 should never replace those
of Figure 17, and yet as you check your smart phone between
any two paragraphs in this document, we know this has
happened. Why?

Well, while sound quality on perfectly tuned, high grade,
analog audio, played from reel to real recording (your
grandparents may still have one of these) beats almost
any digital music recording, actually getting everything
tuned just right, keeping the analog recording medium
from getting noisy or distorted, due to degradation over
time is really hard. On the other hand, digital methods
allow a cookie cutter approach. Bits are 0 or 1 and we
don’t care if it’s a large signal or small so miniaturization
happens. Miniaturization leads to less power and more
speed for the same math functions. Wiring gets replace by
computer programs, and computer programs are a lot easier
to implement, debug, and expand than wiring. Copies from
one instance of something to another are exact.

All of these things mean that we can do far more accurate
and complex things with the “inexact” samples and models
of digital methods than we can with the analog methods.

We still have to do that conversion back to and from the
real world for anything real to happen. This is the difference
between something happening in computer graphics and in
real life.

8. SENSITIVITY TO DELAY: THE DIFFERENCE
BETWEEN SIGNAL PROCESSING AND FEEDBACK

CONTROL

Memory Memory
Bits

Bits

Touch Real World Part

Touch Real World PartComputer Part

DACsADCs
DVD/BRBits

CMOS/CCD
Sensor

Bits

Fig. 19. Discretizing image of human for creating and
playing back a DVD/BRD.

Memory Memory
Bits

Bits

Touch Real World Part

Touch Real World PartComputer Part

DACsADCs
Bits

CMOS/CCD
Sensor

Bits
Network

Fig. 20. Discretizing image of human for transmitting across
a network.

Network

NetworkMotors

Touch Real World Part

Touch Real World Part

Touch Real World Part

Computer Part

Computer Part

DACs

DACsADCs

ADCs

CMOS/CCD
Sensor

Robot

Fig. 21. Remote surgery involves feedback from the images,
making latency relevant.

Another useful topic comes out of the whole discussion of
discretization and can be easily illustrated using Figures 19
– 21. The top Figure 19 illustrates the process of taking an
image or sets of images into an optical disk recording (DVD
or BluRay) and playing it back. The important illustration
is that the real world images are discretized (using an ADC
at a particular sample rate), processed, and stored on the
disk. At some arbitrary point later in time, the digital
information can be retrieved from the disk, and returned
to an analog form (via a DAC) for display on the screen. In
the case of a digital monitor, the actual conversion back
to analog form is on the screen itself. The individually
addressed pixels are integrated by our eyes to produce the
analog image that our minds can see.

When we stream these images across a network (replacing
the disk, Figure 20) we again have the same discretization
and return to analog processes. It’s just that the middle part
has changed. In either case, there is no great worry about
the delay between when a particular image was taken and

Copyright (c©) Daniel Y. Abramovitch
10

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

discretized, and when it shows up on the screen. We don’t
care whether the delay from the disk to our eyes is 0.1 or 1
second, so long as it is consistent, and while we might want
to see some sporting event live, we don’t worry whether the
screen images are delayed from the stadium on the other
end of the world by 1 or 10 seconds, unless our neighbors
start cheering before we’ve even seen the play.

This all changes when those network images are being
used in remote surgery (Figure 21). In this example, the
surgeon is operating on a patient far away using a remote
robot. Now, it becomes very obvious that any delay in
communication of those images to the surgeon and in
translation of the surgeon’s controller movements to the
robot must slow the surgeon down in their movements.

This is why we are so concerned with delay in feedback
systems. While it is a minor annoyance in the first two
examples which would be considered signal processing prob-
lems, it becomes one of the key limiting factors when one
wishes to close the loop.

9. DO THE MATH

If you’ve stayed with this so far, congratulations! We are
past the “control systems for poets” part of the document,
that gave history, context, and a lot of the main ideas of
control without doing any of the math. That’s great, but you
won’t be taking a controls class to simply waive your hands
and give folks that meditative feeling of control. No, you will
be taking a controls class to supposedly help you understand
how to actually build a controller for some physical system.

The radical assumption here is that you want to have a
clue how to “turn the knobs” when you end up building
or buying a PID controller. For that, we need more than
to align our chakras: we need to do some freankin’ math!
Let’s not panic here: it’s all math you supposedly have had
already, but probably until now you never had to put it
together into trying to make a system work. The way many
controls classes are taught, you still might not have that
feeling at the end of the quarter/semester, but I’ll try to
explain where the different math tools show up and when
the different ones are useful.

In teaching these concepts to middle and high school stu-
dents, we have a major issue at this point, because they
haven’t yet had the prerequisite math and the math based
science classes to make the mental leaps needed to get from
the physical concepts above to knowing how to actually get
parameter values to execute a good feedback loop. We have
to lead them through a few “trust me” moments to turn all
of the above into some algebra based root finding (which
they’ve seen and never thought would be useful). You folks
are lucky, as you have taken the “how to get from there to
here” classes and can see how those pieces align without too
many leaps of faith.

The science that you have studied to this point allows you to
move from physical representation to mathematical models,
many of them will involve differentiation, integration, and
differential equations. The math classes will give you some
idea how to solve those differential equations. In particular,
classes on linear algebra and Laplace Transforms allow us
to turn the difficult problem of solving differential equations

into a tedious, but much more straightforward problem of
using algebra to solve for roots of characteristic polynomials
that define the core behavior of the system. Finally, the
fact that we can multiply models and signals in the Laplace
domain in place of convolving them in the time domain
makes it far simpler to get some intuition about complex
and interconnected systems.

In the sections that follow, I will go through some examples
using some of what you should already know, to give a
framework for how one works with feedback control systems.

10. NEWTON AND THE RIGID BODY

f
x

m

No friction

Fig. 22. A rigid mass on a frictionless plane is the starting
point for understanding Newton’s Law.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

F
or

ce

Double Integrator: K_n = 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

V
el

oc
ity

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.5

0

0.5

1

1.5

Time (s)

P
os

iti
on

Fig. 23. Response of double integrator to force applied over
finite time.

f a v x1
m
_ 1

S
_ 1

S
_

Fig. 24. The block diagram of the double integrator achieved
when we ignore the initial conditions and use Laplace
Transforms.

Copyright (c©) Daniel Y. Abramovitch
11

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

By now, almost all of you should have had that physics
class where you were initiated into Newton’s Second Law:
f = ma. We can tie this to a simple mass on a frictionless
plane, as shown in Figure 22. Remember that acceleration
is the second derivative of position, thus we can rewrite
f = ma as:

a= ẍ =
1

m
f −→ v =

t∫
0

adt+ v0 −→

x=

t∫
0

vdt+ x0 =

t∫
0

⎛
⎝ t∫

0

adτ + v0

⎞
⎠ dt+ x0. (1)

The integrals allow us to describe the physical system of
Figure 22. Equation 1 has two integrals and so this system
is called a double integrator, and it shows up a lot. One can
imagine an air hockey puck on an infinite table. This also
happens to describe a lot of the the early spacecraft control
problems (Franklin et al. (2006); Ogata (1970)) where the
spacecraft bodies could be considered rigid bodies that did
not have any significant vibrations and were merely pushed
around by the different maneuvering rockets. In each case,
if one taps the puck or gives a short burst of a maneuvering
rocket, the rigid body has a constant velocity. However, if
we push it with a constant force, it accelerates as long as the
force is being applied. This is displayed in Figure 23. The
top plot is the applied force, the middle plot is the velocity
of the block, and the bottom plot is the position. We will
use these types of plots to explain the behavior of different
systems under control both open loop and closed-loop.

Here is where we put together several math subjects from
a smattering of the classes you have had. The transform
domain allows us to do a set of special integrals (Boyce
and DiPrima (1977); Bracewell (1978)) which allow us
to transform equations such as Equation 22 into algebra.
For continuous-time calculus and differential equations the
most prominent transforms are the Laplace Transform and
the Fourier Transform. If we pass our differential equation
through a Laplace Transform (LT) and ignore the initial
conditions, we get:

x =

t∫
0

t∫
0

(a)dtdt ←→ X(s) =
1

ms2
F (s)

Time Domain (LT) Transform Domain (2)

When we are done, from the transformed math we know
that this system is not stable. That is, if we push the block
on the frictionless plane, it will go on forever. Once we stop
pushing, the velocity remains constant (middle plot), but
the position keeps increasing. That being said, it is easy to
control. That is, if we apply the same amount of force in the
opposite direction for the same amount of time, the block
stops. Finally, a lot of systems look like this (assuming we
do not look too closely). Even without imagination, this
shows up in most spacecraft control problems, since there
is no air to generate friction and no spring force of gravity.

The above discussion has shown how we can lead the stu-
dents along a path that is supported by a lot of knowledge

they already have to the concept of a dynamic system and
its stability. Not only have we discussed it qualitatively, but
we have tied it into the physics of the problem (using an
equation that they almost certainly know), and we have
discussed some of the useful tools (transforms) that we
use to understand the problem. Finally, they have seen an
example of this behavior plotted out. With this, they are
ready for the next step: adding feedback into this problem.

11. ADDING FEEDBACK TO THE DOUBLE
INTEGRATOR

f

x
k

b m

No friction

Fig. 25. Adding a spring and a damper to our original mass
block.

f a v x
�

-

1
m
_ 1

S
_

b

k

1
S
_

Fig. 26. The block diagram of the double integrator with
velocity and position feedback.

One of the great pedagogical things about laying out the
double integrator as we have done above is that now we can
transform it to a spring-mass-damper system by adding a
position feedback (k) and a velocity feedback (b). We are in
a position to describe these not only in the picture of Figure
25, but in the block diagram of Figure 26. Equation 1 gets
modified to be:

mẍ = f − bẋ− kx ←→ X(s)

F (s)
=

1
m

s2 + b
ms+ k

m

,

Time Domain (LT) Transform Domain (3)

where we see these feedback terms showing up explicitly in
the time domain equation and this is transformed on the
right into a relationship the transfer function on the right.
On the transfer function side, we see that if we set k and b to
0 we are back at our double integrator case. Furthermore, we
can relate the second order relationships of k and b and m
to those of an oscillatory system by matching coefficients in
Equation 4 which relates the spring and damper parameters
to that of a simple resonance:

X(s)

F (s)
=

1
m

s2 + b
ms+ k

m

=
Kω2

d

s2 + 2ζdωds+ ω2
d

, (4)

where √
k

m
= ωd = 2πfd ⇐⇒ fd =

1

2π

√
k

m
, (5)

Copyright (c©) Daniel Y. Abramovitch
12

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

F
or

ce

Original System: K_n = 1, f_d = 8, zeta_d = 0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−50

0

50

Time (s)

V
el

oc
ity

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

Fig. 27. Response of double integrator with velocity and
position feedback to force applied over finite time.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−50

−40

−30

−20

−10

0

10

20

Frequency (Hz)

M
ag

 (
dB

)

K_n = 1, f_d_fsf = 8, zeta_d_fsf = 0.1

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−200

−150

−100

−50

0

Frequency (Hz)

P
ha

se
(d

eg
)

Fig. 28. A Bode plot of the double integrator with position
and velocity feedback. Note that we care about both
magnitude and phase, and that we use a logarithmic
frequency spacing and a logarithmic scale for the mag-
nitude plot.

and

b

m
= 2ζdωd ⇐⇒ ζd =

b

2
√
km

. (6)

Let’s remember that when we try to solve for the roots of a
quadratic polynomial and the number under the radical is
greater than 0, the roots are real, but if the quantity is less
than 0, things get weird. Well, it was weird in high school,
but now we know that this produces complex numbers

and those numbers are useful in understanding signals and
systems.

I’ve got to jump the gun a bit and go straight to Bode plots
without the full explanation (which will show up later).
However, if one takes a transfer function such as Equation
4 and evaluates it at positive values of the imaginary axis,
i.e. if we set s = jω where 0 < ω < ∞ and we pick a
set of values of ω = 2πf (where f is frequency in Hertz),
then we are effectively stimulating the transfer function
with a sine wave for infinite time and seeing what happens.
What happens is that we get a complex value for each of
the frequency points. That is, we get the response of the
transfer function at that pure frequencies with no other
input. Do this for a set of frequencies that that covers
all of the system dynamics we care about and we get a
frequency response function (FRF). That is, the value is
related to how much the physical system has altered the
magnitude and phase of the input sine wave. Okay, so we
can plot it out and there are lots of different options, but
the Bode plot evaluates the magnitude and the phase of the
transfer function response at each frequency and puts them
on separate plots. Furthermore, for reasons that I don’t
want to get into right now, the frequency axis is typically
logarithmically spaced. On the magnitude plot, we get a
more usable vertical spacing by computing the logarithmic
value of the magnitude, in decibels, i.e. 20 log |H(jω|. So,
we plot the magnitude and the phase, and while some like
to plot the phase in radians, I’m partial to having a clue and
so I like to use degrees. Hey, it’s 180/π but makes things
easier to understand.

Folks often confuse transfer functions (TFs) and frequency
response functions (FRFs), but the former is a parametric
model and the latter is a set of ordered pairs of data: the
real frequency and the complex response. Going from TF
to FRF is easy (just evaluate at the frequency points), but
going the other way is hard.

Let’s look at the Bode plot in Figure 28. Many of you
will have seen something like this when you looked at
specifications for things like headphones (or ear buds). In
the audio case, they mostly show you the magnitude plot
as time delay and phase don’t matter so much in signal
processing, but here we have both. With audio equipment,
you generally want the response to be flat out to some corner
frequency, at which point it falls off. That means that the
device reproduces sound out that that frequency without
much distortion. In buying ear buds, you would never see
the lower plot, which is the phase – the relative angle of
output to the input. Again, worrying about this lower plot is
one of the main differences between folks who work in signal
processing and folks who work in feedback systems (Section
8). The plot relates the response and helps us understand
what is going on even without a computer. From a plot
like this, we can tell that the roots of that denominator
polynomial are complex, and that if the system gets hit
with something like a step in force, it will oscillate (ring)
back and forth before settling down.

Now, we have gone, in very straightforward steps, from a
double integrator system to one with feedback from the
outputs of both integrators. We have shown that using some
math (differential equations, transform theory, algebra, and

Copyright (c©) Daniel Y. Abramovitch
13

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

root finding) that we can understand or “model” the be-
havior of this very physical system. Equations 5 and 6 tell
us about the behavior:

• k/m tells us how fast it rings.

• b/m (in relationship to k) tells us how long it rings

• Making k bigger means the spring is stiffer, which
results in higher frequency ringing.

• Making b bigger relative to k causes the ringing to
damp out faster.

• Because denominator polynomial is 2nd order, we can
get roots with quadratic equation.

• Any polynomials that are more than 2nd order are a
lot harder.

One of the great things about having cool computer tools is
that we don’t have to just look at one type of plot, so we can
take the transfer function above, generate a (discretized)
computer version of it, and simulate the time response to
something like a step (as we showed earlier). In this case
now, we can vary the physical parameters and see what
effect it has on the step behavior of our transfer function.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

Compensated System: K_n = 1, f_d_fsf = 8, zeta_d_fsf = 0.1

Force
Position

Fig. 29. Double integrator with spring and damper feedback.
Resonant frequency (ωd) at 8 Hz. We show the effect
of changing the damping (ζd) from 0.1 in this plot, to
0.3 in Figure 30, to 1 in Figure 31.

To illustrate the changes we can make by changing k/m
and/or b/m we can show some relatively straightforward
plots in Figures 29 – 31. Since we have described the
damping and the oscillatory frequency as functions of b,
k, and m, we can see how changing their relationship can
change the damping and dramatically change the behavior
of the system. We have introduced these as properties of the
physical system itself. We are trying to understand/model
the behavior with these equations and plots to gain insight.

This structure has set us up for the next step: introducing
our own augmentation to nature’s parameters.

12. INTRODUCING HUMAN AUGMENTATION OF
NATURE’S FEEDBACK

In the epically great movie, “Shrek,” when Shrek and
Donkey emerge from the cornfield, they look up at Duloc

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

Original System: K_n = 1, f_d = 8, zeta_d = 0.3

Force
Position

Fig. 30. Double integrator with spring and damper feedback.
Resonant frequency (ωd) at 8 Hz. Damping factor,ζd =
0.3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

Original System: K_n = 1, f_d = 8, zeta_d = 1

Force
Position

Fig. 31. Double integrator with spring and damper feedback.
Resonant frequency (ωd) at 8 Hz. Damping factor,ζd =
1.

f a v x
�

-

1
m
_ 1

S
_

b

bf

k

kf

1
S
_

Fig. 32. Adding our own feedback to the spring-mass-
damper system.

Tower and Shrek quips, “So,do ya think he’s compensatin’
for something?” Metaphorically, we’ve just emerged from
the cornfield.

I have shown you the effects of nature’s feedback parameters
on the behavior of our simple system, and it is natural
to ask, “What if nature’s k and b are lame? Can we
compensate?” The answer is – of course – yes (or we control
engineers would all need to find new jobs), but we can use
this model to show how we introduce augmented feedback
into the system as shown in Figure 32. We can describe

Copyright (c©) Daniel Y. Abramovitch
14

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

this as adding our own signals to feed back the output of
each energy collector (the integrator, which we call a state)
back into the input of the system. If we do it right, we
are – in the words of Shrek – compensating for something.
We can analyze this to pick our parameters by looking at
modifications of Equations 4–6.

X(s)

F (s)
=

1
m

s2 +
b+bf
m s+

k+kf

m

=
Kω2

d

s2 + 2ζdfωdfs+ ω2
df

, (7)

where

fdf =
1

2π

√
k + kf
m

and ζdf =
b+ bf

2
√
km

. (8)

Okay, cool! We’re all done. Almost. I have shown you in
a very straightforward way that we can augment nature’s
feedback with our own. The particular form of feedback
that I used above involved augmenting every feedback path
from every one of the model’s energy storage elements (the
outputs of the integrator blocks), and this is called “full
state feedback”, which is the 800 pound gorilla of control.

(You can Google or Bing that. It’s a joke from your
grandparent’s generation that essentially asks, “Where does
an 800 pound gorilla sleep?” The answer is, “Anywhere they
want.”) Now, let’s simulate our 800 pound gorilla version of
control and see what we get in Figures 33 – 35.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

Original Sys: K_n = 1, f_d = 8, zeta_d = 0, Compensated System: K_n = 1, f_d_fsf = 8, zeta_d_fsf = 0.1

Force
Position (original)
Position (compensated)

Fig. 33. Our spring mass damper with ζd = 0 and fd =
8Hz. The cyan curve shows this response, which rings
without stopping. The blue curve shows the response
of the system to the same input, when we humans
have augmented nature’s feedback. We then use our
augmented feedback to change ζd to 0.1 (here), ζd to
0.8 (Figure 34), and even change the frequency, fd to
20 Hz (Figure 35).

That’s cool. We can see that by cleverly choosing our
feedback parameters, as shown in Figures 33 – 35, we can
dramatically improve the system’s behavior. By adding a
little bit of damping (on the left) the system rings but
eventually settles down. A bit more damping (center) and
the system settles without ringing. If we maintain this new
damping and artificially increase the stiffness of the spring,
we get a higher frequency which means that the system

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

Original Sys: K_n = 1, f_d = 8, zeta_d = 0, Compensated System: K_n = 1, f_d_fsf = 8, zeta_d_fsf = 0.8

Force
Position (original)
Position (compensated)

Fig. 34. Our spring mass damper with ζd = 0 and fd =
8Hz. The cyan curve shows this response, which rings
without stopping. The blue curve shows the response
of the system to the same input, when we humans
have augmented nature’s feedback. Augmented feed-
back changes ζd to 0.8.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

Original Sys: K_n = 1, f_d = 8, zeta_d = 0, Compensated System: K_n = 1, f_d_fsf = 20, zeta_d_fsf = 0.8

Force
Position (original)
Position (compensated)

Fig. 35. Our spring mass damper with ζd = 0 and fd =
8Hz. The cyan curve shows this response, which rings
without stopping. The blue curve shows the response of
the system to the same input, when we humans have
augmented nature’s feedback. WAugmented feedback
changes ζd to 0.8 and fd to 20 Hz.

responds even more quickly. This is analogous to cars that
can adjust their suspensions to the driving conditions.

Cool, but what happens when we get the feedback parame-
ters wrong? This can be simply illustrated by showing cases
where the damping gets set to 0 (on the left of Figure 36)
or even negative (on the right of Figure 36). The negative
damping results in positive feedback and as I explained
earlier: when negative feedback becomes positive feedback,
bad things happen – as illustrated by the ever increasing
oscillations. Again, this can be tied back to physical ex-
amples such as a car swerving erratically because a driver
under the influence is compensating for the weaving far too
slowly. Another visual analogy is to imagine a tightly spaced

Copyright (c©) Daniel Y. Abramovitch
15

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

Original System: K_n = 1, f_d = 8, zeta_d = 0

Force
Position

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

Compensated System: K_n = 1, f_d_fsf = 8, zeta_d_fsf = −0.02

Force
Position

Fig. 36. If we accidentally set bf = −b (left plot) we zero
out the damping of the original system and now it rings
forever. If we accidentally set set bf = −1.02b (right
plot) we have negative damping which gives us positive
feedback, and this is bad.

margin band trying to maneuver with one band member
180o out of phase with all the rest. It makes for a funny
video.

You might ask yourself: what kind of idiot would use the
wrong feedback values? The answer is nobody, assuming
they knew what the correct values were. However, if we
have the wrong values for our model of the physical world,
how can we know what the correct values for our feedback
compensation should be? This is the essence of modeling:
we need correct parameters to have a good model and if the
accuracy of our model is limited, then the accuracy of our
control scheme goes with it.

Looking back at what we have done: we have introduced
a simple system, shown how nature’s feedback affects its
behavior, added in our own feedback to improve the behav-
ior, and shown the pitfalls of making a mistake. We have
shown modeling, feedback, full state feedback to augment
nature’s feedback, stability, and instability in a very simple
progression. What is left to do? Can you skip that whole
quarter/semester of class? No way am I putting myself out
of business here, but in fact, no you can’t as there are
other things that make it not so easy. In other words, you
don’t always have access to an 800 pound gorilla. More
specifically, not all systems are second order and we can’t
always measure everything. It was nice while it lasted, but
to deal with these issues we have to go a bit deeper.

13. FEEDBACK CONTROL WITH FEWER
MEASURED OUTPUTS

f a v x
�

-

1
m
_

C

1
S
_ 1

S
_

Fig. 37. The double integrator with feedback only from the
position state.

So, as I alluded to at the end of Section 12, the problem
gets a lot harder when we cannot measure the output of
each state. In our current example this might mean that we
can measure position but not velocity as shown in Figure

37. What happens if we strap on our Nike’s and “Just do
it?” The following example illustrates what happens.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

P Control: Kp = 150

Force
Position

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

P Control: Kp = 500

Force
Position

Fig. 38. Our double integrator system when we only feed
back position. Here we have position feedback scaling
(gains) of 150 (left) and 500 (right).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

P Control: Kp = 1000

Force
Position

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

P Control: Kp = 2000

Force
Position

Fig. 39. Our double integrator system when we only feed
back position. Here we have position feedback scaling
(gains) of 1000 (left) and 2000 (right).

Looking at Figure 38 shows that didn’t turn out nearly
as well as before. Instead of getting a stable system that
settled down (with or without ringing) the thing just seems
to ring the whole time. Now, there is a tendency to thing
if we simply try harder or “turn it up to eleven”, things
will work out, so in Figure 39 we increase the amount of
feedback from position that we are using. All that happens
is we ring faster.

What has happened is that we have run up against a
problem that is easy to solve, but not with the simple tools
we have discussed so far. What we need are the sets of tools
developed over many years to understand control systems.
These are the tools on which you will likely spend the bulk
of your first controls class, so let’s look at them in context.

14. POLYNOMIALS THAT ARE BEYOND
QUADRATIC

ye ur
�

-
C P

Fig. 40. Simplified abstract control loop. Transitioning from
the complex block diagrams to this simple abstraction
allows us to explain the uses of Equations 9 and 10.

The curves of Figures 38 and 39 show us that when we
only feed back information from position in this particular
problem, something goes horribly wrong.

Copyright (c©) Daniel Y. Abramovitch
16

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

Understanding feedback control is all about understanding
the solutions to differential equations that have been mod-
ified by a new set of signals based on measurements of the
output(s) of the original system. At its core, it is still about
what the Hawking quote from Section 2 said: explain what
we have seen and help us make predictions about what we
will see. The problem is that this is generally hard to do
for differential equations that are higher than second order.
We can turn them into transfer functions with Laplace
Transforms, but we are still trying to find the roots of a
modified denominator polynomial, and finding the roots of
polynomials gets a lot harder when they are higher than
second order.

Looking at the simplified model of Figure 40, we know that
in the transform space, we get ratios of polynomials from
the models comprising Figure 40:

Y

R
=

PC

1 + PC

E

R
=

1

1 + PC
U

R
=

C

1 + PC

Y

U
=

P

1 + PC
. (9)

These transfer functions are all functions of s, i.e. P =
P (s), C = C(s), but for readability, we will leave the
(s) out of a lot of what follows. All four of these have
the same denominator and this denominator governs a lot
of behavior. We want to know the roots of the rational
equation, where 1 + PC = 0. Now, we can go into a little
bit of detail here in that if we assume both P = P (s) and
C = C(s) are ratios of rational polynomials themselves,
then 1 + PC looks like:

1 + PC = 1 + k0
(s+ b1)(s+ b2) · · · (s+ bm)

(s+ a1)(s+ a2) · · · (s+ an)
. (10)

Now, the critical points of PC are often very easy, but
the critical points of 1 + PC are actually pretty hard –
especially when one is in the 1940s/1950s and doesn’t have
a digital computer to help. We know from all the equations
in Equation 9 that things get bad when 1 + PC = 0. Here
historical necessity was the mother of invention, and we
should thank ourselves that the smart folks who had the
following insights did not have computers. These insights
are so deep, so useful, provide so much intuition about the
control system, that even when we have powerful computers
available, we often use them to help us implement these
methods that originated before the computer age.

Here, we have defined P (s)C(s) = PC as:

PC = k0
(s+ b1)(s+ b2) · · · (s+ bm)

(s+ a1)(s+ a2) · · · (s+ an)
, (11)

with an assumption that n ≥ m, that is the denominator is
at least the same order as the numerator. This means that

PC

1 + PC
=

k0
(s+b1)(s+b2)···(s+bm)
(s+a1)(s+a2)···(s+an)

1 + k0
(s+b1)(s+b2)···(s+bm)
(s+a1)(s+a2)···(s+an)

(12)

PC

1 + PC
=

k0(s+ b1)(s+ b2) · · · (s+ bm)

(s+ a1) · · · (s+ an) + k0(s+ b1) · · · (s+ bm)
(13)

We can make some interesting observations here. We see
that the closed-loop poles (the roots of the denominator)

will be different from the open-loop poles, but the closed-
loop zeros (the roots of the numerator) will stay exactly
where they were in the open-loop system.

14.1 Routh-Hurwitz

The first insight into this is to figure out what we can say
about the closed-loop poles, the denominator of Equation
13. In the age of modern computing one can multiply out
all the polynomial terms and evaluate it numerically, or
even symbolically, but before there were computers, this was
harder. Routh and Hurwitz were two mathematicians who
independently came up with a similar criterion that now
bears both their names Franklin et al. (2006); Ogata (1970).
It involves multiplying out all the terms in the denominator
of Equation 13 and then checking the coefficients. There
are things one can say about the coefficients which give
away if the roots can be unstable. These involve checking
for missing coefficients or whether there is a sign change
between any two coefficients.

This will likely be one of the first methods taught and it
can be useful, especially when one can multiply out the
coefficients symbolically. This usually means a relatively low
order polynomial, say less than 10th order or so. It does
allow one to say if the roots of the denominator polynomial
are stable. As s is a complex frequency variable, the real part
of the root in the s domain has to be negative to ensure that
the time domain exponential corresponding to it is decaying.

It has limitations, in that it doesn’t really tell us much
about how to do design. It doesn’t really tell us anything
about margins. Worse yet, it requires us to multiply out the
denominator polynomial. Finally, it tells us nothing about
the interaction with the zeros of the system. It’s more of a
go/no-go type evaluation.

14.2 And now for your moment of Zen: Solving without
Solving

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−200

−150

−100

−50

0

50

100

150

200

Frequency (Hz)

M
ag

 (
dB

)

Open Loop Responses with Proportional Control

Physical System
Open Loop: Kp_1 = 150
Open Loop: Kp_2 = 1000
Open Loop: Kp_3 = 2000

Fig. 41. Bode magnitude plots of the different levels of gain
show that all we did was change the level of the sloped
line, but did not alter the shape.

A long time ago, someone had the insight that this means:

1 + PC = 0⇔ PC = −1⇔
‖PC‖ = 1 & � PC = −180◦. (14)

Copyright (c©) Daniel Y. Abramovitch
17

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−200

−150

−100

−50

0

50

100

150

Frequency (Hz)

M
ag

 (
dB

)
Physical System and Compensator (Open Loop)

Physical System
Compensator
Open Loop

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−200

−150

−100

−50

0

50

100

Frequency (Hz)

P
ha

se
(d

eg
)

P Control: Kp = 150

Fig. 42. Again, we use a Bode plot. Here, our compensator
gain is 150.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−200

−100

0

100

200

Frequency (Hz)

M
ag

 (
dB

)

Physical System and Compensator (Open Loop)

Physical System
Compensator
Open Loop

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−200

−150

−100

−50

0

50

100

Frequency (Hz)

P
ha

se
(d

eg
)

P Control: Kp = 2000

Fig. 43. Again, we use a Bode plot. Here, our compensator
gain is boosted to 2000. However, as neither this gain
nor the one in Figure 42 has changed the phase, we
eventually have a ringing of the system.

The great thing about this (and it was applied in several
ways) was that we did not have to solve for the solutions of
1 + PC = 0 but instead could look at the magnitude and
phase of PC, which was relatively easy to do by hand.

This means that if we can check the magnitude and phase
against each other, we can be careful that the magnitude
should be less than 1 before the phase gets to −180◦.
This explains our fascination with Bode plots. The plots
of Figures 42 and 43 show that no matter how big we make
the gain, we have the problem that the phase is always at
−180◦ and so when the gain gets to 1 (which is 0 dB on
this logarithmic plot), it will ring. It will ring at different
frequencies depending upon our gain, but it will still ring.

Okay, so we have analyzed why the position only feedback
on the double integrator was not stable. In Section 15
we’ll get into how to get around this problem, but it’s
worth taking a moment to discuss the entire area of Bode
plots, which are part of what is called “frequency domain”
analysis. As I mentioned when I jumped the gun on Bode
plots in Section 11, we get to the frequency domain by
taking a transfer function such as Equation 4 and evaluating

it at positive values of the imaginary axis. That is, we set
s = jω where 0 < ω < ∞ and we pick a set of values
of ω = 2πf (where f is frequency in Hertz), then we are
effectively stimulating the transfer function with a sine wave
for infinite time and seeing what happens.

What happens is that we get a complex value for each of the
frequency points. That is the value is related to how much
the physical system has altered the magnitude and phase of
the input sine wave. Okay, so we can plot it out and there
are lots of different options, but the Bode plot evaluates the
magnitude and the phase of the transfer function response
at each frequency and puts them on separate plots.

The frequency axis is typically logarithmically spaced be-
cause when we pass open-loop poles and zeros, the result in
a corner point and a lot of close to straight lines that make
the plot easier to interpret. On the magnitude plot, we get a
more usable vertical spacing by computing the logarithmic
value of the magnitude, in decibels, i.e. 20 log |H(jω|. So,
we plot the magnitude and the phase, and while some like
to plot the phase in radians, I’m partial to having a clue and
so I like to use degrees. Hey, it’s 180/π but makes things
easier to understand.

Although it’s not discussed this way in the textbooks, the
frequency domain is to the transform domain as time simu-
lation plots are to time domain equations. We evaluate the
models at different frequency or time points, respectively.

The most complete version of frequency domain insight one
can get is from Nyquist plots and the Nyquist Criterion
(Franklin et al. (2006); Ogata (1970)). It takes into account
poles and zeros, and we can work from the open-loop quan-
tities without multiplying out the denominator polynomial.
It predicts the behavior of the system beyond a stability
go/no-go. Furthermore, it gives margins for error, how far
we are from |PC| = 1 when � PC = −180◦ (called gain
margin) and how far we are from � PC = −180◦ when
|PC| = 1 (called phase margin).

Unfortunately, Nyquist plots are a bit hard to visualize.
Bode found a way to simplify our understanding by un-
wrapping the plot of Nyquist so that magnitude and phase
were still plotted relative to jω, but they were separated
from each other. Bode plots are not quite as general, but
the visualization is so much easier to see that for all intents
and purposes, folks use Bode plots.

One of the main drawbacks of the frequency domain is not
in using it for analyzing models but in making measure-
ments. A lot of systems, in particular systems with slower
dynamics, such as chemical process control (CPC) are not
well suited for frequency domain measurements.

The other way of saying something about the closed-loop
poles working just from the open-loop polynomials is what
is called the Evans Root-Locus (after its inventor) or simply
Root-Locus. Again, we work with the poles and zeros and
mark those on a graph that is made on the complex s plane.
Poles are marked with × while zeros are marked with ◦. The
use of the realization about the roots is that the locus of
roots will move from the open-loop poles (when k0 = 0) to
the open-loop zeros (when k0 is very large). (See Equation
13.) The Root-Locus method says that as we move that

Copyright (c©) Daniel Y. Abramovitch
18

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

all the poles should be at an angle of −180◦ and so we can
sketch out the path (or locus) that the closed-loop roots take
by measuring angles from all the poles and zeros and making
sure they sum to −180. Evans even created a combination
ruler and protractor called a Spirule that we all had to buy
to participate in class. There were rules about asymptotic
behavior that allowed you to quickly decide where the toots
would end up in different situations. It was very visual.
These days, it’s all done simply in a computer; no need
to draw. (Some of us still have a Spirule in the desk just to
wave it at young engineers when we shout at them to “Get
off our lawn.”)

The path of the roots can be very insightful, but again this
says nothing about the path of the zeros and nothing about
margins. Furthermore, we only do this evaluation with all
the controller components fixed except for the k0 term that
is being varied. It shows itself as being of a mentality of
analog circuitry, in which a fixed controller would get a fixed
control design, with the gain being the only value that was
modified easily.

In summary, Routh-Hurwitz can give us a go/no-go decision
on loop stability, root-lccus can show us where all the closed-
loop roots go as we vary the feedback gain, and frequency
response plots and tell us about stability, performance, and
margins of our system. None of them require a solution to
the differential equation or finding the actual roots of the
closed-loop denominator polynomial. You should expect to
have to solve problems using all three of these in any first
controls class.

In summary, solutions to LTI differential equations
can be composed of a sum of (possibly complex)
exponentials.

• If the differential equation has real coefficients,
then any complex exponentials come in complex
pairs, with the same real part and complimen-
tary imaginary parts. Those can be rewritten
as a sine or cosine with an damping factor.

• If all of those exponentials have negative real
parts, then the equation has a stable solution.

• Feedback provides an opportunity to change the
solution exponentials, to go from the original
set with hopefully better characteristics.

• In the Laplace Transform domain, negative real
exponentials correspond to roots of the transfer
function denominator in the laft half of the s-
plane.

• If the LTI differential equations are sampled
at a fixed rate, the sequence of sampled ex-
ponentials become geometric progressions and
negative real exponensts correspond to a ratio,
ri, of each of the progressions with |ri| < 1. That
is, in discrete time, the left half of the Laplace
s-plane should map to the inside of the unit
circle on its discrete counterpart, the z-plane.
In other words, the discrete transfer function
has all roots inside |z| < 1.

• Delay in time maps to a unit gain complex
exponential in the s-plane whose only effect is to
provide negative phase. This is only a limitation
when the delayed signal is used in feedback.

15. FAKING MEASUREMENTS: ESTIMATION

Okay, with all that extra insight into math tools, what about
our problem. We were doing fine with full-state feedback,
but take away the velocity measurement and our system is
no longer stable. How to we fake our way into something
that looks like a measurement of velocity?

8
 f
e
e
t

6 feet

6
 f
e
e
t

4 feet

Fig. 44. Two images of a ball in the air with only position
information for each of them. On their own, there is
not enough information to catch a moving ball from
these images. A time stamp is needed on each.

In order to fix (or compensate for) our lack of velocity mea-
surement, we know that we need extra information. This
is pretty obvious to the students. While control theorists
understand that we need some sort of estimate of velocity
(or derivative information), this is hard to explain to stu-
dents who have not yet computed a derivative. I have found
that the example of Figure 44 works spectacularly well,
since most of us have thrown and caught a ball. The figure
represents two images of balls in the air with only position
information. Having been through the prior material, we can
all conclude that it is impossible from only that information
for anyone to catch the ball. We then produce a soft ball
and toss it to one of the students who almost always catches
it. We then get a chance to explain the contradiction, that
if the speaker is not a nonsensical liar, something else must
have taken place.

That something can be explained as follows. Our eyes take
repeated still images (position information). Our brains take
the difference and add a time stamp. Our brains (meat
computers) are estimating the velocity of the ball from
changes in position over time. In fact, for many North
American kids who have played baseball or softball, we can
relate this to learning to play catch, how as our skill level
improved, we could catch balls thrown much less accurately
and with greater speed. As your brain learned to produce
better estimates over time, you could throw and catch much
better, with far greater speed on the ball. For those of you
from other parts of the world, similar analogies can be made
with soccer (football), tennis, etc. The message here is that
we need to teach our machine how to estimate the velocity.

Our system that fed back everything had no issues be-
cause it was getting velocity information. Can we somehow

Copyright (c©) Daniel Y. Abramovitch
19

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

PD Control: f_zl = 0.1 Hz, Kd = 345000, => Kp = 27.096236637

Force
Position

Fig. 45. Our double integrator system when we only feed
back position information. Here we have used position
and the derivative of position to make the feedback
effective and stop the ringing.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−200

−150

−100

−50

0

50

100

150

Frequency (Hz)

M
ag

 (
dB

)

Physical System and Compensator (Open Loop)

Physical System
Compensator
Open Loop

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−200

−150

−100

−50

0

50

100

Frequency (Hz)

P
ha

se
(d

eg
)

PD Control: f_zl = 0.1 Hz, Kd = 345000, => Kp = 27.096236637

Fig. 46. Our double integrator system when we only feed
back position information. Here we have used position
and the derivative of position to make the feedback
effective and stop the ringing. We see that the Bode
plot helped us predict that this would happen and how
to choose the relative and overall gains.

estimate velocity from our position measurement, and to
do this, we need to differentiate, that is see how quickly
our position is changing over time. To replace our direct
measurement of velocity, we need some sort of estimate of
velocity based upon stuff we are measuring – in this case
position. We know from differential calculus that differenti-
ating position will give us velocity, but the engineering know
how part of this method also tells us that differentiating
also can amplify noise, so we really want to limit our
differentiation to what we need to maximize the tradeoff
between getting information and not amplifying noise. A
transfer function of a pure differentiator is:

D1(s) = s. (15)

Furthermore, there are controllers called proportional plus
derivative (PD) controllers that use this:

CPD,1(s) = KP +KDTDs. (16)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

Comparison of Uncompensated, FSF, and Compensated Time Resp.

Force
Position (No FB, Double Integrator: K_n = 1)
Position (FSF, K_n_fsf = 1, f_d_fsf = 8, zeta_d_fsf = 0.85)
Position (PD Control: f_zl = 0.1 Hz, Kd = 345000, => Kp = 27.096236637)

Fig. 47. Here, we repeat the plot on the left of Figure
45, because we have curves from full state feedback
as well. Thus, we are showing that using some signals
to estimate others can give us almost as good a result
(sometimes) as when we can measure everything.

Here we’ve included the differentiation time, TD in the
equation as a separate part of the differentiator gain. We will
see why this is useful in Section 20. Practically speaking, an
unfiltered differentiator does not make sense since it implies
infinitely high response at infinite frequency (that’s called
the Big Bang). We console ourselves in one of three ways:

1) The actual physical system and any circuits that
implement the PD controller will naturally roll off
at higher frequencies, even if it’s not reflected in
Equation 16.

2) We can always add a low pass filter to the differen-
tiator term or to the entire compensator, clearing
up this problem.

3) If we discretize this with a backwards rectangular
rule (Section 19) the problem goes away in dis-
crete time. This is very useful for making a digi-
tal computer implementation of a PID controller
(Section 20).

Considering the second option, we can apply a low pass
filter with DC gain (when s = 0) of 1 to the differentiator
on its own:

CPD,2(s) =KP +KDTDs

(
a

s+ a

)
(17)

=
KP (s+ a) +KDTDsa

s+ a
, (18)

=
(KP +KDTDa)s+KPa

s+ a
, (19)

= (KP +KDTDa)

[
s+ KP a

KP+KDTDa

s+ a

]
, (20)

or we can apply it to the whole PD compensator:

CPD,3(s) = [KP +KDTD]

(
a

s+ a

)
(21)

=
KPa+KDTDsa

s+ a
, (22)

Copyright (c©) Daniel Y. Abramovitch
20

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

= (KDTDa)

[
s+ KP a

KDTDa

s+ a

]
, (23)

We can see that CPD,2 and CPD,3 have the same structure
and one can be turned into the other by how we choose
the values of KP and KD. They relate to a more practical
implementation of derivative circuits over a finite frequency
interval that looks like:

D2(s) =
(s+ bf)

(s+ af)
=

(s+ 2πfb)

(s+ 2πfa)
, 0 ≤ fb < fa, (24)

Because the zero of D(s) is at a lower frequency than
the pole, and thus it will amplify signals in the range
between fb and fa. However, unlike an ideal differentiator,
it won’t continue to amplify, but instead will flatten out at
frequencies above fa.

Thus, the generic PD controller ends up being what is called
a lead circuit in the texts.

Clead(s) = kf
(s+ bf)

(s+ af)
, 0 ≤ bf < af , (25)

and point out two important things: that there is a set of
algebra from our transform space that allows us to predict
what math we need to do to estimate velocity and that this
math is often very simple. We can also point out that a lot
of very useful control systems have simple guts such as this.

When we do this, we get the response in Figure 45, which
looks pretty good. On the right, we see that our Bode plot
shows some differences, but the main thing that we show
them is that the phase is well above −180◦ when the gain
gets to 1 (0 dB). In fact, we can splurge a bit and show
them Figure 47 which has the results of both the full state
feedback and our PD feedback and we are showing them
that with a good estimate, we can do almost as well as
when we measure everything.

Again, it is worthwhile to look at the path we have taken
with a set of bright students who have not yet studied
calculus. We have shown them that we can do something
with a limited set of signals to produce estimates of the
signals we need to cause the system to behave the way
we want. We have shown them that some math that they
don’t yet have leads to some math that they already know
and that the math they already know tells us how to fix
the problem, sometimes simply. We have attached physical
meaning to the equations and examples that we use, so that
even if they don’t understand the details, they have a very
strong sense that they get the basic idea.

16. SOME DEPTH ON ESTIMATION

f1 f3

x1 x3

k1 k2 k3 k4

b1 b2 b3 b4
m1 m2 m3 m4

Fig. 48. Extending our spring mass damper system to one
with a lot more springs, masses, and dampers.

z1

S1

S2

Sno

z2

zno

u1

u1

y1

y1

v1

v1

w1

w1

u2

u2

y2

y2

v2

v2

w2

w2

uni

uni

yni

yni

vno

vno

wno

wno

z1

S1

S2

Sno

z2

zno

Entity
(x ,x ,...,x)1 2 n

Model
(, ,...,)x x x1 2 n

�

Error VectorAdjustment Vector

Input

Filter
Gain

+

-

Fig. 49. A generalized view of model based filtering

While we have taken the students a long way in a short
time with the previous discussion, there are some extensions
and abstractions that are useful because they tie what we
have been discussing to problems that they hear about every
day. We start with the example of Figure 48. Here we have
extended the simple physical example. We can then ask:

1) What if we can’t measure every “state”?

2) What if the physical system is more complicated
than our model?

The trick is that since (2) is always true, then (1) is always
true. This kind of modeling allows us to discuss really big,
big systems with lots of stuff that we can’t model exactly
and can’t measure fully. Power grid, air traffic control,
automated highways, systems biology, have many more
things (states) than can be measured. However, the world
is increasingly comfortable with computers, with immersive
video games, with simulations. This means that we can refer
to Figure 49 as a general metaphor for how we handle these
problems. The general process steps are:

• Build a simulation.

• Run simulation in parallel with real world.

• Compare simulation output to things we can measure
in real world.

• Correct simulation with measurements from the real
world.

In doing so, we get a lot of advantages, including that the
“inside” of our simulation will have useful information we
could not measure in the real world. Plus, we get to tell our
friends that we work with models.

Model-based simulations corrected periodically by measure-
ment data is an estimator, and this is really the basis for ac-
tual model-based methods – often called state-space meth-
ods. With a good model and clean, frequent measurements,
an estimator can tell us a lot more about what is going
on inside a physical system than we could from a transfer
function (which is really an input-output relationship). The
key issues are in getting clean measurements and in getting
an accurate model. This is often the place where state-
space methods fail in practice, but it does not have to be
(Abramovitch (2015b)).

Copyright (c©) Daniel Y. Abramovitch
21

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

17. BEING AWARE OF DELAY

The telerobotic surgery example of of Section 8 gave us
an intuitive feel for how time delay changes the control
problem: the more delay is in our loop, the more slowly
we have to move. Where does this show up in the math?

Time

Input

Response

ResponseInput

Time

Fig. 50. Simple examples of pure time delay in a system.
The output reproduces the input, with perhaps some
scaling, but no other distortion.

M
a

g
n

it
u

d
e

 (
d

B
)

20 log K

0 dB

f0 10f00.1f0

f0 10f00.1f0

log Frequency

P
h

a
s

e
 (

d
e

g
)

0

-180

-90

Fig. 51. A sketch of the Bode plot delay produces: flat
gain (20logK) and phase going from 0 to increasingly
negative with high frequency.

We can also have a model that is a pure time delay, that is,
the output reproduces the input but delayed TD seconds.
The transfer function for this is:

X(s)

F (s)
= Ke−sTD , (26)

and it has a gain of K for all frequencies, but an ever
decreasing phase. Signals passing through lines without
attenuation, or simply data passing through a computer
system exhibits this kind of behavior. Two examples of
such signals are shown in Figure 50. Figure 51 sketched
the resulting Bode plot for the pure delay with gain K.

When delay is part of a system – and it always is – it will
result in negative phase at higher and higher frequencies. At
some point, just the delay along takes us past -180o of phase
and we are done, but even at lower frequencies, delay erodes

our phase margin (how much phase is left when the open-
loop magnitude gets below 1). Thus, delay always limits
how fast we can go. To go faster, we must minimize delay
in the feedback loop. Without a time machine, there is no
way around this.

One more thing to keep in the back of your mind: it is
hard to put the transfer function of Equation 26 into a root
locus and I don’t remember it being something that could
be handled with Routh-Hurwitz analysis. The Bode plot of
Figure 51 makes it kind of obvious, but sometimes folks
want a transfer function. The most common fix for that is
a Padé Approximation (Franklin et al. (1998)). Let’s just
show a first order Padé approximation to the transform of
a delay of length TD:

e−aTDs ≈ 1− 1
2aTDs

1 + 1
2aTDs

. (27)

As with Taylor series approximations, we can always add
more terms, but this gets the main idea across. The Padé
approximation of Equation 27 does give us a rational
transfer function for the delay, but it has a zero in the right
half of the s plane. While these kinds of systems aren’t as
hard to control as if the system were unstable (if there was
a pole in the right half plane), the presence of this non-
minimum-phase (NMP) zero makes control a lot harder.
So, this is just another way of saying that time delay limits
how fast we can go in a feedback loop.

18. A LITTLE BIT MORE MATH: INTEGRATORS
AND THE FINAL VALUE THEOREM

The Final Value Theorem (FVT) relates the limit time value
of some response to the zero-frequency, DC response of a
transform. For control systems, it’s main use is to tell us how
many integrators we need in the forward path of a feedback
loop in order to achieve 0 steady state error to some level of
input (step, ramp, quadratic, etc.). In continuous time, the
theorem says if a function f(t) is bounded for t ∈ (0,∞)
and the limt→∞ f(t) is bounded, then

lim
t→∞ f(t) = lim

s→0
sF (s), (28)

where F (s) is the Laplace transform of f(t). The transfer
function from the reference to the error signal is:

E(s)

R(s)
=

1

1 + P (s)C(s)
(29)

and if the input, r(t) is a unit step function, its Laplace
transform is 1/s. This means that for a step:

E(s) =
1

s

1

1 + P (s)C(s)
. (30)

Let’s call G(s) = P (s)C(s). The final value of this is given
by

lim
s→0

sE(s) = lim
s→0

1

1 +G(s)
. (31)

Now, if the open loop transfer function has an integrator in
it, then G(s) = G̃(s)/s and

lim
s→0

1

1 +G(s)
= lim

s→0

s

s+ G̃(s)
= 0. (32)

Copyright (c©) Daniel Y. Abramovitch
22

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

So, that’s it: if P (s)C(s) has an integrator in it, then the
error to a step eventually goes to 0. For this reason, many
controllers add an integrator into their transfer function so
as to guarantee zero steady state error to a step input. An
extremely common simple control structure includes both
proportional and integral feedback with different gains, i.e.

CPI(s) = KP +
KI

TIs

KI

TIs
= KP

(
s+ KI

KPTI

s

)
. (33)

This is known as a Proportional plus Integral (PI) con-
troller, and it is one of the most common controllers in
industry. It works on a variety of low order system models
where the first resonance or pole frequency is far enough
out that we can apply integral action to get zero steady
state error, but mostly we rely on the proportional feedback
to stabilize the system. When we need some differentiation
for stability and still want the integrator for zero steady
state error, we turn to that workhorse, the proportional-
plus-integral-plus-derivative (PID) controller, which we will
talk about briefly in Section 20.

19. SOME MORE ON DISCRETIZATION

A stable differential equation has roots of the characteristic
polynomial that all have negative real parts. The simplest,
first order, linear, constant coefficient differential equation,

ẋ = ax, (34)

is stable whenRe{a} < 0. Now, if we sample the time axis at
a constant rate, say fS = 1/TS , we have a spacing between
points of TS and if we took the values at those points, they
would end up as a geometric progression with a ratio. Call
this ratio α. The essence of understanding discretization of
physical signals is to relate quantities such as α to a and
TS . What we know is that for the differential equation to
be stable, Re{a} < 0. For the sequence of pulses to decay,
we also know |α| < 1. Thus, somehow these are related. We
can understand this by looking at the transfer function of a
low pass filter:

L(s) = K
a

s+ a
. (35)

This has a low pass (when s� a) gain of K, with a corner
frequency at s = a = 2πfc.

There are lots of ways to generate a discrete transfer func-
tions so that we can do this math on a computer. One
method that we remember from numerical solutions of inte-
gration is to use one of the simple integration approximation
rules. For example in the Trapezoidal Rule integration,
where we average the heights of the two points and multiply
by the distance between to get the area of the interval.
In that respect, the differentiation operator of a Laplace
Transform, s, is substituted by:

s←− 2

T

z − 1

z + z
=

2

T

1− z−1

1 + z−1
. (36)

Making this substitution, we end up with

LT (z) = K
βT (z + 1)

z − αT
= K

βT (1 + z−1)

1− αT z−1
. (37)

where βT = aT
2+aT and αT = 2−aT

2+aT . This filter is stable

when |αT | < 1, which is true whenever a > 0, so our digital
version has the same stability conditions as the continuous-
time version.

For a variety of reasons, folks sometimes use another inte-
gration rule, the forward rectangular integration rule:

s←− z − 1

T
=

1− z−1

Tz−1
. (38)

LF (z) = K
βF

z − αF
= K

βF z
−1

1− αF z−1
. (39)

where βF = a and αF = 1 − aT . This filter is stable when
|αF | < 1, which is true whenever 0 < aT < 2. Now, T > 0,
so we are really placing conditions on a, not only that it be
greater than 0 as before, but there is also a requirement that
the sample period, T , be small enough in relation to a so
as to keep the combination below 2. This is a requirement
on how fast we need to sample, just to keep the digital
filter stable, and is a direct consequence of how we chose to
represent the continuous time quantities inside a computer
(discrete time).

This is the main lesson of this section: when one
samples the data, an entirely new set of issues comes
up related to how fast we sample, how we represent
the physical system, and how we convert the data.
It doesn’t mean that it’s not worth doing; it usually
is. It simply means that we have to be aware of those
new issues.

One more simple discretization is worth mentioning here,
for the simple reason that it shows up in generating the
discrete-time version of a PID controller (Section 20). As
this latter device is what most of you will end up doing
if and when you actually implement a control system, it’s
worth mentioning. The rule is the backwards rectangular
rule, where we integrate by looking backwards from the
latest sample. (The forward rule looks forward from the
next to last sample.)

s←− z − 1

Tz
=

1− z−1

T
. (40)

LB(z) = K
βB(z)

z − αB
= K

βB

1− αBz−1
. (41)

where βB = aT
1+aT and αB = 1

1+aT . This filter is stable when

|αB | < 1, which is true whenever aT > 0 or aT < −2.
Now, this is weird, because the backwards rectangular rule
discretization of our filter is stable not only when the
continuous-time filter is stable, but even in some cases when
it isn’t. We refer to this as the backwards rule being an
overly conservative discretization. Nevertheless, it shows
up as the main way of discretizing continuous-time PID
controllers. Even if we are not delving into digital control
much here, this is a useful point of reference. I’ll discuss
that briefly in Section 20.

Finally, there are many other ways to discretize a continuous-
time model. None of them are perfect, because by looking
at the data only at discrete points separated in time, we
have to throw away some information. Intuition tells us

Copyright (c©) Daniel Y. Abramovitch
23

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

that if those points are close enough together, we will be
okay. In fact, the Nyquist Sampling Rate (Bracewell (1978);
Franklin et al. (1998)) is based on a way of establishing
a minimum sampling rate based on the continuous-time
model. By far the most common discretization method
used in textbooks (and in Matlab) is the Zero-Order Hold
Equivalent (Franklin et al. (1998)), which has the property
of being exact at the sample points. It also has the property
that it destroys all physical intuition that might be in
the continuous-time model as part of the discretization, so
there’s that.

This section described a bit about discretization,
even though you likely will not see it in your first
controls class. The reason for this is that when you
go to generate your first control system, you will
almost certainly be faced with discretization as you
implement the controller on a computer. Even some
mild awareness of some of the issues here is bet-
ter than the “What just happened?” feeling most
students are left with when they are asked to do
control without knowing anything about discrete-
time representations of sampled data systems.

20. THE GOOD, THE BAD, AND THE PID

It’s a plot that repeats itself almost as often as people shak-
ing their heads at one of the newer Star Wars movies: you go
through 90% of a class on controls and at the end there is a
brief discussion of proportional-plus-integral-plus-derivative
(or proportional-integral-derivative, PID) controllers. Then
you look at almost any real world control system and the
odds are you are looking at a PID. They probably deserve
more respect than they will get in your class.

If we think about the control schemes discussed above, we
had full-state-feedback, where we did proportional feedback
from every energy storage element (state) of the system.
When we couldn’t measure all the states, we used a differ-
entiator or limited differentiator (lead filter) as an estimate
of at least the velocity. That gave us the proportional-plus-
derivative (PD) controller (Section 15). Finally, the Final
Value Theorem convinced us that if we wanted zero steady
state error to a step input, we wanted an integrator in
the loop. That gave us the proportional-plus-integral (PI)
controller (Section 18).

It should be noted that many of our examples had physical
systems models that were second order or less. This was
convenient, but it should not be a total shock: engineers
often beat systems into a form so that the dominant
characteristics that the control system needs to deal with
(at least at first pass) is a second order system. With that in
mind, what happens when we feel we are most likely to have
some second order physical system and we may need PD
and/or PI control? What if we had one controller that had
enough knobs to turn on or off any of those characteristics?

Enter the PID controller. For a lot of the logic described
above, PID controllers dominate the industrial landscape.
They are either built in-house or bought as add on con-
trollers. Ironically, while PID controllers are the most stan-
dard controller used in practice, the PIDs themselves suffer
from a lack of standardization. Virtually any control struc-

ture that has a proportional gain, an integrator with its
own gain, and a differentiator (with or without filtering)
with its own gain can be considered a PID controller, but
the specification of gains can have a multitude of styles.

Consider the following three PID controller equations. The
center term for each is the typical “three parameter” form,
while the rightmost term puts the PID in the form of
an analog filter (which we would use for analysis). For
brevity, we have omitted the cases when a low pass filter
is added to the differentiator term that we showed in
Section 15, although this would be necessary if the PID
were to be discretized with a Trapezoidal Rule Equivalent
(Abramovitch (2015c)). Still, these three forms are close to
the style of specification of most continuous-time, unfiltered
PID controllers that may be encountered, either in analysis
or in commercial controllers. Recognizing one of these
forms, we should be able to easily translate the control
parameters into one of the other forms. This is extremely
useful in getting an apples to apples comparison of different
commercial PID controllers.

C(s) = K

(
1 +

1

TIs
+ TDs

)
= K

(
1 + TIs+ TITDs2

TIs

)
(42)

C(s) = KP +
KI

s
+KDs =

KI +KP s+KDs2

s
(43)

C(s) =KP +
KI

TIs
+KDTDs

=
KI +KPTIs+KDTITDs2

TIs
(44)

The form of Equation 42 is typically – but not always –
associated with process control applications, temperature,
and pressure control. There is an overall controller gain,
but the relative gains of the three parts are adjusted via the
terms TI and TD, which nominally are meant to refer to the
integration time (time over which the integral takes place)
and differentiation time (time over which the derivative
takes place), respectively. Even here, the terminology is
confusing, since as written the integral and differentiator
take place over all time. These terms take the place of
the integrator and differentiator gains. Still, they are a bit
confusing since one would naturally assume that integration
and differentiation times would be characteristics of the
device or a measurement parameter, rather than a control
gain.

e u
�

KP

K T sD D

KI

T sI

C(s)

e u
�

KP

K (1-z)D

-1

KI

1-z
-1

C(z)

Fig. 52. A parallel form topology of a simple analog PID
controller (top). The digital PID controller (bottom)
shows much of the same structure.

The form of Equation 43 has three independent PID
“knobs” with no hint of relation to the integration and

Copyright (c©) Daniel Y. Abramovitch
24

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

differentiation time. The form of Equation 44 breaks the
integration and differentiation times out from the integrator
and differentiator gains. While this last form may seem a
bit tedious due to the extra coefficients, it has a distinct
advantage when discretized using a backwards rectangular
rule equivalent where s −→ z−1

TSz . If one sets TS = TI = TD,
which aligns with integration and differentiation over a
single sample period, we get:

CB(z) =KP +
KI

1− z−1
+KD(1− z−1)

=
(KP +KI +KD)z2 − (2KD +KP)z +KD

(z − 1)z
(45)

What is most revealing about this form is the similarity
between the structures of Equations 44 and 45 as demon-
strated in Figure 52. The continuous and discrete param-
eters are related via TI = TD = TS , while the structure
remains essentially the same. Furthermore, the backwards
rectangular rule discretization has taken a non-proper ana-
log PID form and made it proper and therefore directly
implementable.

10
1

10
2

10
3

10
4

10
5

10
6

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40
Resonant Second Order Responses

Frequency (Hz)

M
a

g
n

it
u

d
e

 (
d

B
)

Spring Line:
Crossover Here
for PI Control

Mass Line:
Crossover Here
for PD Control

Varying
Resonance

Fig. 53. The typical ranges in a mechatronic system and
how they relate to PID control.

While the denominator of Equation 45 does not change with
PID parameters, the numerator can produce anything from
a lag filter (set KD = 0) to a lead filter (set KI = 0)
to a notch filter (Abramovitch et al. (2008); Abramovitch
(2015c)). Figure 53 shows the ranges of a typical mecha-
tronic control system. If the loop is closed well below the
resonance, a PI controller may be used. If the loop is closed
far above the resonance, a PD controller may be employed.
It is when we try to close the loop in the vicinity of the
resonance that we need to carefully use all the PID coeffi-
cients, and so we need a far more accurate model than the
previous two cases.

These types of insights move the PID from something
separate from the rest of control design to simply being
a particularly useful substructure of control design. It ties
advanced methods to that workhorse of implementation, the
PID, even if that starts simply with improved modeling of
our system so that we can obtain better PID parameters.

Mechatronic
Plant

PID Filter

ADC

DAC�

-
r yu

Fig. 54. A practical digital control loop for a mechatronic
system. The digital controller is often implemented as
a PID like controller in series with filtering to lower the
effect of high frequency resonances.

Another bridge between PID controllers and advanced
methods is to realize that almost any linear SISO state
space controller can be formulated as a PID plus a group
of matched filters as shown in Figure 54. Looking at it
this way, the matched filters correspond to the estimator
model and neither of them works well if the modeling is
inaccurate. Generally, for systems with more than second
order dynamics, successful modeling involves a deep dive
into measurements.

A few things stand out differently from much of what you
will learn in your first class and this disconnect is often very
confusing, like an M. Night Shyamalan movie script. You
are stuck shaking your head wondering, “What the heck
just happened?!?”

The first is that most of the controls class you will learn will
be about developing transfer functions for controllers that
then result in some plotted response that looks reasonable.
Furthermore, that transfer function has a single gain knob
to adjust. With a PID controller we end up with three
parallel mini-controller blocks, each with their own gain.

The second is that when we are taught to do computer
control by discretizing the system model and then creating
an all digital controller (Franklin et al. (1998)). However,
with the PID, we take an analog controller structure and
discretize that.

The third thing is that almost all controllers used in
industry are PID controllers. The estimates are easily 90%
or more. Thus, it is worth understanding their relationship
to other forms of control if we want to do something more
intelligent than randomly turn three knobs (the PID gains).

But my main point is that if you really do control on real
systems, you will work with PIDs at some point (perhaps
often). They are not a separate thing, but a particularly
easy-to-use, robust, and flexible structure for implementing
controllers. They are not a seperate art and should not be
treated as such. In dealing with these, Yoda said it best:
“Use what you have learned: serve you it can.”

21. CLOSING COMMENTS

With such a whirlwind tour of control and system theory,
I hope that I have given you not only some context for
why control and the encompassing field of system theory is
important, but also what to expect when you first learn it.
I assumed that you had certain math and science classes
under your belt. While not mandatory, it does make the
description above a lot easier to handle. These are likely the
prerequisites for your control class anyway, so this shouldn’t
come as a big shock to any of you.

Copyright (c©) Daniel Y. Abramovitch
25

October 10, 2019

Another prerequisite that I assumed was that you had some
experience with programming as a means of implementing
algorithms. As most control systems one will see involve
a computer to execute the control decisions, this is kind
of a basic necessity in the modern world. One caveat is
that computer science is great, but has no concept of time
constants. It is thus up to someone with some idea of
these things to teach programmers how to make their code
interact with the real world, to keep up with nature’s clock.

With that, you can expect that your controls class will go
through a lot of the topics described above in far greater
mathematical detail. That’s great. I hope that the preview
of and context for the different tools allows you to see where
they all fit in. I wish someone had told me those things back
when I was your age.

There is a lot more to control, signal processing, and sys-
tem theory than can be understood in just one class, and
certainly in one primer/cheat sheet document like this.
Every problem has its practical limits, but for different sub-
branches of control, they show up differently. For example,
chemical process control systems are large and complex, but
the model orders are relatively low and the time constants
are absurdly slow, so one would not be concerned with the
computer being able to keep up with the needed sampling
rate. On the other end of the spectrum, small mechatronic
systems often have multiple resonances that oscillate in the
tens or hundreds of kiloHertz. Even the fastest processing
chips have issues doing complex operations between samples
coming in at a 50 MHz rate. On the other hand, chemical
process control systems are often limited by extreme non-
linearities and limitations on what can be injected as a test
signal and what can be measured. To paraphrase Sun Tzu
(Tzu (1983)), “Know your time constants and know your
model, and you can close 100 loops without disaster.”

It is best to take a step back and give them an overview
here, some thoughts about control systems and tech work
in general:

• A lot of this discussion shows up in all technical work.
Ideas about making measurements, using science to
generate models, transforming those models into math-
ematics, using those math models to make predictions
and improve design, and implementing things using
computer programming are fairly universal..

• Computation has gone digital, not because digital gives
better performance, but because digital gives cookie
cutter, which gives miniaturization which gives more
capability in small spaces . . . everywhere.

• To do useful things that touch the real world, you have
to understand the real world and this usually takes
modeling, and modeling takes math. (This answers the
high school students inevitable questions in math class:
“Are we ever going to use this?”)

• Some folks do math for its own sake. They are called
mathematicians. Scientists do math to understand the
world. Engineers do math to do something about it.
The lines often cross, but one doesn’t have to prove
theorems all day to find math that makes a lot of things

understandable and allows us to build better solutions
to problems.

I’m not saying learning about control systems is easy, just
that with some guidance and context it can be a lot less
inscrutable than it has been since I was a student. Why is
it worth learning about feedback and control (apart from
the class being required to graduate)? Well, as we move to
a world of more and more automated devices interacting
with each other and with humans and the environment,
the physical need for measurement and feedback is obvious.
Without the basic understanding of the principles and
practices that give understanding and intuition in these
areas. most folks are “practicing control without a license.”
It doesn’t take a science fiction writer to imagine what kind
of chaos machines that aren’t properly regulated will cause.

Instead, a little bit of control systems knowledge goes a
long way. It goes beyond the theory to an understanding
that there are certain limits that we invariably hit and one
should be aware of these before one blindly uses the numbers
out of an optimization algorithm.

REFERENCES

Abramovitch, D. (2005). The outrigger: A prehistoric feed-
back mechanism. The IEEE Control Systems Magazine,
25(4), 57–72.

Abramovitch, D.Y. (2015a). Built-in stepped-sine measure-
ments for digital control systems. In Proceedings of the
2015 Multi-Conference on Systems and Control, 145–150.
IEEE, IEEE, Sydney, Australia.

Abramovitch, D.Y. (2015b). Trying to keep it real: 25
years of trying to get the stuff I learned in grad school
to work on mechatronic systems. In Proceedings of the
2015 Multi-Conference on Systems and Control, 223–250.
IEEE, IEEE, Sydney, Australia.

Abramovitch, D.Y. (2015c). A unified framework for analog
and digital PID controllers. In Proceedings of the 2015
Multi-Conference on Systems and Control, 1492–1497.
IEEE, IEEE, Sydney, Australia.

Abramovitch, D.Y., Hoen, S., and Workman, R. (2008).
Semi-automatic tuning of PID gains for atomic force mi-
croscopes. In Proceedings of the 2008 American Control
Conference. AACC, IEEE, Seattle, WA.

Åström, K.J. and Wittenmark, B. (1990). Computer Con-
trolled Systems, Theory and Design. Prentice Hall, En-
glewood Cliffs, N.J. 07632, second edition.

Barnett, J.E. (1998). Time’s Pendulum: From Sundials to
Atomic Clocks, the Fascinating History of Timekeeping
and How Our Discoveries Changed the World. Harcourt
Brace & Co, San Diego, New York, London. ISBN: 0-15-
600649-9.

Bernstein, D.S. (2002). Feedback control: An invisible
thread in the history of technology. IEEE Control Sys-
tems Magazine, 22(2), 53–68.

Boyce, W.E. and DiPrima, R.C. (1977). Elementary Dif-
ferential Equations and Boundary Value Problems. John
Wiley & Sons, New York, third edition.

Bracewell, R.N. (1978). The Fourier Transform and Its
Applications. McGraw-Hill, New York, 2 edition.

Franklin, G.F., Powell, J.D., and Emami-Naeini, A. (2006).
Feedback Control of Dynamic Systems. Prentice Hall,
Upper Saddle River, New Jersey, fifth edition.

26

What’s a Control System and Why Should I Care? Verson 1.0

Franklin, G.F., Powell, J.D., and Workman, M.L. (1998).
Digital Control of Dynamic Systems. Addison Wesley
Longman, Menlo Park, California, third edition.

Haidar, A. (2016). The artificial pancreas: How closed-loop
control is revolutionizing diabetes. IEEE Control Systems
Magazine, 28–47.

Hawking, S. (1988). A Brief History of Time. Bantam
Dell Publishing Group, New York, NY. ISBN: 978-0-553-
10953-5.

Jespersen, J. and Fitz-Randolph, J. (1999). From Sundials
to Atomic Clocks: Understanding Time and Frequency.
Dover Publications, Inc., Mineola, New York, second
revised edition. ISBN: 0-486-40913-9.

Maxwell, J.C. (1868). On governors. Proceedings of the
Royal Society of London, 16, 270–283.

Mayr, O. (1970). The Origins of Feedback Control. MIT
Press, Cambridge, MA.

Mindell, D.A. (1995a). Antiaircraft fire control and the
development of integrated systems at Sperry, 1925-1940.
IEEE Control Systems Magazine, 15(2), 108–113.

Mindell, D.A. (1995b). Automation’s finest hour: Bell Labs
and automatic control in World War II. IEEE Control
Systems Magazine, 15(6), 72–78.

Mindell, D.A. (2002). Between Human and Machine: Feed-
back, Control, and Computing before Cybernetics. Johns
Hopkins Studies in the History of Technology. The Johns
Hopkins University Press, Baltimore and London.

Ogata, K. (1970). Modern Control Engineering. Prentice-
Hall Instrumentation and Controls Series. Prentice-Hall,
Englewood Cliffs, New Jersey, third edition.

Stein, G. (1989). Respect the unstable. Bode Lecture
presented at the 1989 IEEE Conference on Decision and
Control, Tampa FL.

Stein, G. (2003). Respect the unstable. IEEE Control
Systems Magazine, 23(4), 12–25.

Strang, G. (1980). Linear Algebra and its Applications.
Academic Press, New York, second edition.

Tzu, S. (1983). The Art of War: Edited and with a Forward
by James Clavell. Dell Publishing, New York. ISBN 0-
385-29985-0.

22. WHAT ELSE?

So, we’re done, right? If we’ve mastered the stuff above
in our first controls class, we know the whole field. Not
so fast, Kemo sahbee. If you you understand everything
from the first class, you have the tools to become functional
with feedback control, but we’ve only scratched the surface.
The stuff outlined above that you should learn in that first
controls class will get you going, but there are a ton of other
things to consider if you want to go deeper.

Resonances: I haven’t really gone into it, but not all
systems can be effectively modeled by a low order transfer
function. In fact, as we know from being around anything
physical, things vibrate. The vibration modes, which look
like combinations of second order underdamped poles and
zeros are difficult to control because of the combination of
peaks and notches in the frequency response magnitude
accompanied by ± 180o phase changes. From a root
locus perspective, these are pole/zero pairs that are near
the instability line of the jω axis. From the Bode plot
perspective, we see potential for the open loop gain to pop

back up above 1 (or 0 dB) when the phase is below 180o.
It’s all a matter of how fast these dynamic features are
relative to the speed at which we want to control. Most
PI controllers will limit their bandwidth to about 1/4
the frequency of the first resonance. Controlling through
resonances and notches (anti-resonances) involves having
a really, really good model of those features (Abramovitch
et al. (2008); Abramovitch (2015b)). That can’t be done
without a lot of precise measurements (Abramovitch
(2015a)) and modeling.

Digital control: Also called computer control (Åström
and Wittenmark (1990)), discrete-time control (Franklin
et al. (1998)), etc. While I gave some indications of the
issues in digital control in Sections 7 and 19, that’s barely
scratching the surface. Careful consideration of what it
means to sample real-time signals, the limitations and
the needs for doing so, and the design modifications that
should be in place when we really want to properly take
advantage of computer control are design disciplines on
their own (read another semester at least). What does
the Nyquist Sampling Theorem (Bracewell (1978)) tell us
about sampling and is it’s admonition to sample twice as
fast as things are changing really enough? What are the
ramifications for delay of sampled systems? How do we
move between the continuous-time physical models of the
real world and the discrete-time models in the computer
without losing all intuition for what is going on?

State Space: Your instructor may or may not bring
this up in your last week of class, but if you remember
the 800 pound gorilla metaphor, you’ve already seen
part of this. State space, also known as model based
methods, revolve around taking the linear algebra way
of solving differential equations. You turn an nth order
equation into a system of n 1st order equations that fit
conveniently into matrix algebra (Strang (1980)). Rather
than being limited to the input-output relationship of
transfer functions, we now get the states which are all
the internals of the model. If we could directly measure
them all, we’d have the best control.
The issue is that since we can’t measure them all, we

have to estimate them. I touched on this in Section 15.
Both the estimation and control depend upon having a
good model of the system, and a reality based model of
the system requires a crapload of measurement and model
fitting. That part often gets ignored, but the math of state
space is beautiful. Theoretically, you can do a lot more,
so it is a big focus of academic methods.

Modeling/Identification: I’ve alluded to it quite a bit
in this document, but almost all of control system work
depends upon having some sort of model if the physical
system. Often the quality of the model determines the
quality of the controller. This is particularly true when we
are trying to represent all the internal states of a system,
such as with model based control. You can’t control
what you can’t model and you can’t model what
you don’t measure.

Measurements: Speaking of which, what kinds of mea-
surements can we make on our systems, whether to get
a model or to simply monitor performance? Where can
we put a sensor and how does that sensor works? Can we

Copyright (c©) Daniel Y. Abramovitch
27

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

put in our own test signal (what they would call training
data in machine learning (ML)) or are we stick with only
operational data? How do we wire our measurements so
that the data goes right into our analysis and design
tools?

On-line and self tuning: Wouldn’t it be great if we
could attach a controller to any physical system turn
it on and have it self adjust itself to get the best
performance as a control system? It seems great, but
there are limitations. You wouldn’t want to do that right
before you launched that rocket. You might not want
to do that on that nuclear reactor, that airplane, that
automated car. Self-tuning and learning tend to be slow
processes so as long as the thing to which they are being
applied it well behaved on its own, they can produce some
impressive results. However, for things that are hard to
control, this idealization leads to disaster. We need some
sort of nominal model and controller in operation to keep
these systems stable while the learning algorithm learns
the appropriate model. In other words, something has to
buy time for the learning algorithm on hard to control
systems.
There is a whole branch of study on this and at its heart

are the origins of what is now called machine learning
(ML) which has now become all about neural networks,
which are tuned by the same core algorithm that cleans
up the performance of our phones and televisions.

Noise and disturbances: Speaking of all that model-
ing and tuning, one of the main limits is that measure-
ments are never perfect; they are inherently noisy. How
noisy is noisy and what limits does this put on our ability
to measure for modeling or apply self tuning or simply
operate the control system?

Feedforward: For many years the forgotten step-child
of the control world, feedforward control has made a
resurgence in the past 30 years. The term, feedforward,
is a applied to many different control schemes, but most
broadly, it can be considered as being any control scheme
that uses a signal not directly extracted from a mea-
surement of the signal being regulated. In other words,
the signal that drives that part of the controller is not
a feedback signal. Because of this, feedforward control
doesn’t need to worry about destabilizing a system via
feedforward. A well designed feedforward system can
inject the reference signal in a way as to minimize the
feedback error, leaving the feedback controller to mostly
deal with disturbances. Other forms of feedforward can
use a calibrated auxiliary sensor signal to anticipate an
precompensate for disturbances. The list is pretty long,
but it’s important to realize that most feedforward sys-
tems are really combinations of a core feedback system
augmented with a feedforward component.

Time Varying: We got a lot of mileage assuming that
the differential that described the physical system did
not vary with time, but that’s often not true and it
makes the math a lot harder. It is very hard to use any
transfer function math (they kind of depend on that LTI
thing) and even the time domain solutions are hard. Grad
school, anyone?

Nonlinearities: Yeah, the other part of not being LTI
is not being linear, i.e. the differential equation being
nonlinear. Or having nonlinear components in the loop
such as limits on how large a signal can be (saturation) or
quantization in converting signals between the analog and
digital worlds. The question really isn’t whether there is
nonlinearity, but how much nonlinearity there is and how
much it affects what we are trying to do.

Integrator wind-up: One of the main nonlinearities is
saturation and this is particularly an issue when the
actuator limits and our controller things it still has errors
to kill. Even in a PID, the integrator can continue to
accumulate errors that the actuator cannot do anything
about so that when the actual error gets small enough
not to saturate the actuator, we still have this large
container of old, useless, integrated error to deal with.
This is called integrator wind-up and there are anti-
windup schemes to limit the behavior of the integrator
when we hit saturation.

Multi-Input, Multi-Output: We have focused on con-
trol problems where we had a single input to the physical
system and a single measured output (single-input, single-
output; SISO). The fact of the matter is that most real
systems have lots of potential inputs and outputs. These
multi-input, multi-output (MIMO) systems are far more
complex, as is the math to deal with them. This is one
of the great promises of the state-space methods above:
at least from a mathematical structure point of view,
they seem to easily adapt from SISO problems to MIMO
problems.

23. GLOSSARY

ADC: An analog-to-digital converter. A circuit which
takes an analog signal level (usually in the form of
a voltage) and converts it into a computer readable
signal (represented by a collection of bits). ADCs are
characterized by their precision (the number of bits,
M, which allows for up to 2M distinct voltage levels
to be identified and thus a resolution of up to R/2M

volts, where R is the input voltage range. They are also
characterized by how long they take to do the conversion
and what circuitry is used to actually do this. The choice
of circuitry affects the speed, accuracy, and cost.

Control: Make something move where you want. That’s
pretty much it: control is about making stuff move in a
way that you want it to move. Originally, we would have
been talking about moving physical objects around, but
the idea of moving stuff can refer to electricity, chemicals,
data, etc. Still, when we talk about moving something in
a way that we want it to move, we are talking about
control.

DAC: An digital-to-analog converter. A circuit which
takes a digital signal in some number of bits and produces
a voltage level.

Feedback: Look at where it’s going as you push it and
adjust how you are pushing. Ah, when we aren’t familiar
with the recipe, or we are working in a new kitchen with
new tools, we taste the food a lot to see if it’s cooking
the way we want it to. This is feedback: make a sample of

Copyright (c©) Daniel Y. Abramovitch
28

October 10, 2019

What’s a Control System and Why Should I Care? Verson 1.0

the output of what we are doing and compare it to where
we want to be moving to. Again, this can be feedback
of signals moving inside a computer as much as down a
street.

Feedforward: Estimate (guess) how to push it but never
use where you see it going to adjust how you are pushing.
If we think about how we often think about doing things
for which we are very familiar, we do it in a feedforward
way. When we are cooking something that we have
cooked a hundred times and we know the recipe cold,
we just execute it without having to taste the food in
intermediate steps. That’s feedforward and when we know
things really well, it’s a very efficient way to do things.

LTI: Linear, time-invariant. It’s a property of certain
systems (or maybe an idealized pair of properties) in
which the the differential equations describing a system
are both linear (double the input and the output doubles)
and time-invariant (the parameters are fixed in time).
While the term linear is prevalent, the sophisticated kids
use the term affine, which means there can be an offset
that does not double (is fixed). In other words, truly linear
functions pass through (0, 0) but affine functions don’t
need to do that.

MIMO: A system with a multiple inputs (MI) and a mul-
tiple output (MO), hence making it a multi-input, multi-
output (MIMO) system. By convention, the number of
inputs and outputs is usually counted on the physical
system itself, not on the controller. When life is good,
we can decouple MIMO systems into a set of individual
SISO systems that don’t interact, but as one might guess,
nature is usually not so benign. MIMO systems require
another level of control design because the interconnec-
tion between the different axes of the system means that
good things we do on one loop may adversely affect the
behavior of another loop.

Sample and Hold: An analog circuit that samples a
voltage and then holds that voltage level at its output
for a specified amount of time. These are typically used
in conjuction with ADCs to hold the signal at a given
value so that the ADC can do its work of converting
the analog signal to a digital value. Most hold circuits
in the literature are zero-order holds, which means that
they hold the sampled value flat until the next sample
instant. A first-order hold would produce an output signal
that was a line (first order polynomial) between the last
two sample points (which would add some derivative
information at the expense of some delay).

Sampling: Refers to looking at a signal at discrete-time
points. Usually, but not always, the separation between
points in time is a constant, denoted T or TS . This sample
period is the inverse of the sample frequency, fS , so
fS = 1/TS . Generally, the faster one samples, the better
the representation of reality, however, faster sampling also
means less time between samples for the computer to do
the necessary calculations. For many problems these days,
the overwhelming speed of microprocessors compared to
the physical problem time constants makes this a non-
issue. However, for high speed applications, this becomes
critical.

SISO: A system with a single input (SI) and a single
output (SO), hence making it a single input, single output
(SISO) system. By convention, the number of inputs and
outputs is usually counted on the physical system itself,
not on the controller.

Transform: Usually refers to an integral (continuous-
time) or sum (discrete-time) in which a signal (usually
in time or space) is transformed into an alternate rep-
resentation usually with some sort of complex frequency
significance. In continuous time, the most commonly used
transforms are the Laplace Transform (frequency vari-
able is the complex s) and Fourier Transform (frequency
variable is the imaginary jω. In discrete time, the most
commonly used transform is the Z-transform (frequency
variable is z). Transform methods have the advantage of
turning convolution integrals/sums in one domain into
simple multiplications in the other domain.

Copyright (c©) Daniel Y. Abramovitch
29

October 10, 2019

